Amedeo P

References (7)

Title : Comparative genomics of the neglected human malaria parasite Plasmodium vivax - Carlton_2008_Nature_455_757
Author(s) : Carlton JM , Adams JH , Silva JC , Bidwell SL , Lorenzi H , Caler E , Crabtree J , Angiuoli SV , Merino EF , Amedeo P , Cheng Q , Coulson RM , Crabb BS , Del Portillo HA , Essien K , Feldblyum TV , Fernandez-Becerra C , Gilson PR , Gueye AH , Guo X , Kang'a S , Kooij TW , Korsinczky M , Meyer EV , Nene V , Paulsen I , White O , Ralph SA , Ren Q , Sargeant TJ , Salzberg SL , Stoeckert CJ , Sullivan SA , Yamamoto MM , Hoffman SL , Wortman JR , Gardner MJ , Galinski MR , Barnwell JW , Fraser-Liggett CM
Ref : Nature , 455 :757 , 2008
Abstract : The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.
ESTHER : Carlton_2008_Nature_455_757
PubMedSearch : Carlton_2008_Nature_455_757
PubMedID: 18843361
Gene_locus related to this paper: plakh-b3lb44 , plavi-a5kcq0 , plavs-a5k2k6 , plavs-a5k3z4 , plavs-a5k4s6 , plavs-a5k5e4 , plavs-a5k7t5 , plavs-a5k686 , plavs-a5kaa1 , plavs-a5kaa3 , plavs-a5kas6 , plavs-a5kcm2

Title : Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus - Fedorova_2008_PLoS.Genet_4_e1000046
Author(s) : Fedorova ND , Khaldi N , Joardar VS , Maiti R , Amedeo P , Anderson MJ , Crabtree J , Silva JC , Badger JH , Albarraq A , Angiuoli S , Bussey H , Bowyer P , Cotty PJ , Dyer PS , Egan A , Galens K , Fraser-Liggett CM , Haas BJ , Inman JM , Kent R , Lemieux S , Malavazi I , Orvis J , Roemer T , Ronning CM , Sundaram JP , Sutton G , Turner G , Venter JC , White OR , Whitty BR , Youngman P , Wolfe KH , Goldman GH , Wortman JR , Jiang B , Denning DW , Nierman WC
Ref : PLoS Genet , 4 :e1000046 , 2008
Abstract : We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated "gene dumps" and, perhaps, simultaneously, as "gene factories".
ESTHER : Fedorova_2008_PLoS.Genet_4_e1000046
PubMedSearch : Fedorova_2008_PLoS.Genet_4_e1000046
PubMedID: 18404212
Gene_locus related to this paper: aspcl-a1c4m6 , aspcl-a1c5a7 , aspcl-a1c6w3 , aspcl-a1c8p7 , aspcl-a1c8q9 , aspcl-a1c9k4 , aspcl-a1c759 , aspcl-a1c786 , aspcl-a1c823 , aspcl-a1c859 , aspcl-a1c881 , aspcl-a1c994 , aspcl-a1cag4 , aspcl-a1caj8 , aspcl-a1cas0 , aspcl-a1cc86 , aspcl-a1ccq2 , aspcl-a1cfv7 , aspcl-a1chj6 , aspcl-a1cif4 , aspcl-a1ck14 , aspcl-a1cke4 , aspcl-a1ckq1 , aspcl-a1cli1 , aspcl-a1cln8 , aspcl-a1cm72 , aspcl-a1cns2 , aspcl-a1cpk9 , aspcl-a1cra8 , aspcl-a1crr5 , aspcl-a1crs9 , aspcl-a1cs04 , aspcl-a1cs39 , aspcl-a1cu39 , aspcl-atg15 , aspcl-axe1 , aspcl-cuti1 , aspcl-cuti3 , aspcl-dapb , aspcl-dpp4 , aspcl-dpp5 , aspcl-faeb , aspcl-faec1 , aspcl-faec2 , aspfc-b0xp50 , aspfc-b0xu40 , aspfc-b0xzj6 , aspfc-b0y2h6 , aspfc-b0y962 , aspfc-b0yaj6 , aspfc-dpp5 , aspfu-DPP4 , aspfu-faeb1 , aspfu-faec , aspfu-ppme1 , aspfu-q4w9r3 , aspfu-q4w9t5 , aspfu-q4w9z4 , aspfu-q4wa57 , aspfu-q4wa78 , aspfu-q4wag0 , aspfu-q4wal3 , aspfu-q4wbc5 , aspfu-q4wbj7 , aspfu-q4wdg2 , aspfu-q4wf06 , aspfu-q4wf29 , aspfu-q4wf56 , aspfu-q4wfq9 , aspfu-q4wg73 , aspfu-q4wgm4 , aspfu-q4win2 , aspfu-q4wk31 , aspfu-q4wk44 , aspfu-q4wk90 , aspfu-q4wm12 , aspfu-q4wm84 , aspfu-q4wm86 , aspfu-q4wmr0 , aspfu-q4wny7 , aspfu-q4wp19 , aspfu-q4wpb9 , aspfu-q4wqj8 , aspfu-q4wqv2 , aspfu-q4wrr7 , aspfu-q4wu51 , aspfu-q4wub2 , aspfu-q4wui7 , aspfu-q4wuk8 , aspfu-q4wum3 , aspfu-q4wuw0 , aspfu-q4wvy1 , aspfu-q4ww22 , aspfu-q4wx13 , aspfu-q4wxd0 , aspfu-q4wxe4 , aspfu-q4wxr1 , aspfu-q4wyq5 , aspfu-q4wz16 , aspfu-q4wzd5 , aspfu-q4wzh6 , aspfu-q4x0n6 , aspfu-q4x1n0 , aspfu-q4x1w9 , aspfu-q4x078 , neofi-a1cwa6 , neofi-a1d4m8 , neofi-a1d4p0 , neofi-a1d5p2 , neofi-a1d104 , neofi-a1d380 , neofi-a1d512 , neofi-a1d654 , neofi-a1da18 , neofi-a1dal8 , neofi-a1df46 , neofi-a1dhj0 , neofi-a1di44 , neofi-a1dk35 , neofi-a1dki7 , neofi-a1dkt6 , neofi-a1dn55 , neofi-atg15 , neofi-axe1 , neofi-faeb1 , neofi-faeb2 , neofi-faec , aspcl-a1cd34 , aspcl-a1cd88 , neofi-a1dc66 , aspcl-a1ceh5 , neofi-a1dfr9 , aspfm-a0a084bf80 , aspcl-a1cqb5 , aspcl-a1cs44 , neofi-a1d517 , neofi-a1dbz0 , neofi-a1cuz0 , aspcl-a1c5e8 , neofi-a1d0b8 , aspcl-a1cdf0 , aspcl-a1ccd3 , neofi-a1da82 , neofi-a1d5e6 , aspcl-kex1 , aspcl-cbpya

Title : Genome sequence of Aedes aegypti, a major arbovirus vector - Nene_2007_Science_316_1718
Author(s) : Nene V , Wortman JR , Lawson D , Haas B , Kodira C , Tu ZJ , Loftus B , Xi Z , Megy K , Grabherr M , Ren Q , Zdobnov EM , Lobo NF , Campbell KS , Brown SE , Bonaldo MF , Zhu J , Sinkins SP , Hogenkamp DG , Amedeo P , Arensburger P , Atkinson PW , Bidwell S , Biedler J , Birney E , Bruggner RV , Costas J , Coy MR , Crabtree J , Crawford M , Debruyn B , Decaprio D , Eiglmeier K , Eisenstadt E , El-Dorry H , Gelbart WM , Gomes SL , Hammond M , Hannick LI , Hogan JR , Holmes MH , Jaffe D , Johnston JS , Kennedy RC , Koo H , Kravitz S , Kriventseva EV , Kulp D , LaButti K , Lee E , Li S , Lovin DD , Mao C , Mauceli E , Menck CF , Miller JR , Montgomery P , Mori A , Nascimento AL , Naveira HF , Nusbaum C , O'Leary S , Orvis J , Pertea M , Quesneville H , Reidenbach KR , Rogers YH , Roth CW , Schneider JR , Schatz M , Shumway M , Stanke M , Stinson EO , Tubio JM , Vanzee JP , Verjovski-Almeida S , Werner D , White O , Wyder S , Zeng Q , Zhao Q , Zhao Y , Hill CA , Raikhel AS , Soares MB , Knudson DL , Lee NH , Galagan J , Salzberg SL , Paulsen IT , Dimopoulos G , Collins FH , Birren B , Fraser-Liggett CM , Severson DW
Ref : Science , 316 :1718 , 2007
Abstract : We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
ESTHER : Nene_2007_Science_316_1718
PubMedSearch : Nene_2007_Science_316_1718
PubMedID: 17510324
Gene_locus related to this paper: aedae-ACHE , aedae-ACHE1 , aedae-glita , aedae-q0iea6 , aedae-q0iev6 , aedae-q0ifn6 , aedae-q0ifn8 , aedae-q0ifn9 , aedae-q0ifp0 , aedae-q0ig41 , aedae-q1dgl0 , aedae-q1dh03 , aedae-q1dh19 , aedae-q1hqe6 , aedae-Q8ITU8 , aedae-Q8MMJ6 , aedae-Q8T9V6 , aedae-q16e91 , aedae-q16f04 , aedae-q16f25 , aedae-q16f26 , aedae-q16f28 , aedae-q16f29 , aedae-q16f30 , aedae-q16gq5 , aedae-q16iq5 , aedae-q16je0 , aedae-q16je1 , aedae-q16je2 , aedae-q16ks8 , aedae-q16lf2 , aedae-q16lv6 , aedae-q16m61 , aedae-q16mc1 , aedae-q16mc6 , aedae-q16mc7 , aedae-q16md1 , aedae-q16ms7 , aedae-q16nk5 , aedae-q16rl5 , aedae-q16rz9 , aedae-q16si8 , aedae-q16t49 , aedae-q16wf1 , aedae-q16x18 , aedae-q16xp8 , aedae-q16xu6 , aedae-q16xw5 , aedae-q16xw6 , aedae-q16y04 , aedae-q16y05 , aedae-q16y06 , aedae-q16y07 , aedae-q16y39 , aedae-q16y40 , aedae-q16yg4 , aedae-q16z03 , aedae-q17aa7 , aedae-q17av1 , aedae-q17av2 , aedae-q17av3 , aedae-q17av4 , aedae-q17b28 , aedae-q17b29 , aedae-q17b30 , aedae-q17b31 , aedae-q17b32 , aedae-q17bm3 , aedae-q17bm4 , aedae-q17bv7 , aedae-q17c44 , aedae-q17cz1 , aedae-q17d32 , aedae-q17g39 , aedae-q17g40 , aedae-q17g41 , aedae-q17g42 , aedae-q17g43 , aedae-q17g44 , aedae-q17gb8 , aedae-q17gr3 , aedae-q17if7 , aedae-q17if9 , aedae-q17ig1 , aedae-q17ig2 , aedae-q17is4 , aedae-q17l09 , aedae-q17m26 , aedae-q17mg9 , aedae-q17mv4 , aedae-q17mv5 , aedae-q17mv6 , aedae-q17mv7 , aedae-q17mw8 , aedae-q17mw9 , aedae-q17nw5 , aedae-q17nx5 , aedae-q17pa4 , aedae-q17q69 , aedae-q170k7 , aedae-q171y4 , aedae-q172e0 , aedae-q176i8 , aedae-q176j0 , aedae-q177k1 , aedae-q177k2 , aedae-q177l9 , aedae-j9hic3 , aedae-q179r9 , aedae-u483 , aedae-j9hj23 , aedae-q17d68 , aedae-q177c7 , aedae-q0ifp1 , aedae-a0a1s4fx83 , aedae-a0a1s4g2m0 , aedae-q1hr49

Title : Draft genome of the filarial nematode parasite Brugia malayi - Ghedin_2007_Science_317_1756
Author(s) : Ghedin E , Wang S , Spiro D , Caler E , Zhao Q , Crabtree J , Allen JE , Delcher AL , Guiliano DB , Miranda-Saavedra D , Angiuoli SV , Creasy T , Amedeo P , Haas B , El-Sayed NM , Wortman JR , Feldblyum T , Tallon L , Schatz M , Shumway M , Koo H , Salzberg SL , Schobel S , Pertea M , Pop M , White O , Barton GJ , Carlow CK , Crawford MJ , Daub J , Dimmic MW , Estes CF , Foster JM , Ganatra M , Gregory WF , Johnson NM , Jin J , Komuniecki R , Korf I , Kumar S , Laney S , Li BW , Li W , Lindblom TH , Lustigman S , Ma D , Maina CV , Martin DM , McCarter JP , McReynolds L , Mitreva M , Nutman TB , Parkinson J , Peregrin-Alvarez JM , Poole C , Ren Q , Saunders L , Sluder AE , Smith K , Stanke M , Unnasch TR , Ware J , Wei AD , Weil G , Williams DJ , Zhang Y , Williams SA , Fraser-Liggett C , Slatko B , Blaxter ML , Scott AL
Ref : Science , 317 :1756 , 2007
Abstract : Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the approximately 90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict approximately 11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during approximately 350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.
ESTHER : Ghedin_2007_Science_317_1756
PubMedSearch : Ghedin_2007_Science_317_1756
PubMedID: 17885136
Gene_locus related to this paper: bruma-a8ndk6 , bruma-a8njt8 , bruma-a8nl88 , bruma-a8npi4 , bruma-a8npi6 , bruma-a8p6g9 , bruma-a8pah3 , bruma-a8pc38 , bruma-a8pek5 , bruma-a8piq4 , bruma-a8pnw8 , bruma-a8psu4 , bruma-a8pte1 , bruma-a8q606 , bruma-a8q632 , bruma-a8q937 , bruma-a8qav5 , bruma-a8qbd9 , bruma-a8qgj6 , bruma-a8qh78 , bruma-a8q143 , bruma-a0a024mej5 , bruma-a0a0k0jju9 , bruma-a0a0i9n517

Title : Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote - Eisen_2006_PLoS.Biol_4_e286
Author(s) : Eisen JA , Coyne RS , Wu M , Wu D , Thiagarajan M , Wortman JR , Badger JH , Ren Q , Amedeo P , Jones KM , Tallon LJ , Delcher AL , Salzberg SL , Silva JC , Haas BJ , Majoros WH , Farzad M , Carlton JM , Smith RK, Jr. , Garg J , Pearlman RE , Karrer KM , Sun L , Manning G , Elde NC , Turkewitz AP , Asai DJ , Wilkes DE , Wang Y , Cai H , Collins K , Stewart BA , Lee SR , Wilamowska K , Weinberg Z , Ruzzo WL , Wloga D , Gaertig J , Frankel J , Tsao CC , Gorovsky MA , Keeling PJ , Waller RF , Patron NJ , Cherry JM , Stover NA , Krieger CJ , del Toro C , Ryder HF , Williamson SC , Barbeau RA , Hamilton EP , Orias E
Ref : PLoS Biol , 4 :e286 , 2006
Abstract : The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance.
ESTHER : Eisen_2006_PLoS.Biol_4_e286
PubMedSearch : Eisen_2006_PLoS.Biol_4_e286
PubMedID: 16933976
Gene_locus related to this paper: tetts-i7mam3 , tetts-i7ml33

Title : The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans - Loftus_2005_Science_307_1321
Author(s) : Loftus BJ , Fung E , Roncaglia P , Rowley D , Amedeo P , Bruno D , Vamathevan J , Miranda M , Anderson IJ , Fraser JA , Allen JE , Bosdet IE , Brent MR , Chiu R , Doering TL , Donlin MJ , D'Souza CA , Fox DS , Grinberg V , Fu J , Fukushima M , Haas BJ , Huang JC , Janbon G , Jones SJ , Koo HL , Krzywinski MI , Kwon-Chung JK , Lengeler KB , Maiti R , Marra MA , Marra RE , Mathewson CA , Mitchell TG , Pertea M , Riggs FR , Salzberg SL , Schein JE , Shvartsbeyn A , Shin H , Shumway M , Specht CA , Suh BB , Tenney A , Utterback TR , Wickes BL , Wortman JR , Wye NH , Kronstad JW , Lodge JK , Heitman J , Davis RW , Fraser CM , Hyman RW
Ref : Science , 307 :1321 , 2005
Abstract : Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its approximately 20-megabase genome, which contains approximately 6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype instability and phenotypic variation. C. neoformans encodes unique genes that may contribute to its unusual virulence properties, and comparison of two phenotypically distinct strains reveals variation in gene content in addition to sequence polymorphisms between the genomes.
ESTHER : Loftus_2005_Science_307_1321
PubMedSearch : Loftus_2005_Science_307_1321
PubMedID: 15653466
Gene_locus related to this paper: cryne-apth1 , cryne-ppme1 , cryne-q5k7g1 , cryne-q5k7h2 , cryne-q5k7p6 , cryne-q5k8p2 , cryne-q5k8s0 , cryne-q5k9e7 , cryne-q5k9p3 , cryne-q5k9y9 , cryne-q5k721 , cryne-q5k987 , cryne-q5ka03 , cryne-q5ka24 , cryne-q5ka58 , cryne-q5kat4 , cryne-q5kav3 , cryne-q5kbu4 , cryne-q5kbw4 , cryne-q5kc00 , cryne-q5kec5 , cryne-q5kei3 , cryne-q5kei7 , cryne-q5ker2 , cryne-q5key5 , cryne-q5kf48 , cryne-q5kfk6 , cryne-q5kfz0 , cryne-q5kgq3 , cryne-q5kh37 , cryne-q5khb0 , cryne-q5khb9 , cryne-q5kip7 , cryne-q5kiu5 , cryne-q5kj56 , cryne-q5kjf8 , cryne-q5kjh3 , cryne-q5kjp9 , cryne-q5kjw7 , cryne-q5kky1 , cryne-q5kkz7 , cryne-q5kl13 , cryne-q5klu9 , cryne-q5km63 , cryne-q5kme9 , cryne-q5kni1 , cryne-q5knq0 , cryne-q5knr2 , cryne-q5knw0 , cryne-q5kq08 , cryne-Q5KCH9 , cryne-q55ta1 , cryne-q5kjh4 , crynj-q5knp8 , crynj-q5kpe0

Title : The genome of the protist parasite Entamoeba histolytica - Loftus_2005_Nature_433_865
Author(s) : Loftus B , Anderson I , Davies R , Alsmark UC , Samuelson J , Amedeo P , Roncaglia P , Berriman M , Hirt RP , Mann BJ , Nozaki T , Suh B , Pop M , Duchene M , Ackers J , Tannich E , Leippe M , Hofer M , Bruchhaus I , Willhoeft U , Bhattacharya A , Chillingworth T , Churcher C , Hance Z , Harris B , Harris D , Jagels K , Moule S , Mungall K , Ormond D , Squares R , Whitehead S , Quail MA , Rabbinowitsch E , Norbertczak H , Price C , Wang Z , Guillen N , Gilchrist C , Stroup SE , Bhattacharya S , Lohia A , Foster PG , Sicheritz-Ponten T , Weber C , Singh U , Mukherjee C , El-Sayed NM , Petri WA, Jr. , Clark CG , Embley TM , Barrell B , Fraser CM , Hall N
Ref : Nature , 433 :865 , 2005
Abstract : Entamoeba histolytica is an intestinal parasite and the causative agent of amoebiasis, which is a significant source of morbidity and mortality in developing countries. Here we present the genome of E. histolytica, which reveals a variety of metabolic adaptations shared with two other amitochondrial protist pathogens: Giardia lamblia and Trichomonas vaginalis. These adaptations include reduction or elimination of most mitochondrial metabolic pathways and the use of oxidative stress enzymes generally associated with anaerobic prokaryotes. Phylogenomic analysis identifies evidence for lateral gene transfer of bacterial genes into the E. histolytica genome, the effects of which centre on expanding aspects of E. histolytica's metabolic repertoire. The presence of these genes and the potential for novel metabolic pathways in E. histolytica may allow for the development of new chemotherapeutic agents. The genome encodes a large number of novel receptor kinases and contains expansions of a variety of gene families, including those associated with virulence. Additional genome features include an abundance of tandemly repeated transfer-RNA-containing arrays, which may have a structural function in the genome. Analysis of the genome provides new insights into the workings and genome evolution of a major human pathogen.
ESTHER : Loftus_2005_Nature_433_865
PubMedSearch : Loftus_2005_Nature_433_865
PubMedID: 15729342
Gene_locus related to this paper: entds-b0efg6 , entds-b0egj2 , enthi-b1n4x1 , enthi-b1n449 , enthi-b1n456 , enthi-c4lsp4 , enthi-c4lte6 , enthi-c4lu03 , enthi-c4lu54 , enthi-c4lve4 , enthi-c4lwe1 , enthi-c4m0c3 , enthi-c4m0e4 , enthi-c4m1e7 , enthi-c4m2a9 , enthi-c4m2i4 , enthi-c4m3r1 , enthi-c4m4l3 , enthi-c4m6g0 , enthi-c4m6k3 , enthi-c4m7k7 , enthi-c4m7n4 , enthi-c4m7v0 , enthi-c4m8y5 , enthi-c4m793 , enthi-c4mb48 , enthi-DPP , enthi-q50rh1 , enthi-q50ya6 , enthi-q51a37 , enthi-q51aw6 , enthi-q51ch3 , enthi-q51cz6 , enthi-q51ds3 , enthi-q513q8 , enthi-q513w3 , enthi-q519v1