Coscolin C

References (13)

Title : Thermophilic Carboxylesterases from Hydrothermal Vents of the Volcanic Island of Ischia Active on Synthetic and Biobased Polymers and Mycotoxins - Distaso_2023_Appl.Environ.Microbiol__e0170422
Author(s) : Distaso MA , Chernikova TN , Bargiela R , Coscolin C , Stogios P , Gonzalez-Alfonso JL , Lemak S , Khusnutdinova AN , Plou FJ , Evdokimova E , Savchenko A , Lunev EA , Yakimov MM , Golyshina OV , Ferrer M , Yakunin AF , Golyshin PN
Ref : Applied Environmental Microbiology , :e0170422 , 2023
Abstract : Hydrothermal vents are geographically widespread and host microorganisms with robust enzymes useful in various industrial applications. We examined microbial communities and carboxylesterases of two terrestrial hydrothermal vents of the volcanic island of Ischia (Italy) predominantly composed of Firmicutes, Proteobacteria, and Bacteroidota. High-temperature enrichment cultures with the polyester plastics polyhydroxybutyrate and polylactic acid (PLA) resulted in an increase of Thermus and Geobacillus species and to some extent Fontimonas and Schleiferia species. The screening at 37 to 70 degreesC of metagenomic fosmid libraries from above enrichment cultures identified three hydrolases (IS10, IS11, and IS12), all derived from yet-uncultured Chloroflexota and showing low sequence identity (33 to 56%) to characterized enzymes. Enzymes expressed in Escherichia coli exhibited maximal esterase activity at 70 to 90 degreesC, with IS11 showing the highest thermostability (90% activity after 20-min incubation at 80 degreesC). IS10 and IS12 were highly substrate promiscuous and hydrolyzed all 51 monoester substrates tested. Enzymes were active with PLA, polyethylene terephthalate model substrate, and mycotoxin T-2 (IS12). IS10 and IS12 had a classical alpha/beta-hydrolase core domain with a serine hydrolase catalytic triad (Ser155, His280, and Asp250) in their hydrophobic active sites. The crystal structure of IS11 resolved at 2.92 A revealed the presence of a N-terminal beta-lactamase-like domain and C-terminal lipocalin domain. The catalytic cleft of IS11 included catalytic Ser68, Lys71, Tyr160, and Asn162, whereas the lipocalin domain enclosed the catalytic cleft like a lid and contributed to substrate binding. Our study identified novel thermotolerant carboxylesterases with a broad substrate range, including polyesters and mycotoxins, for potential applications in biotechnology. IMPORTANCE High-temperature-active microbial enzymes are important biocatalysts for many industrial applications, including recycling of synthetic and biobased polyesters increasingly used in textiles, fibers, coatings and adhesives. Here, we identified three novel thermotolerant carboxylesterases (IS10, IS11, and IS12) from high-temperature enrichment cultures from Ischia hydrothermal vents and incubated with biobased polymers. The identified metagenomic enzymes originated from uncultured Chloroflexota and showed low sequence similarity to known carboxylesterases. Active sites of IS10 and IS12 had the largest effective volumes among the characterized prokaryotic carboxylesterases and exhibited high substrate promiscuity, including hydrolysis of polyesters and mycotoxin T-2 (IS12). Though less promiscuous than IS10 and IS12, IS11 had a higher thermostability with a high temperature optimum (80 to 90 degreesC) for activity and hydrolyzed polyesters, and its crystal structure revealed an unusual lipocalin domain likely involved in substrate binding. The polyesterase activity of these enzymes makes them attractive candidates for further optimization and potential application in plastics recycling.
ESTHER : Distaso_2023_Appl.Environ.Microbiol__e0170422
PubMedSearch : Distaso_2023_Appl.Environ.Microbiol__e0170422
PubMedID: 36719236
Gene_locus related to this paper: 9bact-estC55.8n1 , 9bact-IS10

Title : Transforming an esterase into an enantioselective catecholase through bioconjugation of a versatile metal-chelating inhibitor - Fernandez-Lopez_2023_Chem.Commun.(Camb)__
Author(s) : Fernandez-Lopez L , Cea-Rama I , Alvarez-Malmagro J , Ressmann AK , Gonzalez-Alfonso JL , Coscolin C , Shahgaldian P , Plou FJ , Modregger J , Pita M , Sanz-Aparicio J , Ferrer M
Ref : Chem Commun (Camb) , : , 2023
Abstract : Metal complexes introduced into protein scaffolds can generate versatile biomimetic catalysts endowed with a variety of catalytic properties. Here, we synthesized and covalently bound a bipyridinyl derivative to the active centre of an esterase to generate a biomimetic catalyst that shows catecholase activity and enantioselective catalytic oxidation of (+)-catechin.
ESTHER : Fernandez-Lopez_2023_Chem.Commun.(Camb)__
PubMedSearch : Fernandez-Lopez_2023_Chem.Commun.(Camb)__
PubMedID: 37376994
Gene_locus related to this paper: 9zzzz-a0a2k8jn75

Title : The Mobility of the Cap Domain Is Essential for the Substrate Promiscuity of a Family IV Esterase from Sorghum Rhizosphere Microbiome - Distaso_2023_Appl.Environ.Microbiol__e0180722
Author(s) : Distaso M , Cea-Rama I , Coscolin C , Chernikova TN , Tran H , Ferrer M , Sanz-Aparicio J , Golyshin PN
Ref : Applied Environmental Microbiology , :e0180722 , 2023
Abstract : Metagenomics offers the possibility to screen for versatile biocatalysts. In this study, the microbial community of the Sorghum bicolor rhizosphere was spiked with technical cashew nut shell liquid, and after incubation, the environmental DNA (eDNA) was extracted and subsequently used to build a metagenomic library. We report the biochemical features and crystal structure of a novel esterase from the family IV, EH(0), retrieved from an uncultured sphingomonad after a functional screen in tributyrin agar plates. EH(0) (optimum temperature [T(opt)], 50 degreesC; melting temperature [T(m)], 55.7 degreesC; optimum pH [pH(opt)], 9.5) was stable in the presence of 10 to 20% (vol/vol) organic solvents and exhibited hydrolytic activity against p-nitrophenyl esters from acetate to palmitate, preferably butyrate (496 U mg(-1)), and a large battery of 69 structurally different esters (up to 30.2 U mg(-1)), including bis(2-hydroxyethyl)-terephthalate (0.16 +/- 0.06 U mg(-1)). This broad substrate specificity contrasts with the fact that EH(0) showed a long and narrow catalytic tunnel, whose access appears to be hindered by a tight folding of its cap domain. We propose that this cap domain is a highly flexible structure whose opening is mediated by unique structural elements, one of which is the presence of two contiguous proline residues likely acting as possible hinges, which together allow for the entrance of the substrates. Therefore, this work provides a new role for the cap domain, which until now was thought to be an immobile element that contained hydrophobic patches involved in substrate prerecognition and in turn substrate specificity within family IV esterases. IMPORTANCE A better understanding of structure-function relationships of enzymes allows revelation of key structural motifs or elements. Here, we studied the structural basis of the substrate promiscuity of EH(0), a family IV esterase, isolated from a sample of the Sorghum bicolor rhizosphere microbiome exposed to technical cashew nut shell liquid. The analysis of EH(0) revealed the potential of the sorghum rhizosphere microbiome as a source of enzymes with interesting properties, such as pH and solvent tolerance and remarkably broad substrate promiscuity. Its structure resembled those of homologous proteins from mesophilic Parvibaculum and Erythrobacter spp. and hyperthermophilic Pyrobaculum and Sulfolobus spp. and had a very narrow, single-entry access tunnel to the active site, with access controlled by a capping domain that includes a number of nonconserved proline residues. These structural markers, distinct from those of other substrate-promiscuous esterases, can help in tuning substrate profiles beyond tunnel and active site engineering.
ESTHER : Distaso_2023_Appl.Environ.Microbiol__e0180722
PubMedSearch : Distaso_2023_Appl.Environ.Microbiol__e0180722
PubMedID: 36602332
Gene_locus related to this paper: 9bact-EH0

Title : Crystal structure of a family VIII beta-lactamase fold hydrolase reveals the molecular mechanism for its broad substrate scope - Cea-Rama_2022_FEBS.J__
Author(s) : Cea-Rama I , Coscolin C , Gonzalez-Alfonso JL , Raj J , Vasiljevic M , Plou FJ , Ferrer M , Sanz-Aparicio J
Ref : Febs J , : , 2022
Abstract : Family VIII esterases present similarities to class C beta-lactamases, which show nucleophilic serines located at the S-X-X-K motif instead of the G-X-S-X-G or G-D-S-(L) motif shown by other carboxylesterase families. Here, we report the crystal structure of a novel family VIII (subfamily VIII. I) esterase (EH(7) ; denaturing temperature, 52.6+/-0.3 degreesC; pH optimum 7.0-9.0) to deepen its broad substrate range. Indeed, the analysis of the substrate specificity revealed its capacity to hydrolyse nitrocefin as a model chromogenic cephalosporin substrate (40.4 +/- 11.4 units/g), as well as a large battery of 66 structurally different esters (up to 1730 min(-1) ), including bis(2-hydroxyethyl)-terephthalate (241.7 +/- 8.5 units/g) and the mycotoxin T-2 (1220 +/- 52 units/g). It also showed acyltransferase activity through the synthesis of benzyl 3-oxobutanoate (40.4 +/- 11.4 units/g) from benzyl alcohol and vinyl acetoacetate. Such a broad substrate scope is rare among family VIII esterases and lipolytic enzymes. Structural analyses of free and substrate-bound forms of this homo-octamer esterase suggest that EH(7) presents a more opened and exposed S1 site having no steric hindrance for the entrance of substrates to the active site, more flexible R1, R2 and R3 regions allowing the binding of a wide spectrum of substrates into the active site, as well as small residues in the conserved motif Y-X-X containing the catalytic Tyr enabling the entrance of large substrates. These unique structural elements in combination with docking experiments allowed us to gain valuable insights into the substrate specificity of this esterase and possible others belonging to family VIII.
ESTHER : Cea-Rama_2022_FEBS.J__
PubMedSearch : Cea-Rama_2022_FEBS.J__
PubMedID: 35694902

Title : Crystal structures of a novel family IV esterase in free and substrate-bound form - Hoppner_2021_FEBS.J_288_3570
Author(s) : Hoppner A , Bollinger A , Kobus S , Thies S , Coscolin C , Ferrer M , Jaeger KE , Smits SHJ
Ref : Febs J , 288 :3570 , 2021
Abstract : Bacterial lipolytic enzymes of family IV are homologs of the mammalian hormone-sensitive lipases (HSL) and have been successfully used for various biotechnological applications. The broad substrate specificity and ability for enantio-, regio-, and stereoselective hydrolysis are remarkable features of enzymes from this class. Many crystal structures are available for esterases and lipases, but structures of enzyme-substrate or enzyme-inhibitor complexes are less frequent although important to understand the molecular basis of enzyme substrate interaction and to rationalize biochemical enzyme characteristics. Here, we report on the structures of a novel family IV esterase isolated from a metagenomic screen which shows a broad substrate specificity. We solved the crystal structures in the apo form and with a bound substrate analogue at 1.35 and 1.81 resolution, respectively. This enzyme named PtEst1 hydrolyzed more than 60 out 96 structurally different ester substrates thus being substrate promiscuous. Its broad substrate specificity is in accord with a large active site cavity, which is covered by an alpha-helical cap domain. The substrate analogue methyl 4-methylumbelliferyl hexylphosphonate was rapidly hydrolyzed by the enzyme leading to a complete inactivation caused by covalent binding of phosphinic acid to the catalytic serine. Interestingly, the alcohol leaving group 4-methylumbelliferone was found remaining in the active site cavity and additionally, a complete inhibitor molecule was found at the cap domain next to the entrance of the substrate tunnel. This unique situation allowed gaining valuable insights into the role of the cap domain for enzyme-substrate interaction of esterases belonging to family IV.
ESTHER : Hoppner_2021_FEBS.J_288_3570
PubMedSearch : Hoppner_2021_FEBS.J_288_3570
PubMedID: 33342083
Gene_locus related to this paper: pseth-a0a1m6y2k1

Title : Structure and evolutionary trace-assisted screening of a residue swapping the substrate ambiguity and chiral specificity in an esterase - Cea-Rama_2021_Comput.Struct.Biotechnol.J_19_2307
Author(s) : Cea-Rama I , Coscolin C , Katsonis P , Bargiela R , Golyshin PN , Lichtarge O , Ferrer M , Sanz-Aparicio J
Ref : Comput Struct Biotechnol J , 19 :2307 , 2021
Abstract : Our understanding of enzymes with high substrate ambiguity remains limited because their large active sites allow substrate docking freedom to an extent that seems incompatible with stereospecificity. One possibility is that some of these enzymes evolved a set of evolutionarily fitted sequence positions that stringently allow switching substrate ambiguity and chiral specificity. To explore this hypothesis, we targeted for mutation a serine ester hydrolase (EH(3)) that exhibits an impressive 71-substrate repertoire but is not stereospecific (e.e. 50%). We used structural actions and the computational evolutionary trace method to explore specificity-swapping sequence positions and hypothesized that position I244 was critical. Driven by evolutionary action analysis, this position was substituted to leucine, which together with isoleucine appears to be the amino acid most commonly present in the closest homologous sequences (max. identity, ca. 67.1%), and to phenylalanine, which appears in distant homologues. While the I244L mutation did not have any functional consequences, the I244F mutation allowed the esterase to maintain a remarkable 53-substrate range while gaining stereospecificity properties (e.e. 99.99%). These data support the possibility that some enzymes evolve sequence positions that control the substrate scope and stereospecificity. Such residues, which can be evolutionarily screened, may serve as starting points for further designing substrate-ambiguous, yet chiral-specific, enzymes that are greatly appreciated in biotechnology and synthetic chemistry.
ESTHER : Cea-Rama_2021_Comput.Struct.Biotechnol.J_19_2307
PubMedSearch : Cea-Rama_2021_Comput.Struct.Biotechnol.J_19_2307
PubMedID: 33995922
Gene_locus related to this paper: 9zzzz-a0a2k8jn75

Title : Promiscuous Esterases Counterintuitively Are Less Flexible than Specific Ones - Nutschel_2021_J.Chem.Inf.Model__
Author(s) : Nutschel C , Coscolin C , David B , Mulnaes D , Ferrer M , Jaeger KE , Gohlke H
Ref : J Chem Inf Model , : , 2021
Abstract : Understanding mechanisms of promiscuity is increasingly important from a fundamental and application point of view. As to enzyme structural dynamics, more promiscuous enzymes generally have been recognized to also be more flexible. However, examples for the opposite received much less attention. Here, we exploit comprehensive experimental information on the substrate promiscuity of 147 esterases tested against 96 esters together with computationally efficient rigidity analyses to understand the molecular origin of the observed promiscuity range. Unexpectedly, our data reveal that promiscuous esterases are significantly less flexible than specific ones, are significantly more thermostable, and have a significantly increased specific activity. These results may be reconciled with a model according to which structural flexibility in the case of specific esterases serves for conformational proofreading. Our results signify that an esterase sequence space can be screened by rigidity analyses for promiscuous esterases as starting points for further exploration in biotechnology and synthetic chemistry.
ESTHER : Nutschel_2021_J.Chem.Inf.Model__
PubMedSearch : Nutschel_2021_J.Chem.Inf.Model__
PubMedID: 33949194

Title : Tuning the Properties of Natural Promiscuous Enzymes by Engineering Their Nano-environment - Giunta_2020_ACS.Nano__
Author(s) : Giunta CI , Cea-Rama I , Alonso S , Briand ML , Bargiela R , Coscolin C , Corvini PF , Ferrer M , Sanz-Aparicio J , Shahgaldian P
Ref : ACS Nano , : , 2020
Abstract : Owing to their outstanding catalytic properties, enzymes represent powerful tools for carrying out a wide range of (bio)chemical transformations with high proficiency. In this context, enzymes with high biocatalytic promiscuity are somewhat neglected. Here, we demonstrate that a meticulous modification of a synthetic shell that surrounds an immobilized enzyme possessing broad substrate specificity allows the resulting nanobiocatalyst to be endowed with enantioselective properties while maintaining a high level of substrate promiscuity. Our results show that control of the enzyme nano-environment enables tuning of both substrate specificity and enantioselectivity. Further, we demonstrate that our strategy of enzyme supramolecular engineering allows the enzyme to be endowed with markedly enhanced stability in an organic solvent (i.e., acetonitrile). The versatility of the method was assessed with two additional substrate-promiscuous and structurally different enzymes, for which improvements in enantioselectivity and stability were confirmed. We expect this method to promote the use of supramolecularly engineered promiscuous enzymes in industrially relevant biocatalytic processes.
ESTHER : Giunta_2020_ACS.Nano__
PubMedSearch : Giunta_2020_ACS.Nano__
PubMedID: 33306346
Gene_locus related to this paper: 9zzzz-a0a2k8jn75

Title : Organic-Solvent-Tolerant Carboxylic Ester Hydrolases for Organic Synthesis - Bollinger_2020_Appl.Environ.Microbiol_86_e00106
Author(s) : Bollinger A , Molitor R , Thies S , Koch R , Coscolin C , Ferrer M , Jaeger KE
Ref : Applied Environmental Microbiology , 86 :e00106 , 2020
Abstract : Biocatalysis has emerged as an important tool in synthetic organic chemistry enabling the chemical industry to execute reactions with high regio- or enantioselectivity and under usually mild reaction conditions while avoiding toxic waste. Target substrates and products of reactions catalyzed by carboxylic ester hydrolases are often poorly water soluble and require organic solvents, whereas enzymes are evolved by nature to be active in cells, i.e., in aqueous rather than organic solvents. Therefore, biocatalysts that withstand organic solvents are urgently needed. Current strategies to identify such enzymes rely on laborious tests carried out by incubation in different organic solvents and determination of residual activity. Here, we describe a simple assay useful for screening large libraries of carboxylic ester hydrolases for resistance and activity in water-miscible organic solvents. We have screened a set of 26 enzymes, most of them identified in this study, with four different water-miscible organic solvents. The triglyceride tributyrin was used as a substrate, and fatty acids released by enzymatic hydrolysis were detected by a pH shift indicated by the indicator dye nitrazine yellow. With this strategy, we succeeded in identifying a novel highly organic-solvent-tolerant esterase from Pseudomonas aestusnigri In addition, the newly identified enzymes were tested with sterically demanding substrates, which are common in pharmaceutical intermediates, and two enzymes from Alcanivorax borkumensis were identified which outcompeted the gold standard ester hydrolase CalB from Candida antarctica IMPORTANCE Major challenges hampering biotechnological applications of esterases include the requirement to accept nonnatural and chemically demanding substrates and the tolerance of the enzymes toward organic solvents which are often required to solubilize such substrates. We describe here a high-throughput screening strategy to identify novel organic-solvent-tolerant carboxylic ester hydrolases (CEs). Among these enzymes, CEs active against water-insoluble bulky substrates were identified. Our results thus contribute to fostering the identification and biotechnological application of CEs.
ESTHER : Bollinger_2020_Appl.Environ.Microbiol_86_e00106
PubMedSearch : Bollinger_2020_Appl.Environ.Microbiol_86_e00106
PubMedID: 32111588
Gene_locus related to this paper: 9psed-peh , alcbs-q0vt77 , alcbs-q0vtl7 , aneth-d3xb96 , alcbs-q0vl36 , alcbs-q0vq49 , 9psed-CE24 , 9psed-CE23 , 9psed-CE22 , 9psed-CE20 , 9psed-CE18 , 9psed-CE15 , 9psed-CE13 , alcbs-q0vmp2 , alcbs-q0vlp6 , marav-a1u5n0 , alcbs-q0vlk5 , 9psed-a0a1h5udv9

Title : Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis - Alonso_2020_Nat.Catal_3_319
Author(s) : Alonso S , Santiago G , Cea-Rama I , Fernandez-Lopez L , Coscolin C , Modregger J , Ressmann A , Martinez-Martinez M , Marrero H , Bargiela R , Pita M , Gonzalez-Alfonso JL , Briand M , Rojo D , Barbas C , Plou FJ , Golyshin PN , Shahgaldian P , Sanz-Aparicio J , Guallar V , Ferrer M
Ref : Nature Catalysis , 3 :319 , 2019
Abstract : Enzyme engineering has allowed not only the de novo creation of active sites catalysing known biological reactions with rates close to diffusion limits, but also the generation of abiological sites performing new-to-nature reactions. However, the catalytic advantages of engineering multiple active sites into a single protein scaffold are yet to be established. Here, we report on pro-teins with two active sites of biological and/or abiological origin, for improved natural and non-natural catalysis. The approach increased the catalytic properties, such as enzyme efficiency, substrate scope, stereoselectivity and optimal temperature window, of an esterase containing two biological sites. Then, one of the active sites was metamorphosed into a metal-complex chemocatalytic site for oxidation and Friedel-Crafts alkylation reactions, facilitating synergistic chemo- and biocatalysis in a single protein. The transformations of 1-naphthyl acetate into 1,4-naphthoquinone (conversion approx. 100%) and vinyl crotonate and benzene into 3-phenylbutyric acid (>=83%; e.e. >99.9%) were achieved in one pot with this artificial multifunc-tional metalloenzyme.
ESTHER : Alonso_2020_Nat.Catal_3_319
PubMedSearch : Alonso_2020_Nat.Catal_3_319
Gene_locus related to this paper: 9bact-LAE6

Title : Determinants and prediction of esterase substrate promiscuity patterns - Martinez-Martinez_2018_ACS.Chem.Biol_13_225
Author(s) : Martinez-Martinez M , Coscolin C , Santiago G , Chow J , Stogios PJ , Bargiela R , Gertler C , Navarro-Fernandez J , Bollinger A , Thies S , Mendez-Garcia C , Popovic A , Brown G , Chernikova TN , Garcia-Moyano A , Bjergah GE , Perez-Garcia P , Hai T , Del Pozo MV , Stokke R , Steen IH , Cui H , Xu X , Nocek BP , Alcaide M , Distaso M , Mesa V , Pelaez AI , Sanchez J , Buchholz PCF , Pleiss J , Fernandez-Guerra A , Glockner FO , Golyshina OV , Yakimov MM , Savchenko A , Jaeger KE , Yakunin AF , Streit WR , Golyshin PN , Guallar V , Ferrer M
Ref : ACS Chemical Biology , 13 :225 , 2018
Abstract : Esterases receive special attention because their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others, remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps ranking (classifying) promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence datasets.
ESTHER : Martinez-Martinez_2018_ACS.Chem.Biol_13_225
PubMedSearch : Martinez-Martinez_2018_ACS.Chem.Biol_13_225
PubMedID: 29182315
Gene_locus related to this paper: 9zzzz-a0a2k8jn75 , 9zzzz-a0a2k8jt94 , 9zzzz-a0a0g3fj44 , 9zzzz-a0a0g3fh10 , 9zzzz-a0a0g3fh03 , 9bact-a0a1s5qkj8 , 9zzzz-a0a0g3feh5 , 9zzzz-a0a0g3fkz4 , 9zzzz-a0a0g3fh07 , 9zzzz-a0a0g3fh34 , 9zzzz-a0a0g3fh31 , 9bact-KY458167 , alcbs-q0vqa3 , 9bact-a0a1s5qki8 , 9zzzz-a0a0g3feq8 , 9zzzz-a0a0g3feh8 , 9zzzz-a0a0g3fh19 , 9bact-KY203037 , 9bact-a0a1s5ql22 , 9bact-a0a1s5qm34 , 9bact-KY203034 , 9bact-r9qzg0 , 9bact-a0a1s5qly8 , 9zzzz-a0a0g3fkz8 , 9zzzz-a0a0g3feg9 , 9zzzz-KY203033 , 9zzzz-a0a0g3fes4 , 9zzzz-a0a0g3fh42 , 9bact-a0a1s5qlx2 , 9zzzz-KY483651 , 9bact-a0a1s5qmh4 , 9zzzz-KY203032 , 9zzzz-EH87 , 9zzzz-a0a0g3fei1 , 9zzzz-a0a0g3fet2 , 9zzzz-KY483647 , 9zzzz-EH82 , 9zzzz-a0a0g3fe15 , 9bact-KY203031 , 9bact-t1w006 , 9zzzz-a0a0g3fet6 , 9bact-KY458164 , geoth-g8myf3 , 9bact-a0a1s5ql04 , 9gamm-a0a1y0ihk7 , 9bact-a0a1s5qly6 , 9bact-a0a1s5qkg4 , 9bact-a0a1s5qkm4 , 9gamm-s5tv80 , 9gamm-a0a0c4zhg2 , 9zzzz-t1b379 , 9gamm-KY483646 , 9bact-KY458160 , 9zzzz-a0a0g3fj57 , 9gamm-s5t8349 , 9arch-KY203036 , 9bact-KY458168 , 9zzzz-a0a0g3fes0 , 9zzzz-t1be47 , 9bact-KY458159 , 9zzzz-a0a0g3fh39 , 9bact-t1vzd5 , 9prot-EH41 , 9bact-Lip114 , alcbs-q0vt77 , 9bact-a0a1s5qke6 , 9bact-a0a1s5qkf3 , 9prot-SRP030024 , 9gamm-s5t532 , 9bact-a0a1s5qkl2 , 9bact-a0a1s5qkk8 , 9zzzz-KY203030 , 9zzzz-t1d4I7 , 9prot-KY019260 , 9bact-a0a1s5qm38 , 9arch-KY458161 , 9prot-KY010302 , 9zzzz-a0a0g3fl25 , 9actn-KY010298 , 9gamm-s5u059 , 9bact-a0a1s5qmi7 , 9bact-KY010297 , 9bact-KY483642 , 9bact-a0a1s5qkj1 , 9bact-KY010299 , 9bact-KY483648 , alcbs-q0vtl7 , 9bact-a0a1s5qf1 , 9bact-a0a1s5qkg0 , 9bact-a0a0h4tgu6 , 9bact-MilE3 , 9bact-LAE6 , 9alte-MGS-MT1 , 9bact-r9qzf7 , 9gamm-k0c6t6 , alcbs-q0vl36 , alcbs-q0vlq1 , alcbs-q0vq49 , bacsu-pnbae , canar-LipB , canan-lipasA , geost-lipas , marav-a1u5n0 , pseps-i7k8x5 , staep-GEHD , symth-q67mr3 , altma-s5cfn7 , cycsp-k0c2b8 , alcbs-q0vlk5 , 9bact-k7qe48 , 9bact-MGS-M1 , 9bact-MGS-M2 , 9bact-a0a0b5kns5 , 9zzzz-a0a0g3fej4 , 9zzzz-a0a0g3fj60 , 9zzzz-a0a0g3fej0 , 9zzzz-a0a0g3fj64 , 9bact-a0a0b5kc16 , 9zzzz-a0a0g3feg6 , 9zzzz-a0a0g3feu6

Title : Rational Engineering of Multiple Active Sites in an Ester Hydrolase - Santiago_2018_Biochemistry_57_2245
Author(s) : Santiago G , Martinez-Martinez M , Alonso S , Bargiela R , Coscolin C , Golyshin PN , Guallar V , Ferrer M
Ref : Biochemistry , 57 :2245 , 2018
Abstract : Effects of altering the properties of an active site in an enzymatic homogeneous catalyst have been extensively reported. However, the possibility of increasing the number of such sites, as commonly done in heterogeneous catalytic materials, remains unexplored, particularly because those have to accommodate appropriate residues in specific configurations. This possibility was investigated by using a serine ester hydrolase as the target enzyme. By using the Protein Energy Landscape Exploration software, which maps ligand diffusion and binding, we found a potential binding pocket capable of holding an extra catalytic triad and oxyanion hole contacts. By introducing two mutations, this binding pocket became a catalytic site. Its substrate specificity, substrate preference, and catalytic activity were different from those of the native site of the wild type ester hydrolase and other hydrolases, due to the differences in the active site architecture. Converting the binding pocket into an extra catalytic active site was proven to be a successful approach to create a serine ester hydrolase with two functional reactive groups. Our results illustrate the accuracy and predictive nature of modern modeling techniques, opening novel catalytic opportunities coming from the presence of different catalytic environments in single enzymes.
ESTHER : Santiago_2018_Biochemistry_57_2245
PubMedSearch : Santiago_2018_Biochemistry_57_2245
PubMedID: 29600855
Gene_locus related to this paper: 9bact-LAE6

Title : Functional-Based Screening Methods for Detecting Esterase and Lipase Activity Against Multiple Substrates - Reyes-Duarte_2018_Methods.Mol.Biol_1835_109
Author(s) : Reyes-Duarte D , Coscolin C , Martinez-Martinez M , Ferrer M , Garcia-Arellano H
Ref : Methods Mol Biol , 1835 :109 , 2018
Abstract : Functional screens have been extensively used for searching native enzymes or mutant variants in clone libraries. Esterases and lipases are the most retrieved enzymes, because they are within the more demanded industrial enzymes and because a number of simple and generic screening methods can be applied for their screen. Here, we describe the use of a generic pH indicator assay protocol which unambiguously allows detecting in high-throughput manner esterase and lipase activity and quantifying specific activities using an ester concentration above 0.5 mM. The described method is simple and generic to allow the selection of esterases and lipases targeting desired esters.
ESTHER : Reyes-Duarte_2018_Methods.Mol.Biol_1835_109
PubMedSearch : Reyes-Duarte_2018_Methods.Mol.Biol_1835_109
PubMedID: 30109647