Qi S

References (17)

Title : Ameliorative effect of scopolamine-induced cognitive dysfunction by Fufangmuniziqi formula: The roles of alkaloids, saponins, and flavonoids - Zhao_2023_J.Ethnopharmacol__116792
Author(s) : Zhao X , Hu X , Xie Q , Qi S , Xiang Z , Sun X , Xie Z , Dang R , Zhou L , Liu W , Cheng X , Wang C
Ref : J Ethnopharmacol , :116792 , 2023
Abstract : ETHNOPHARMACOLOGICAL RELEVANCE: Fufangmuniziqi formula (FFMN), a traditional Uyghur medicine used in China, is derived from an ancient Uyghur medical book and consists of 13 herbs. The herbs of FFMN, such as Peganum harmala L., Glycyrrhiza uralensis Fisch., and Nigella glandulifera, have been demonstrated to have acetylcholinesterase (AChE) inhibitory, anti-neuroinflammatory, or antioxidant effects. Therefore, FFMN may have a good anti-Alzheimer's disease (AD) effect, but its specific action and mechanism need to be further proven. AIM OF THE STUDY: This study aims to investigate the anti-AD effects of FFMN and the role played by alkaloids, flavonoids, and saponins in anti-AD. MATERIALS AND METHODS: The alkaloids, flavonoids, and saponins fractions of FFMN were prepared by macroporous resin chromatography. The absorbed ingredients in the drug-containing serum were identified by UPLC-Q-TOF-MS. An AD mouse model was established by intraperitoneal injection of scopolamine (SCO). The role of different fractions of FFMN in the anti-AD process was examined by Morris water maze (MWM), in-vitro cell, and AChE inhibition assay. RESULTS: A total of 20 ingredients were identified in the serum samples collected after oral administration of FFMN, and seven compounds were selected as candidate active compounds. MWM experiments showed that different fractions of FFMN could significantly improve SCO-induced learning memory impairment in mice. The alkaloids fraction (ALK) regulated cholinergic function by inhibiting AChE activity, activating choline acetyltransferase activity, and protein expression. Flavonoids and saponins were more potent than the ALK in downregulating pro-inflammatory factors or inflammatory mediators, such as TNF-alpha, MPO, and nitric oxide. Western blot results further confirmed that flavonoids and saponins attenuated neuroinflammation by inhibiting the phosphorylation of IkappaB and NF-kappaB p65. This result was also verified by in-vitro cellular assays. FFMN enhanced antioxidant defense by increasing the activity of superoxide dismutase and reducing the production of MDA. Combined with cellular experiments, flavonoids and saponins were proven more protective against oxidative damage. CONCLUSION: FFMN improved cognitive and memory impairment in the SCO-induced AD mouse model. ALK mainly enhanced the function of the cholinergic system. Flavonoid and saponin fractions mainly attenuated neuroinflammation and oxidative stress by modulating the NF-kappaB pathway. All these findings strongly suggested that the combination of alkaloid, flavonoid, and saponin fractions derived from FFMN is a promising anti-AD agent that deserves further development.
ESTHER : Zhao_2023_J.Ethnopharmacol__116792
PubMedSearch : Zhao_2023_J.Ethnopharmacol__116792
PubMedID: 37356745

Title : Transesterification of phosphatidylcholine with DHA-rich algal oil using immobilized Candida antarctica lipase B to produce DHA-phosphatidylcholine - Shu_2023_Enzyme.Microb.Technol_169_110266
Author(s) : Shu L , Zheng X , Qi S , Lin S , Lu Y , Yao C , Ling X
Ref : Enzyme Microb Technol , 169 :110266 , 2023
Abstract : Docosahexaenoic acid (DHA) enriched with phospholipids (PLs) (DHA-PLs) is a type of structured PL with good physicochemical and nutritional properties. Compared to PLs and DHA, DHA-PLs has higher bioavailability and structural stability and many nutritional benefits. To improve the enzymatic synthesis of DHA-PLs, this study investigated the preparation of phosphatidylcholine (PC) enriched with DHA (DHA-PC) via enzymatic transesterification of algal oil, which is rich in DHA-triglycerides, using immobilized Candida antarctica lipase B (CALB). The optimized reaction system incorporated 31.2% DHA into the acyl chain of PC and converted 43.6% PC to DHA-PC within 72 h at 50 degreesC, 1:8 PC: algal oil mass ratio, 25% enzyme load (based on total substrate mass), and 0.02 g/mL molecular sieve concentration. Consequently, the side reactions of PC hydrolysis were effectively suppressed and products with high PC content (74.8%) were produced. Molecular structure analysis showed that exogenous DHA was specifically incorporated into the sn-1 site of the PC by immobilized CALB. Furthermore, the evaluation of reusability with eight cycles showed that the immobilized CALB had good operational stability in the present reaction system. Collectively, this study demonstrated the applicability of immobilized CALB as a biocatalyst for synthesizing DHA-PC and provided an improved enzyme-catalyzed method for future DHA-PL synthesis.
ESTHER : Shu_2023_Enzyme.Microb.Technol_169_110266
PubMedSearch : Shu_2023_Enzyme.Microb.Technol_169_110266
PubMedID: 37311283

Title : Aaptamine - a dual acetyl - and butyrylcholinesterase inhibitor as potential anti-Alzheimer's disease agent - Miao_2022_Pharm.Biol_60_1502
Author(s) : Miao S , He Q , Li C , Wu Y , Liu M , Chen Y , Qi S , Gong K
Ref : Pharm Biol , 60 :1502 , 2022
Abstract : CONTEXT: Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions of people worldwide. Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are promising therapeutic targets for AD. OBJECTIVE: To evaluate the inhibitory effects of aaptamine on two cholinesterases and investigate the in vivo therapeutic effect on AD in a zebrafish model. MATERIALS AND METHODS: Aaptamine was isolated from the sponge Aaptos suberitoides Brondsted (Suberitidae). Enzyme inhibition, kinetic analysis, surface plasmon resonance (SPR) and molecular docking assays were used to determine its inhibitory effect on AChE and BuChE in vitro. Zebrafish were divided into six groups: control, model, 8 microM donepezil, 5 , 10 and 20 microM aaptamine. After three days of drug treatment, the behaviour assay was performed. RESULTS: The IC(50) values of aaptamine towards AChE and BuChE were 16.0 and 4.6 microM. And aaptamine directly inhibited the two cholinesterases in the mixed inhibition type, with K(i) values of 6.96 +/- 0.04 and 6.35 +/- 0.02 microM, with K(d) values of 87.6 and 10.7 microM. Besides, aaptamine interacts with the crucial anionic sites of AChE and BuChE. In vivo studies indicated that the dyskinesia recovery rates of 5 , 10 and 20 microM aaptamine group were 34.8, 58.8 and 60.0%, respectively, and that of donepezil was 63.7%. DISCUSSION AND CONCLUSIONS: Aaptamine showed great potential to exert its anti-AD effects by directly inhibiting the activities of AChE and BuChE. Therefore, this study identified a novel medicinal application of aaptamine and provided a new structural scaffold for the development of anti-AD drugs.
ESTHER : Miao_2022_Pharm.Biol_60_1502
PubMedSearch : Miao_2022_Pharm.Biol_60_1502
PubMedID: 35968601

Title : 5-Methyltetrahydrofolate Alleviates Memory Impairment in a Rat Model of Alzheimer's Disease Induced by D-Galactose and Aluminum Chloride - Zhang_2022_Int.J.Environ.Res.Public.Health_19_
Author(s) : Zhang Z , Wu H , Qi S , Tang Y , Qin C , Liu R , Zhang J , Cao Y , Gao X
Ref : Int J Environ Research Public Health , 19 : , 2022
Abstract : The effects of 5-methyltetrahydrofolate (5-MTHF) on a rat model of Alzheimer's disease (AD) induced by D-galactose (D-gal) and aluminum chloride (AlCl(3)) were investigated. Wistar rats were given an i.p. injection of 60 mg/kg D-gal and 10 mg/kg AlCl(3) to induce AD and three doses of 1 mg/kg, 5 mg/kg or 10 mg/kg 5-MTHF by oral gavage. A positive control group was treated with 1 mg/kg donepezil by gavage. Morris water maze performance showed that 5 and 10 mg/kg 5-MTHF significantly decreased escape latency and increased the number of platform crossings and time spent in the target quadrant for AD rats. The administration of 10 mg/kg 5-MTHF decreased the brain content of amyloid beta-protein 1-42 (Abeta(1-42)) and phosphorylated Tau protein (p-Tau) and decreased acetylcholinesterase and nitric oxide synthase activities. Superoxide dismutase activity, vascular endothelial growth factor level and glutamate concentration were increased, and malondialdehyde, endothelin-1, interleukin-6, tumor necrosis factor-alpha and nitric oxide decreased. The administration of 10 mg/kg 5-MTHF also increased the expression of disintegrin and metallopeptidase domain 10 mRNA and decreased the expression of beta-site amyloid precursor protein cleavage enzyme 1 mRNA. In summary, 5-MTHF alleviates memory impairment in a D-gal- and AlCl(3)-exposed rat model of AD. The inhibition of Abeta(1-42) and p-Tau release, reduced oxidative stress, the regulation of amyloid precursor protein processing and the release of excitatory amino acids and cytokines may be responsible.
ESTHER : Zhang_2022_Int.J.Environ.Res.Public.Health_19_
PubMedSearch : Zhang_2022_Int.J.Environ.Res.Public.Health_19_
PubMedID: 36554305

Title : Antioxidant Effects of Sophora davidi (Franch.) Skeels on d-Galactose-Induced Aging Model in Mice via Activating the SIRT1\/p53 Pathway - Lin_2021_Front.Pharmacol_12_754554
Author(s) : Lin B , Xu D , Wu S , Qi S , Xu Y , Liu X , Zhang X , Chen C
Ref : Front Pharmacol , 12 :754554 , 2021
Abstract : This study investigated the protective effect of Sophora davidi (Franch.) Skeels fruits extract (SDE) on d-galactose-induced acute aging in mice. Ultra performance liquid chromatography coupled with tine-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to identify the composition of compounds in SDE. KM mice were divided stochastically into the normal control group (NC, saline), d-galactose (D-gal) model group, vitamin C (Vc) group (positive control), low-, medium-and high-dose SDE treat groups. After 28 days administration and fasting overnight, the serum, liver, and brain samples of mice were collected. The levels of inducible nitric oxide synthase (iNOS), acetylcholinesterase (AChE) activity in the brain, malondialdehyde (MDA) and reduced glutathione (GSH) content, superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activity in the liver and brain were measured. Immunohistochemistry was applied to detect silent information regulator 1 (SIRT1) and p53 protein expression in the liver and brain, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of nuclear factor kappaB (NF-kappaB), tumor necrosis factor (TNF-alpha), interleukin-6 (IL-6), interleukin-1beta (IL-1beta), and anti-aging factor Klotho in the liver and brain. The results showed that UPLC-Q-TOF/MS identified 78 compounds in SDE. SDE could reduce the iNOS activity in serum and AChE activity in the brain, upregulate the levels of SOD, T-AOC and GSH in liver and brain, and debase the MDA content in liver and brain. SDE could downregulate the mRNA expressions of TNF-alpha, NF-kB, IL-1beta, and IL-6 in the liver and brain, and elevate the mRNA expression of Klotho. SDE improved the pathological changes of the liver and brain induced by D-gal, increased the expression of SIRT1 protein in the liver and brain, and inhibited the expression of p53 protein induced by D-gal. To summarize, SDE demonstrated clear anti-aging effect, and its mechanism may be relevant to the activation of the SIRT1/p53 signal pathway.
ESTHER : Lin_2021_Front.Pharmacol_12_754554
PubMedSearch : Lin_2021_Front.Pharmacol_12_754554
PubMedID: 34938181

Title : Rational Design of Highly Selective Near-Infrared Two-Photon Fluorogenic Probe for Imaging Orthotopic Hepatocellular Carcinoma Chemotherapy - Wu_2021_Angew.Chem.Int.Ed.Engl__
Author(s) : Wu X , Wang R , Qi S , Kwon N , Han J , Kim H , Li H , Yu F , Yoon J
Ref : Angew Chem Int Ed Engl , : , 2021
Abstract : Selective fluorescence imaging of biomarker in vivo and in situ for evaluating orthotopic hepatocellular carcinoma (HCC) chemotherapy remains a great challenge due to current imaging agents suffering from the potential interferences of other hydrolases. Herein, we observed that carbamate unit showed a high selectivity toward HCC-related biomarker (carboxylesterase, CE) for evaluation of treatment. A near-infrared two-photon fluorescent probe was developed to not only specially image CE activity in vivo and in situ but also target orthotopic liver tumor after systemic administration. In vivo signals of probe correlating well with tumor apoptosis make it possible to evaluate the status of treatment. Excellent property of probe enables the first imaging of CE activity in situ with high resolution three-dimensional view. This study may promote advancements in optical imaging approach for precise imaging-guided diagnosis of HCC in situ and its evaluation of treatment.
ESTHER : Wu_2021_Angew.Chem.Int.Ed.Engl__
PubMedSearch : Wu_2021_Angew.Chem.Int.Ed.Engl__
PubMedID: 33942436

Title : A molecular approach to rationally constructing specific fluorogenic substrates for the detection of acetylcholinesterase activity in live cells, mice brains and tissues - Wu_2020_Chem.Sci_11_11285
Author(s) : Wu X , An JM , Shang J , Huh E , Qi S , Lee E , Li H , Kim G , Ma H , Oh MS , Kim D , Yoon J
Ref : Chem Sci , 11 :11285 , 2020
Abstract : Acetylcholinesterase (AChE) is an extremely critical hydrolase tightly associated with neurological diseases. Currently, developing specific substrates for imaging AChE activity still remains a great challenge due to the interference from butyrylcholinesterase (BChE) and carboxylesterase (CE). Herein, we propose an approach to designing specific substrates for AChE detection by combining dimethylcarbamate choline with a self-immolative scaffold. The representative P10 can effectively eliminate the interference from CE and BChE. The high specificity of P10 has been proved via imaging AChE activity in cells. Moreover, P10 can also be used to successfully map AChE activity in different regions of a normal mouse brain, which may provide important data for AChE evaluation in clinical studies. Such a rational and effective approach can also provide a solid basis for designing probes with different properties to study AChE in biosystems and another way to design specific substrates for other enzymes.
ESTHER : Wu_2020_Chem.Sci_11_11285
PubMedSearch : Wu_2020_Chem.Sci_11_11285
PubMedID: 34094370

Title : Stereoselective glucuronidation metabolism, pharmacokinetics, anti-amnesic pharmacodynamics, and toxic properties of vasicine enantiomers in vitro and in vivo - Zhu_2018_Eur.J.Pharm.Sci_123_459
Author(s) : Zhu Y , Liu W , Qi S , Wang H , Wang Y , Deng G , Zhang Y , Li S , Ma C , Cheng X , Wang C
Ref : Eur J Pharm Sci , 123 :459 , 2018
Abstract : Vasicine (VAS) is a potential natural cholinesterase inhibitor for treatment of Alzheimer's disease. Due to one chiral centre (C-3) presenting in molecule, VAS has two enantiomers, d-vasicine (d-VAS) and l-vasicine (l-VAS). The study was undertaken to investigate the stereoselective glucuronidation metabolism, pharmacokinetics, anti-amnesic effect and acute toxicity of VAS enantiomers. In results, the glucuronidation metabolic rate of l-VAS was faster than d-VAS in human liver microsomes and isoenzymes tests, and it was proved that the UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B15 were the major metabolic enzymes for glucuronidation of l-VAS, while only UGT1A9 for d-VAS, which take responsibility of the significantly less metabolic affinity of d-VAS than l-VAS in HLM and rhUGT1A9. The plasma exposure of d-VAS in rats was 1.3-fold and 1.6-fold higher than that of l-VAS after intravenous and oral administration of d-VAS and l-VAS, respectively. And the plasma exposure of the major glucuronidation metabolite d-VASG was one of tenth of l-VASG or more less, no matter by intravenous or oral administration. Both d-VAS and l-VAS were exhibited promising acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, and the BChE inhibitory activity of d-VAS with IC50 of 0.03+/-0.001muM was significantly stronger than that of l-VAS with IC50 of 0.98+/-0.19muM. The molecular docking results indicated that d-VAS and l-VAS could bind to the catalytic active site (CAS position) either of human AChE and BChE, and the BChE combing ability of d-VAS (the score of GBI/WAS dG -7.398) was stronger than that of l-VAS (the score of GBI/WAS dG -7.135). Both d-VAS and l-VAS could improving the learning and memory on scopolamine-induced memory deficits in mice. The content of acetylcholine (ACh) after oral administration d-VAS increased more than that of l-VAS in mice cortex, through inhibiting cholinesterase (ChE) and increasing choline acetyltransferase (ChAT). In addition, the LD50 value of d-VAS (282.51mg.kg(-1)) was slight lower than l-VAS (319.75mg.kg(-1)). These results indicated that VAS enantiomers displayed significantly stereoselective metabolic, pharmacokinetics, anti-amnesic effect and toxic properties in vitro and in vivo. The d-VAS might be the dominant configuration for treating Alzheimer's disease.
ESTHER : Zhu_2018_Eur.J.Pharm.Sci_123_459
PubMedSearch : Zhu_2018_Eur.J.Pharm.Sci_123_459
PubMedID: 30077712

Title : Effects of a novel neonicotinoid insecticide cycloxaprid on earthworm, Eisenia fetida - Qi_2018_Environ.Sci.Pollut.Res.Int_25_14138
Author(s) : Qi S , Wang D , Zhu L , Teng M , Wang C , Xue X , Wu L
Ref : Environ Sci Pollut Res Int , 25 :14138 , 2018
Abstract : Cycloxaprid (CYC) is a novel neonicotinoid insecticide with high activity against resistant pests but is safe for mammals. The toxic effects of CYC on earthworms (Eisenia fetida) were studied in this paper. The 14-day exposure results showed that CYC is potentially toxic to earthworms, with a 14d-LC50 of 10.21 mg/kg dry soil, and that it induced tissue damage to the epidermis, gut, and neurochord at sublethal doses. During a 21-day exposure, CYC induced oxidative stress in earthworms, and both enzyme activities of catalase (CAT) and superoxide dismutase (SOD) were impacted. In addition, expression of the genes Cat and Sod were down- and upregulated, respectively. The activity of the enzyme acetylcholinesterase (AChE) was increased at day 7 but decreased at day 21 after CYC exposure, while expression of the signal transduction-related genes was significantly regulated. Our study shows for the first time that negative impacts could be induced by CYC on earthworms under both acute and chronic exposure through oxidative stress and gene regulation. The present study provides a database for assessing the environmental risk to non-target organisms resulting from the use of CYC.
ESTHER : Qi_2018_Environ.Sci.Pollut.Res.Int_25_14138
PubMedSearch : Qi_2018_Environ.Sci.Pollut.Res.Int_25_14138
PubMedID: 29520554

Title : Neonicotinoid insecticides imidacloprid, guadipyr, and cycloxaprid induce acute oxidative stress in Daphnia magna - Qi_2017_Ecotoxicol.Environ.Saf_148_352
Author(s) : Qi S , Wang D , Zhu L , Teng M , Wang C , Xue X , Wu L
Ref : Ecotoxicology & Environmental Safety , 148 :352 , 2017
Abstract : Cycloxaprid (CYC) and guadipyr (GUA) are two new and promising neonicotinoid insecticides whose effects on Daphnia magna are as yet unknown. In this study, the acute toxicities of CYC and GUA to D. magna, including immobilization and embryo-hatching inhibition, and their effects on antioxidant enzymes and related gene expression were determined after a 48-h exposure. Imidacloprid (IMI) was evaluated at the same time as a reference agent. The 48-h EC50 values of IMI, GUA, and CYC for neonate immobilization were 13.0-16.5mg/L and for embryo hatching were 11.3-16.2mg/L. The specific activity of the enzymes superoxide dismutase (SOD) and catalase (CAT) were interfered by IMI, but not by GUA and CYC, while the activity of acetylcholinesterase (AChE) was significantly increased by IMI, but inhibited by GUA and CYC. The relative expressions of the Sod-Cu/Zn, Sod-Mn, Cat, and Ache genes were usually inhibited by IMI, GUA, and CYC, except for Cat by CYC, Ache by GUA, and Sods by IMI. For vitellogenin genes with a SOD-like domain (Vtg1/2-sod), relative expression was increased by IMI and inhibited by GUA and CYC, indicating that IMI, GUA, and CYC have potential toxicity toward reproduction. CYC and GUA are highly active against IMI-resistant pests, and considering the similar toxicity of IMI to D. magna, CYC and GUA are suitable for use in future integrated pest management systems.
ESTHER : Qi_2017_Ecotoxicol.Environ.Saf_148_352
PubMedSearch : Qi_2017_Ecotoxicol.Environ.Saf_148_352
PubMedID: 29096261

Title : Anti-amnesic effect of extract and alkaloid fraction from aerial parts of Peganum harmala on scopolamine-induced memory deficits in mice - Liu_2017_J.Ethnopharmacol_204_95
Author(s) : Liu W , Zhu Y , Wang Y , Qi S , Ma C , Li S , Jiang B , Cheng X , Wang Z , Xuan Z , Wang C
Ref : J Ethnopharmacol , 204 :95 , 2017
Abstract : ETHNOPHARMACOLOGICAL RELEVANCE: Aerial parts of Peganum harmala Linn (APP) is used as traditional medical herb for treatment of forgetfulness in Uighur medicine in China. But, the active ingredients and underlying mechanisms are unclear. AIM OF THE STUDY: The present study was undertaken to investigate the improvement effects of extract and alkaloid fraction from APP on scopolamine-induced cognitive dysfunction and to elucidate their underlying mechanisms of action, and to support its folk use with scientific evidence, and lay a foundation for its further researches. MATERIALS AND
METHODS: The acetylcholinesterase (AChE) inhibitory activities of extract (EXT), alkaloid fraction (ALK) and flavonoid fraction (FLA) from APP were evaluated in normal male C57BL/6 mice. The anti-amnesic effects of EXT and ALK from APP were measured in scopolamine-induced memory deficits mice by the Morris water maze (MWM) tasks. The levels of biomarkers, enzyme activity and protein expression of cholinergic system were determined in brain tissues.
RESULTS: The AChE activity was significantly decreased and the content of neurotransmitter acetylcholine (ACh) was significantly increased in normal mice cortex and hippocampus by treatment with donepezil at dosage of 8mg/kg, EXT at dosages of 183, 550, 1650mg/kg and ALK at dosages of 10, 30, 90mg/kg (P<0.05), and the AChE activity and the content of ACh were not significantly changed in cortex and hippocampus after treatment with FLA at dosages of 10, 30, 90mg/kg (P>0.05). In the MWM task, scopolamine-induced a decrease in both the swimming time within the target zone and the number of crossings where the platform had been placed were significantly reversed by treatment with EXT at dosages of 550, 1650mg/kg and ALK at dosages of 30, 90mg/kg (P<0.05). Moreover, the activity and protein expression of AChE was significantly decreased and the content of neurotransmitter ACh was significantly increased in cerebral cortex of scopolamine-induced mice by treatment with EXT at dosages of 183, 550, 1650mg/kg and ALK at dosages of 10, 30, 90mg/kg (P<0.05), compared with scopolamine-treated group.
CONCLUSIONS: EXT and ALK from APP exert beneficial effect on learning and memory processes in mice with scopolamine-induced memory impairment. APP is an effective traditional folk medicine and the ALK fraction is proved to be the main effective components for the treatment of forgetfulness. The ALK may be valuable source for lead compounds discovery and drug development for treatment of memory impairment such as in Alzheimer's disease.
ESTHER : Liu_2017_J.Ethnopharmacol_204_95
PubMedSearch : Liu_2017_J.Ethnopharmacol_204_95
PubMedID: 28442406

Title : Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida - Wang_2015_Bull.Environ.Contam.Toxicol_95_475
Author(s) : Wang K , Qi S , Mu X , Chai T , Yang Y , Wang D , Li D , Che W , Wang C
Ref : Bulletin of Environmental Contamination & Toxicology , 95 :475 , 2015
Abstract : Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92 mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5 mg/kg, respectively.
ESTHER : Wang_2015_Bull.Environ.Contam.Toxicol_95_475
PubMedSearch : Wang_2015_Bull.Environ.Contam.Toxicol_95_475
PubMedID: 26293707

Title : Toxicity of a neonicotinoid insecticide, guadipyr, in earthworm (Eisenia fetida) - Wang_2015_Ecotoxicol.Environ.Saf_114C_17
Author(s) : Wang K , Mu X , Qi S , Chai T , Pang S , Yang Y , Wang C , Jiang J
Ref : Ecotoxicology & Environmental Safety , 114C :17 , 2015
Abstract : Neonicotinoid insecticides are new class of pesticides and it is very meaningful to evaluate the toxicity of guadipyr to earthworm (Eisenia fetida). In the present study, effects of guadipyr on reproduction, growth, catalase(CAT), superoxide dismutase (SOD), acetylcholinesterase (AChE) and DNA damage in earthworm were assessed using an artificial soil medium. Guadipyr showed low toxicity to earthworms and did not elicit an effect on earthworm reproduction or growth in artificial soils at concentrations <100mg/kg. However, after exposure to guadipyr, the activity of SOD and CAT in earthworm increased and then decreased to control level. AChE activity decreased at day 3 at 50 and 100mg/kg and then increased to control level. Our data indicate that guadipyr did not induce DNA damage in earthworms at concentration of <100mg/kg.
ESTHER : Wang_2015_Ecotoxicol.Environ.Saf_114C_17
PubMedSearch : Wang_2015_Ecotoxicol.Environ.Saf_114C_17
PubMedID: 25594687

Title : Territrem and Butyrolactone Derivatives from a Marine-Derived Fungus Aspergillus Terreus - Nong_2014_Mar.Drugs_12_6113
Author(s) : Nong X , Wang Y , Zhang X , Zhou M , Xu X , Qi S
Ref : Mar Drugs , 12 :6113 , 2014
Abstract : Seventeen lactones including eight territrem derivatives (1-8) and nine butyrolactone derivatives (9-17) were isolated from a marine-derived fungus Aspergillus terreus SCSGAF0162 under solid-state fermentation of rice. Compounds 1-3 and 9-10 were new, and their structures were elucidated by spectroscopic analysis. The acetylcholinesterase inhibitory activity and antiviral activity of compounds 1-17 were evaluated. Among them, compounds 1 and 2 showed strong inhibitory activity against acetylcholinesterase with IC50 values of 4.2 +/- 0.6, 4.5 +/- 0.6 nM, respectively. This is the first time it has been reported that 3, 6, 10, 12 had evident antiviral activity towards HSV-1 with IC50 values of 16.4 +/- 0.6, 6.34 +/- 0.4, 21.8 +/- 0.8 and 28.9 +/- 0.8 mug.mL-1, respectively. Antifouling bioassay tests showed that compounds 1, 11, 12, 15 had potent antifouling activity with EC50 values of 12.9 +/- 0.5, 22.1 +/- 0.8, 7.4 +/- 0.6, 16.1 +/- 0.6 mug.mL-1 toward barnacle Balanus amphitrite larvae, respectively.
ESTHER : Nong_2014_Mar.Drugs_12_6113
PubMedSearch : Nong_2014_Mar.Drugs_12_6113
PubMedID: 25522319

Title : Toxicity assessments with Daphnia magna of Guadipyr, a new neonicotinoid insecticide and studies of its effect on acetylcholinesterase (AChE), glutathione S-transferase (GST), catalase (CAT) and chitobiase activities - Qi_2013_Ecotoxicol.Environ.Saf_98_339
Author(s) : Qi S , Wang C , Chen X , Qin Z , Li X
Ref : Ecotoxicology & Environmental Safety , 98 :339 , 2013
Abstract : Guadipyr is a novel neonicotinoid insecticide, developed by the China Agricultural University. This work investigated its aquatic toxicity on Daphnia magna. The acute immobilization test showed that guadipyr was slightly toxic to daphnids, with a 48h EC50 of 13.01mg/L. In addition, guadipyr significantly enhanced the acetylcholinesterase (AChE) and glutathione S-transferase (GST) activity (per gram of protein), but had no obvious impact on catalase (CAT) activity within 48h. The 21d chronic exposure of D. magna to guadipyr induced a significant decrease in body growth and reproduction; both share the same lowest observed effect concentration (LOEC) at 0.10mg/L. In the 14d chronic test, a significant increase in chitobiase activity in test media was observed at day 8 (days to the first breeding), while a significant decrease was observed from days 10 to 14, which might be due to the endocrine imbalance resulting from guadipyr stress. These results demonstrated that guadipyr can induce notable negative ecotoxicological impacts on the aquatic system in long-term exposure at a sub-lethal dose. Further research in environmental behaviors is needed to regulate guadipyr use in the future.
ESTHER : Qi_2013_Ecotoxicol.Environ.Saf_98_339
PubMedSearch : Qi_2013_Ecotoxicol.Environ.Saf_98_339
PubMedID: 24075643

Title : Synthesis of structured lipids by lipase-catalyzed interesterification of triacetin with camellia oil methyl esters and preliminary evaluation of their plasma lipid-lowering effect in mice - Cao_2013_Molecules_18_3733
Author(s) : Cao Y , Qi S , Zhang Y , Wang X , Yang B , Wang Y
Ref : Molecules , 18 :3733 , 2013
Abstract : Structured lipids (SLCTs triacylglycerols with short- and long-chain acyl residues) were synthesized by interesterification of triacetin and fatty acid methyl esters (FAMEs) from camellia oil, followed by molecular distillation for purification. Different commercial immobilized lipases (Lipozyme RM IM and Novozyme 435), the substrate molar ratios of FAMEs to triacetin, the reaction temperatures and the lipase amounts were studied for their efficiency in producing SLCTs. Results showed that Novozyme 435 was more suitable for this reaction system. Moreover, the optimal reaction conditions for the highest conversion of FAMEs and the highest LLS-TAGs (triacylglycerols with one short- and two long-chain acyl residues) yields were achieved at a molar ratio of FAMEs to triacetin of 3:1, 50 degreeC of reaction temperature and a lipase amount of 4% (w/v). Scale-up was conducted based on the optimized reaction conditions. Results showed that after 24 h of reaction , the conversion rate of FAMEs was 82.4% and the rate of disubstituted triacetin was 52.4 mol%. The final product yield rate was 94.6%. The effects of the synthesized SLCTs on the plasma lipid level of fasting mice were also studied. The SLCTs could effectively lessen the total triacylglycerol levels in plasma compared to the triacylglycerol group in fasting NIH mice. It suggested that this type of structured lipid might be beneficial for human health, especially for the prevention of obesity.
ESTHER : Cao_2013_Molecules_18_3733
PubMedSearch : Cao_2013_Molecules_18_3733
PubMedID: 23529033

Title : The DNA sequence of human chromosome 22 - Dunham_1999_Nature_402_489
Author(s) : Dunham I , Hunt AR , Collins JE , Bruskiewich R , Beare DM , Clamp M , Smink LJ , Ainscough R , Almeida JP , Babbage AK , Bagguley C , Bailey J , Barlow KF , Bates KN , Beasley OP , Bird CP , Blakey SE , Bridgeman AM , Buck D , Burgess J , Burrill WD , Burton J , Carder C , Carter NP , Chen Y , Clark G , Clegg SM , Cobley VE , Cole CG , Collier RE , Connor R , Conroy D , Corby NR , Coville GJ , Cox AV , Davis J , Dawson E , Dhami PD , Dockree C , Dodsworth SJ , Durbin RM , Ellington AG , Evans KL , Fey JM , Fleming K , French L , Garner AA , Gilbert JGR , Goward ME , Grafham DV , Griffiths MND , Hall C , Hall RE , Hall-Tamlyn G , Heathcott RW , Ho S , Holmes S , Hunt SE , Jones MC , Kershaw J , Kimberley AM , King A , Laird GK , Langford CF , Leversha MA , Lloyd C , Lloyd DM , Martyn ID , Mashreghi-Mohammadi M , Matthews LH , Mccann OT , Mcclay J , Mclaren S , McMurray AA , Milne SA , Mortimore BJ , Odell CN , Pavitt R , Pearce AV , Pearson D , Phillimore BJCT , Phillips SH , Plumb RW , Ramsay H , Ramsey Y , Rogers L , Ross MT , Scott CE , Sehra HK , Skuce CD , Smalley S , Smith ML , Soderlund C , Spragon L , Steward CA , Sulston JE , Swann RM , Vaudin M , Wall M , Wallis JM , Whiteley MN , Willey DL , Williams L , Williams SA , Williamson H , Wilmer TE , Wilming L , Wright CL , Hubbard T , Bentley DR , Beck S , Rogers J , Shimizu N , Minoshima S , Kawasaki K , Sasaki T , Asakawa S , Kudoh J , Shintani A , Shibuya K , Yoshizaki Y , Aoki N , Mitsuyama S , Roe BA , Chen F , Chu L , Crabtree J , Deschamps S , Do A , Do T , Dorman A , Fang F , Fu Y , Hu P , Hua A , Kenton S , Lai H , Lao HI , Lewis J , Lewis S , Lin S-P , Loh P , Malaj E , Nguyen T , Pan H , Phan S , Qi S , Qian Y , Ray L , Ren Q , Shaull S , Sloan D , Song L , Wang Q , Wang Y , Wang Z , White J , Willingham D , Wu H , Yao Z , Zhan M , Zhang G , Chissoe S , Murray J , Miller N , Minx P , Fulton R , Johnson D , Bemis G , Bentley D , Bradshaw H , Bourne S , Cordes M , Du Z , Fulton L , Goela D , Graves T , Hawkins J , Hinds K , Kemp K , Latreille P , Layman D , Ozersky P , Rohlfing T , Scheet P , Walker C , Wamsley A , Wohldmann P , Pepin K , Nelson J , Korf I , Bedell JA , Hillier L , Mardis E , Waterston R , Wilson R , Emanuel BS , Shaikh T , Kurahashi H , Saitta S , Budarf ML , McDermid HE , Johnson A , Wong ACC , Morrow BE , Edelmann L , Kim UJ , Shizuya H , Simon MI , Dumanski JP , Peyrard M , Kedra D , Seroussi E , Fransson I , Tapia I , Bruder CE , O'Brien KP
Ref : Nature , 402 :489 , 1999
Abstract : Knowledge of the complete genomic DNA sequence of an organism allows a systematic approach to defining its genetic components. The genomic sequence provides access to the complete structures of all genes, including those without known function, their control elements, and, by inference, the proteins they encode, as well as all other biologically important sequences. Furthermore, the sequence is a rich and permanent source of information for the design of further biological studies of the organism and for the study of evolution through cross-species sequence comparison. The power of this approach has been amply demonstrated by the determination of the sequences of a number of microbial and model organisms. The next step is to obtain the complete sequence of the entire human genome. Here we report the sequence of the euchromatic part of human chromosome 22. The sequence obtained consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.
ESTHER : Dunham_1999_Nature_402_489
PubMedSearch : Dunham_1999_Nature_402_489
PubMedID: 10591208
Gene_locus related to this paper: human-CES5A , human-SERHL2