Duprat S

References (4)

Title : Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium - Barbe_2004_Nucleic.Acids.Res_32_5766
Author(s) : Barbe V , Vallenet D , Fonknechten N , Kreimeyer A , Oztas S , Labarre L , Cruveiller S , Robert C , Duprat S , Wincker P , Ornston LN , Weissenbach J , Marliere P , Cohen GN , Medigue C
Ref : Nucleic Acids Research , 32 :5766 , 2004
Abstract : Acinetobacter sp. strain ADP1 is a nutritionally versatile soil bacterium closely related to representatives of the well-characterized Pseudomonas aeruginosa and Pseudomonas putida. Unlike these bacteria, the Acinetobacter ADP1 is highly competent for natural transformation which affords extraordinary convenience for genetic manipulation. The circular chromosome of the Acinetobacter ADP1, presented here, encodes 3325 predicted coding sequences, of which 60% have been classified based on sequence similarity to other documented proteins. The close evolutionary proximity of Acinetobacter and Pseudomonas species, as judged by the sequences of their 16S RNA genes and by the highest level of bidirectional best hits, contrasts with the extensive divergence in the GC content of their DNA (40 versus 62%). The chromosomes also differ significantly in size, with the Acinetobacter ADP1 chromosome <60% of the length of the Pseudomonas counterparts. Genome analysis of the Acinetobacter ADP1 revealed genes for metabolic pathways involved in utilization of a large variety of compounds. Almost all of these genes, with orthologs that are scattered in other species, are located in five major 'islands of catabolic diversity', now an apparent 'archipelago of catabolic diversity', within one-quarter of the overall genome. Acinetobacter ADP1 displays many features of other aerobic soil bacteria with metabolism oriented toward the degradation of organic compounds found in their natural habitat. A distinguishing feature of this genome is the absence of a gene corresponding to pyruvate kinase, the enzyme that generally catalyzes the terminal step in conversion of carbohydrates to pyruvate for respiration by the citric acid cycle. This finding supports the view that the cycle itself is centrally geared to the catabolic capabilities of this exceptionally versatile organism.
ESTHER : Barbe_2004_Nucleic.Acids.Res_32_5766
PubMedSearch : Barbe_2004_Nucleic.Acids.Res_32_5766
PubMedID: 15514110
Gene_locus related to this paper: aciad-q6f6s6 , aciad-q6f6x6 , aciad-q6f6x7 , aciad-q6f6z2 , aciad-q6f7m0 , aciad-q6f7y3 , aciad-q6f8t1 , aciad-q6f8v6 , aciad-q6f8x2 , aciad-q6f9b1 , aciad-q6f9f4 , aciad-q6f933 , aciad-q6f951 , aciad-q6fa15 , aciad-q6fa93 , aciad-q6fag8 , aciad-q6fak6 , aciad-q6fal1 , aciad-q6fas4 , aciad-q6faz3 , aciad-q6fbp9 , aciad-q6fbr2 , aciad-q6fbr5 , aciad-q6fc40 , aciad-q6fd43 , aciad-q6fd56 , aciad-q6fdd3 , aciad-q6fdh2 , aciad-q6fe39 , aciad-q6feb1 , aciad-q6fen4 , aciad-q6feq3 , aciad-q6ff86 , aciad-q6ffz9 , aciad-q8rlz8 , acica-elh1 , acica-elh2 , acica-estB , acica-este2 , acica-este3

Title : Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype - Jaillon_2004_Nature_431_946
Author(s) : Jaillon O , Aury JM , Brunet F , Petit JL , Stange-Thomann N , Mauceli E , Bouneau L , Fischer C , Ozouf-Costaz C , Bernot A , Nicaud S , Jaffe D , Fisher S , Lutfalla G , Dossat C , Segurens B , Dasilva C , Salanoubat M , Levy M , Boudet N , Castellano S , Anthouard V , Jubin C , Castelli V , Katinka M , Vacherie B , Biemont C , Skalli Z , Cattolico L , Poulain J , de Berardinis V , Cruaud C , Duprat S , Brottier P , Coutanceau JP , Gouzy J , Parra G , Lardier G , Chapple C , McKernan KJ , McEwan P , Bosak S , Kellis M , Volff JN , Guigo R , Zody MC , Mesirov J , Lindblad-Toh K , Birren B , Nusbaum C , Kahn D , Robinson-Rechavi M , Laudet V , Schachter V , Quetier F , Saurin W , Scarpelli C , Wincker P , Lander ES , Weissenbach J , Roest Crollius H
Ref : Nature , 431 :946 , 2004
Abstract : Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests approximately 900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
ESTHER : Jaillon_2004_Nature_431_946
PubMedSearch : Jaillon_2004_Nature_431_946
PubMedID: 15496914
Gene_locus related to this paper: tetng-3neur , tetng-4neur , tetng-ACHE , tetng-BCHE , tetng-h3cfz4 , tetng-h3ci57 , tetng-h3cl30 , tetng-h3cnh2 , tetng-nlgn2b , tetng-h3czr1 , tetng-h3dbr5 , tetng-nlgn2a , tetng-nlgn3b , tetng-q4ref8 , tetng-q4rjp3 , tetng-q4rjy3 , tetng-q4rk53 , tetng-q4rk63 , tetng-q4rk66 , tetng-q4rkk3 , tetng-q4rli3 , tetng-q4rn09 , tetng-q4rqj4 , tetng-q4rqz6 , tetng-q4rr22 , tetng-q4rru9 , tetng-q4rtq6 , tetng-q4rvf8 , tetng-q4rwa0 , tetng-q4rx90 , tetng-q4ryv8 , tetng-q4ryz3 , tetng-q4s0h8 , tetng-q4s5x0 , tetng-q4s6r1 , tetng-q4s6t6 , tetng-q4s7e3 , tetng-q4s7x6 , tetng-q4s8t5 , tetng-q4s9w9 , tetng-q4s050 , tetng-q4s091 , tetng-q4s144 , tetng-q4s309 , tetng-q4s578 , tetng-q4sal4 , tetng-q4sbm6 , tetng-q4sbp0 , tetng-q4sbu0 , tetng-q4sd49 , tetng-q4ser6 , tetng-q4sfm7 , tetng-q4sgm5 , tetng-q4sgv2 , tetng-q4sh74 , tetng-q4shl7 , tetng-q4si60 , tetng-q4sie5 , tetng-q4sku6 , tetng-q4smu0 , tetng-q4smy3 , tetng-q4snp0 , tetng-q4snq3 , tetng-q4spa7 , tetng-q4spq0 , tetng-q4sqr3 , tetng-q4sty0 , tetng-q4suu2 , tetng-q4suz1 , tetng-q4sxh3 , tetng-q4syn6 , tetng-q4szk0 , tetng-q4szy0 , tetng-q4t3m9 , tetng-q4t4a1 , tetng-q4t6m1 , tetng-q4t7r6 , tetng-q4t173 , tetng-q4t826 , tetng-q4t920 , tetng-q4ta33 , tetng-q4tab8 , tetng-q4tb62 , tetng-q4tbe2 , tetng-h3dbw2 , tetng-h3cpc8 , tetng-h3cjy0 , tetng-h3d966 , tetng-h3d3e3 , tetng-h3d961 , tetng-h3ctg6 , tetng-h3dde8 , tetng-h3dde9 , tetng-h3det9 , tetng-h3cre8 , tetng-h3dfb4 , tetng-h3clj8

Title : Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome - Dufresne_2003_Proc.Natl.Acad.Sci.U.S.A_100_10020
Author(s) : Dufresne A , Salanoubat M , Partensky F , Artiguenave F , Axmann IM , Barbe V , Duprat S , Galperin MY , Koonin EV , Le Gall F , Makarova KS , Ostrowski M , Oztas S , Robert C , Rogozin IB , Scanlan DJ , Tandeau de Marsac N , Weissenbach J , Wincker P , Wolf YI , Hess WR
Ref : Proc Natl Acad Sci U S A , 100 :10020 , 2003
Abstract : Prochlorococcus marinus, the dominant photosynthetic organism in the ocean, is found in two main ecological forms: high-light-adapted genotypes in the upper part of the water column and low-light-adapted genotypes at the bottom of the illuminated layer. P. marinus SS120, the complete genome sequence reported here, is an extremely low-light-adapted form. The genome of P. marinus SS120 is composed of a single circular chromosome of 1,751,080 bp with an average G+C content of 36.4%. It contains 1,884 predicted protein-coding genes with an average size of 825 bp, a single rRNA operon, and 40 tRNA genes. Together with the 1.66-Mbp genome of P. marinus MED4, the genome of P. marinus SS120 is one of the two smallest genomes of a photosynthetic organism known to date. It lacks many genes that are involved in photosynthesis, DNA repair, solute uptake, intermediary metabolism, motility, phototaxis, and other functions that are conserved among other cyanobacteria. Systems of signal transduction and environmental stress response show a particularly drastic reduction in the number of components, even taking into account the small size of the SS120 genome. In contrast, housekeeping genes, which encode enzymes of amino acid, nucleotide, cofactor, and cell wall biosynthesis, are all present. Because of its remarkable compactness, the genome of P. marinus SS120 might approximate the minimal gene complement of a photosynthetic organism.
ESTHER : Dufresne_2003_Proc.Natl.Acad.Sci.U.S.A_100_10020
PubMedSearch : Dufresne_2003_Proc.Natl.Acad.Sci.U.S.A_100_10020
PubMedID: 12917486
Gene_locus related to this paper: proma-MHPC2 , proma-PRO1109 , proma-q7v9n9 , proma-q7vb48 , proma-q7vb60 , proma-q7vbe1 , proma-q7vbl5 , proma-q7vcg4 , proma-q7vdr9 , proma-q7ved1

Title : Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi - Katinka_2001_Nature_414_450
Author(s) : Katinka MD , Duprat S , Cornillot E , Metenier G , Thomarat F , Prensier G , Barbe V , Peyretaillade E , Brottier P , Wincker P , Delbac F , El Alaoui H , Peyret P , Saurin W , Gouy M , Weissenbach J , Vivares CP
Ref : Nature , 414 :450 , 2001
Abstract : Microsporidia are obligate intracellular parasites infesting many animal groups. Lacking mitochondria and peroxysomes, these unicellular eukaryotes were first considered a deeply branching protist lineage that diverged before the endosymbiotic event that led to mitochondria. The discovery of a gene for a mitochondrial-type chaperone combined with molecular phylogenetic data later implied that microsporidia are atypical fungi that lost mitochondria during evolution. Here we report the DNA sequences of the 11 chromosomes of the approximately 2.9-megabase (Mb) genome of Encephalitozoon cuniculi (1,997 potential protein-coding genes). Genome compaction is reflected by reduced intergenic spacers and by the shortness of most putative proteins relative to their eukaryote orthologues. The strong host dependence is illustrated by the lack of genes for some biosynthetic pathways and for the tricarboxylic acid cycle. Phylogenetic analysis lends substantial credit to the fungal affiliation of microsporidia. Because the E. cuniculi genome contains genes related to some mitochondrial functions (for example, Fe-S cluster assembly), we hypothesize that microsporidia have retained a mitochondrion-derived organelle.
ESTHER : Katinka_2001_Nature_414_450
PubMedSearch : Katinka_2001_Nature_414_450
PubMedID: 11719806
Gene_locus related to this paper: enccu-ECU07.0900 , enccu-ECU09.0730 , enccu-q8sut7 , enccu-Q8SVX3