Robinson-Rechavi M

References (4)

Title : Genomic signatures accompanying the dietary shift to phytophagy in polyphagan beetles - Seppey_2019_Genome.Biol_20_98
Author(s) : Seppey M , Ioannidis P , Emerson BC , Pitteloud C , Robinson-Rechavi M , Roux J , Escalona HE , McKenna DD , Misof B , Shin S , Zhou X , Waterhouse RM , Alvarez N
Ref : Genome Biol , 20 :98 , 2019
Abstract : BACKGROUND: The diversity and evolutionary success of beetles (Coleoptera) are proposed to be related to the diversity of plants on which they feed. Indeed, the largest beetle suborder, Polyphaga, mostly includes plant eaters among its approximately 315,000 species. In particular, plants defend themselves with a diversity of specialized toxic chemicals. These may impose selective pressures that drive genomic diversification and speciation in phytophagous beetles. However, evidence of changes in beetle gene repertoires driven by such interactions remains largely anecdotal and without explicit hypothesis testing. RESULTS: We explore the genomic consequences of beetle-plant trophic interactions by performing comparative gene family analyses across 18 species representative of the two most species-rich beetle suborders. We contrast the gene contents of species from the mostly plant-eating suborder Polyphaga with those of the mainly predatory Adephaga. We find gene repertoire evolution to be more dynamic, with significantly more adaptive lineage-specific expansions, in the more speciose Polyphaga. Testing the specific hypothesis of adaptation to plant feeding, we identify families of enzymes putatively involved in beetle-plant interactions that underwent adaptive expansions in Polyphaga. There is notable support for the selection hypothesis on large gene families for glutathione S-transferase and carboxylesterase detoxification enzymes. CONCLUSIONS: Our explicit modeling of the evolution of gene repertoires across 18 species identifies putative adaptive lineage-specific gene family expansions that accompany the dietary shift towards plants in beetles. These genomic signatures support the popular hypothesis of a key role for interactions with plant chemical defenses, and for plant feeding in general, in driving beetle diversification.
ESTHER : Seppey_2019_Genome.Biol_20_98
PubMedSearch : Seppey_2019_Genome.Biol_20_98
PubMedID: 31101123

Title : The amphioxus genome and the evolution of the chordate karyotype - Putnam_2008_Nature_453_1064
Author(s) : Putnam NH , Butts T , Ferrier DE , Furlong RF , Hellsten U , Kawashima T , Robinson-Rechavi M , Shoguchi E , Terry A , Yu JK , Benito-Gutierrez EL , Dubchak I , Garcia-Fernandez J , Gibson-Brown JJ , Grigoriev IV , Horton AC , de Jong PJ , Jurka J , Kapitonov VV , Kohara Y , Kuroki Y , Lindquist E , Lucas S , Osoegawa K , Pennacchio LA , Salamov AA , Satou Y , Sauka-Spengler T , Schmutz J , Shin IT , Toyoda A , Bronner-Fraser M , Fujiyama A , Holland LZ , Holland PW , Satoh N , Rokhsar DS
Ref : Nature , 453 :1064 , 2008
Abstract : Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
ESTHER : Putnam_2008_Nature_453_1064
PubMedSearch : Putnam_2008_Nature_453_1064
PubMedID: 18563158
Gene_locus related to this paper: brafl-ACHE1 , brafl-ACHE2 , brafl-ACHEA , brafl-ACHEB , brafl-c3xqm2 , brafl-c3xqm5 , brafl-c3xtl0 , brafl-c3xtl1 , brafl-c3xut6 , brafl-c3xut7 , brafl-c3xvw5 , brafl-c3xx27 , brafl-c3xx28 , brafl-c3xx30 , brafl-c3xx32 , brafl-c3xx36 , brafl-c3xx38 , brafl-c3xx39 , brafl-c3xx40 , brafl-c3xx41 , brafl-c3xxt9 , brafl-c3xyd7 , brafl-c3xyd8 , brafl-c3xyd9 , brafl-c3xye0 , brafl-c3xyt7 , brafl-c3xzy1 , brafl-c3xzy2 , brafl-c3y1p9 , brafl-c3y1t3 , brafl-c3y2u3 , brafl-c3y4l1 , brafl-c3y6v9 , brafl-c3y6y4 , brafl-c3y7d7 , brafl-c3y7s1 , brafl-c3y8k5 , brafl-c3y8t3 , brafl-c3y8t4 , brafl-c3y8t5 , brafl-c3y8v8 , brafl-c3y8w1.1 , brafl-c3y8w2 , brafl-c3y9i7 , brafl-c3y9i8 , brafl-c3y9l9 , brafl-c3y9y3 , brafl-c3y087 , brafl-c3yan2 , brafl-c3yaw4 , brafl-c3ybw7 , brafl-c3yc67 , brafl-c3ydm8 , brafl-c3yfm5 , brafl-c3yfz8 , brafl-c3ygc7 , brafl-c3ygc9.1 , brafl-c3ygd0 , brafl-c3ygd1 , brafl-c3ygd2.1 , brafl-c3ygd4 , brafl-c3ygg6 , brafl-c3ygr1 , brafl-c3yi63 , brafl-c3yi64 , brafl-c3yi67 , brafl-c3yi68 , brafl-c3yi69 , brafl-c3yk61 , brafl-c3ykb2 , brafl-c3yla7 , brafl-c3ylp9 , brafl-c3ylq0 , brafl-c3ylq1 , brafl-c3ymu0 , brafl-c3yne9 , brafl-c3ypm6 , brafl-c3yr72 , brafl-c3yra8 , brafl-c3ys59 , brafl-c3yv27 , brafl-c3ywf1 , brafl-c3ywh9 , brafl-c3yx17 , brafl-c3yx19 , brafl-c3yxb9 , brafl-c3yxi7 , brafl-c3yyq5 , brafl-c3yz04 , brafl-c3z1c7 , brafl-c3z1u9 , brafl-c3z1v0 , brafl-c3z3n7 , brafl-c3z5c8 , brafl-c3z9f4 , brafl-c3z066 , brafl-c3z139 , brafl-c3z975 , brafl-c3zab8 , brafl-c3zab9 , brafl-c3zbr4 , brafl-c3zci7 , brafl-c3zcy8 , brafl-c3zd14 , brafl-c3zer1 , brafl-c3zf44 , brafl-c3zf47 , brafl-c3zf48 , brafl-c3zfs6 , brafl-c3zhm6 , brafl-c3ziv7.1 , brafl-c3ziv7.2 , brafl-c3zlg0 , brafl-c3zlg2 , brafl-c3zlg3 , brafl-c3zli5 , brafl-c3zme7 , brafl-c3zme8 , brafl-c3zmp8 , brafl-c3zmv1 , brafl-c3zmv2 , brafl-c3znd6 , brafl-c3znl2 , brafl-c3zqg7 , brafl-c3zqz2 , brafl-c3zs46 , brafl-c3zs49 , brafl-c3zs56 , brafl-c3zv54 , brafl-c3zvv1 , brafl-c3zwz6 , brafl-c3zxg2 , brafl-c3zxq3 , brafl-c3yim2 , brafl-c3zfs5 , brafl-c3zfs3 , brafl-c3xr79 , brafl-c3y7r2 , brafl-c3yj62 , brafl-c3zg22 , brafl-c3y2t9 , brafl-c3y2u0 , brafl-c3ycg1 , brafl-c3ycg2 , brafl-c3ycg4 , brafl-c3z1l3 , brafl-c3zn71 , brafl-c3zj72 , brafl-c3yf35 , brafl-c3z474 , brafl-c3zqr8 , brafl-c3yde6

Title : Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype - Jaillon_2004_Nature_431_946
Author(s) : Jaillon O , Aury JM , Brunet F , Petit JL , Stange-Thomann N , Mauceli E , Bouneau L , Fischer C , Ozouf-Costaz C , Bernot A , Nicaud S , Jaffe D , Fisher S , Lutfalla G , Dossat C , Segurens B , Dasilva C , Salanoubat M , Levy M , Boudet N , Castellano S , Anthouard V , Jubin C , Castelli V , Katinka M , Vacherie B , Biemont C , Skalli Z , Cattolico L , Poulain J , de Berardinis V , Cruaud C , Duprat S , Brottier P , Coutanceau JP , Gouzy J , Parra G , Lardier G , Chapple C , McKernan KJ , McEwan P , Bosak S , Kellis M , Volff JN , Guigo R , Zody MC , Mesirov J , Lindblad-Toh K , Birren B , Nusbaum C , Kahn D , Robinson-Rechavi M , Laudet V , Schachter V , Quetier F , Saurin W , Scarpelli C , Wincker P , Lander ES , Weissenbach J , Roest Crollius H
Ref : Nature , 431 :946 , 2004
Abstract : Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests approximately 900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
ESTHER : Jaillon_2004_Nature_431_946
PubMedSearch : Jaillon_2004_Nature_431_946
PubMedID: 15496914
Gene_locus related to this paper: tetng-3neur , tetng-4neur , tetng-ACHE , tetng-BCHE , tetng-h3cfz4 , tetng-h3ci57 , tetng-h3cl30 , tetng-h3cnh2 , tetng-nlgn2b , tetng-h3czr1 , tetng-h3dbr5 , tetng-nlgn2a , tetng-nlgn3b , tetng-q4ref8 , tetng-q4rjp3 , tetng-q4rjy3 , tetng-q4rk53 , tetng-q4rk63 , tetng-q4rk66 , tetng-q4rkk3 , tetng-q4rli3 , tetng-q4rn09 , tetng-q4rqj4 , tetng-q4rqz6 , tetng-q4rr22 , tetng-q4rru9 , tetng-q4rtq6 , tetng-q4rvf8 , tetng-q4rwa0 , tetng-q4rx90 , tetng-q4ryv8 , tetng-q4ryz3 , tetng-q4s0h8 , tetng-q4s5x0 , tetng-q4s6r1 , tetng-q4s6t6 , tetng-q4s7e3 , tetng-q4s7x6 , tetng-q4s8t5 , tetng-q4s9w9 , tetng-q4s050 , tetng-q4s091 , tetng-q4s144 , tetng-q4s309 , tetng-q4s578 , tetng-q4sal4 , tetng-q4sbm6 , tetng-q4sbp0 , tetng-q4sbu0 , tetng-q4sd49 , tetng-q4ser6 , tetng-q4sfm7 , tetng-q4sgm5 , tetng-q4sgv2 , tetng-q4sh74 , tetng-q4shl7 , tetng-q4si60 , tetng-q4sie5 , tetng-q4sku6 , tetng-q4smu0 , tetng-q4smy3 , tetng-q4snp0 , tetng-q4snq3 , tetng-q4spa7 , tetng-q4spq0 , tetng-q4sqr3 , tetng-q4sty0 , tetng-q4suu2 , tetng-q4suz1 , tetng-q4sxh3 , tetng-q4syn6 , tetng-q4szk0 , tetng-q4szy0 , tetng-q4t3m9 , tetng-q4t4a1 , tetng-q4t6m1 , tetng-q4t7r6 , tetng-q4t173 , tetng-q4t826 , tetng-q4t920 , tetng-q4ta33 , tetng-q4tab8 , tetng-q4tb62 , tetng-q4tbe2 , tetng-h3dbw2 , tetng-h3cpc8 , tetng-h3cjy0 , tetng-h3d966 , tetng-h3d3e3 , tetng-h3d961 , tetng-h3ctg6 , tetng-h3dde8 , tetng-h3dde9 , tetng-h3det9 , tetng-h3cre8 , tetng-h3dfb4 , tetng-h3clj8

Title : Nuclear gene LCAT supports rodent monophyly. -
Author(s) : Robinson-Rechavi M , Ponger L , Mouchiroud D
Ref : Mol Biol Evol , 17 :1410 , 2000
PubMedID: 10960041
Gene_locus related to this paper: cavpo-lcat