Crabtree J

References (15)

Title : A catalog of reference genomes from the human microbiome - Nelson_2010_Science_328_994
Author(s) : Nelson KE , Weinstock GM , Highlander SK , Worley KC , Creasy HH , Wortman JR , Rusch DB , Mitreva M , Sodergren E , Chinwalla AT , Feldgarden M , Gevers D , Haas BJ , Madupu R , Ward DV , Birren BW , Gibbs RA , Methe B , Petrosino JF , Strausberg RL , Sutton GG , White OR , Wilson RK , Durkin S , Giglio MG , Gujja S , Howarth C , Kodira CD , Kyrpides N , Mehta T , Muzny DM , Pearson M , Pepin K , Pati A , Qin X , Yandava C , Zeng Q , Zhang L , Berlin AM , Chen L , Hepburn TA , Johnson J , McCorrison J , Miller J , Minx P , Nusbaum C , Russ C , Sykes SM , Tomlinson CM , Young S , Warren WC , Badger J , Crabtree J , Markowitz VM , Orvis J , Cree A , Ferriera S , Fulton LL , Fulton RS , Gillis M , Hemphill LD , Joshi V , Kovar C , Torralba M , Wetterstrand KA , Abouellleil A , Wollam AM , Buhay CJ , Ding Y , Dugan S , Fitzgerald MG , Holder M , Hostetler J , Clifton SW , Allen-Vercoe E , Earl AM , Farmer CN , Liolios K , Surette MG , Xu Q , Pohl C , Wilczek-Boney K , Zhu D
Ref : Science , 328 :994 , 2010
Abstract : The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified ("novel") polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (approximately 97%) were unique. In addition, this set of microbial genomes allows for approximately 40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.
ESTHER : Nelson_2010_Science_328_994
PubMedSearch : Nelson_2010_Science_328_994
PubMedID: 20489017
Gene_locus related to this paper: strp2-q04l35 , strpn-AXE1 , strpn-pepx

Title : Draft genome sequence of the oilseed species Ricinus communis - Chan_2010_Nat.Biotechnol_28_951
Author(s) : Chan AP , Crabtree J , Zhao Q , Lorenzi H , Orvis J , Puiu D , Melake-Berhan A , Jones KM , Redman J , Chen G , Cahoon EB , Gedil M , Stanke M , Haas BJ , Wortman JR , Fraser-Liggett CM , Ravel J , Rabinowicz PD
Ref : Nat Biotechnol , 28 :951 , 2010
Abstract : Castor bean (Ricinus communis) is an oilseed crop that belongs to the spurge (Euphorbiaceae) family, which comprises approximately 6,300 species that include cassava (Manihot esculenta), rubber tree (Hevea brasiliensis) and physic nut (Jatropha curcas). It is primarily of economic interest as a source of castor oil, used for the production of high-quality lubricants because of its high proportion of the unusual fatty acid ricinoleic acid. However, castor bean genomics is also relevant to biosecurity as the seeds contain high levels of ricin, a highly toxic, ribosome-inactivating protein. Here we report the draft genome sequence of castor bean (4.6-fold coverage), the first for a member of the Euphorbiaceae. Whereas most of the key genes involved in oil synthesis and turnover are single copy, the number of members of the ricin gene family is larger than previously thought. Comparative genomics analysis suggests the presence of an ancient hexaploidization event that is conserved across the dicotyledonous lineage.
ESTHER : Chan_2010_Nat.Biotechnol_28_951
PubMedSearch : Chan_2010_Nat.Biotechnol_28_951
PubMedID: 20729833
Gene_locus related to this paper: ricco-b9r7h7 , ricco-b9re31 , ricco-b9rgi7 , ricco-b9riy7 , ricco-b9rlg6 , ricco-b9rm64 , ricco-b9rsg5 , ricco-b9rtk6 , ricco-b9rtt3 , ricco-b9ry83 , ricco-b9s8p2 , ricco-b9s817 , ricco-b9sby7 , ricco-b9scn1 , ricco-b9scn2 , ricco-b9scn3 , ricco-b9scn5 , ricco-b9ssj7 , ricco-b9ssj8 , ricco-b9sx01 , ricco-b9szu0 , ricco-b9t4l4 , ricco-b9t5x2 , ricco-b9tb84 , ricco-b9rkb0 , ricco-b9rru1 , ricco-b9rdy5 , ricco-b9tey4 , ricco-b9sfw5 , ricco-b9sjw6 , ricco-b9shs6 , ricco-b9rsl2 , ricco-b9r7f8 , ricco-b9rne4 , ricco-b9r8z8 , ricco-b9rf65 , ricco-b9rjk8 , ricco-b9sip5 , ricco-b9t3r4

Title : The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates - Rasko_2008_J.Bacteriol_190_6881
Author(s) : Rasko DA , Rosovitz MJ , Myers GS , Mongodin EF , Fricke WF , Gajer P , Crabtree J , Sebaihia M , Thomson NR , Chaudhuri R , Henderson IR , Sperandio V , Ravel J
Ref : Journal of Bacteriology , 190 :6881 , 2008
Abstract : Whole-genome sequencing has been skewed toward bacterial pathogens as a consequence of the prioritization of medical and veterinary diseases. However, it is becoming clear that in order to accurately measure genetic variation within and between pathogenic groups, multiple isolates, as well as commensal species, must be sequenced. This study examined the pangenomic content of Escherichia coli. Six distinct E. coli pathovars can be distinguished using molecular or phenotypic markers, but only two of the six pathovars have been subjected to any genome sequencing previously. Thus, this report provides a seminal description of the genomic contents and unique features of three unsequenced pathovars, enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. We also determined the first genome sequence of a human commensal E. coli isolate, E. coli HS, which will undoubtedly provide a new baseline from which workers can examine the evolution of pathogenic E. coli. Comparison of 17 E. coli genomes, 8 of which are new, resulted in identification of approximately 2,200 genes conserved in all isolates. We were also able to identify genes that were isolate and pathovar specific. Fewer pathovar-specific genes were identified than anticipated, suggesting that each isolate may have independently developed virulence capabilities. Pangenome calculations indicate that E. coli genomic diversity represents an open pangenome model containing a reservoir of more than 13,000 genes, many of which may be uncharacterized but important virulence factors. This comparative study of the species E. coli, while descriptive, should provide the basis for future functional work on this important group of pathogens.
ESTHER : Rasko_2008_J.Bacteriol_190_6881
PubMedSearch : Rasko_2008_J.Bacteriol_190_6881
PubMedID: 18676672
Gene_locus related to this paper: ecoli-Aes , ecoli-rutD , ecoli-bioh , ecoli-C4836 , ecoli-dlhh , ecoli-entf , ecoli-fes , ecoli-mhpc , ecoli-pldb , ecoli-ptrb , ecoli-yafa , ecoli-yaim , ecoli-ybff , ecoli-ycfp , ecoli-ycjy , ecoli-yeiG , ecoli-YFBB , ecoli-yghX , ecoli-yhet , ecoli-yiel , ecoli-yjfp , ecoli-YNBC , ecoli-ypfh , ecoli-ypt1 , ecoli-yqia , ecoli-Z2445 , ecoli-YfhR

Title : Comparative genomics of the neglected human malaria parasite Plasmodium vivax - Carlton_2008_Nature_455_757
Author(s) : Carlton JM , Adams JH , Silva JC , Bidwell SL , Lorenzi H , Caler E , Crabtree J , Angiuoli SV , Merino EF , Amedeo P , Cheng Q , Coulson RM , Crabb BS , Del Portillo HA , Essien K , Feldblyum TV , Fernandez-Becerra C , Gilson PR , Gueye AH , Guo X , Kang'a S , Kooij TW , Korsinczky M , Meyer EV , Nene V , Paulsen I , White O , Ralph SA , Ren Q , Sargeant TJ , Salzberg SL , Stoeckert CJ , Sullivan SA , Yamamoto MM , Hoffman SL , Wortman JR , Gardner MJ , Galinski MR , Barnwell JW , Fraser-Liggett CM
Ref : Nature , 455 :757 , 2008
Abstract : The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.
ESTHER : Carlton_2008_Nature_455_757
PubMedSearch : Carlton_2008_Nature_455_757
PubMedID: 18843361
Gene_locus related to this paper: plakh-b3lb44 , plavi-a5kcq0 , plavs-a5k2k6 , plavs-a5k3z4 , plavs-a5k4s6 , plavs-a5k5e4 , plavs-a5k7t5 , plavs-a5k686 , plavs-a5kaa1 , plavs-a5kaa3 , plavs-a5kas6 , plavs-a5kcm2

Title : Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus - Fedorova_2008_PLoS.Genet_4_e1000046
Author(s) : Fedorova ND , Khaldi N , Joardar VS , Maiti R , Amedeo P , Anderson MJ , Crabtree J , Silva JC , Badger JH , Albarraq A , Angiuoli S , Bussey H , Bowyer P , Cotty PJ , Dyer PS , Egan A , Galens K , Fraser-Liggett CM , Haas BJ , Inman JM , Kent R , Lemieux S , Malavazi I , Orvis J , Roemer T , Ronning CM , Sundaram JP , Sutton G , Turner G , Venter JC , White OR , Whitty BR , Youngman P , Wolfe KH , Goldman GH , Wortman JR , Jiang B , Denning DW , Nierman WC
Ref : PLoS Genet , 4 :e1000046 , 2008
Abstract : We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated "gene dumps" and, perhaps, simultaneously, as "gene factories".
ESTHER : Fedorova_2008_PLoS.Genet_4_e1000046
PubMedSearch : Fedorova_2008_PLoS.Genet_4_e1000046
PubMedID: 18404212
Gene_locus related to this paper: aspcl-a1c4m6 , aspcl-a1c5a7 , aspcl-a1c6w3 , aspcl-a1c8p7 , aspcl-a1c8q9 , aspcl-a1c9k4 , aspcl-a1c759 , aspcl-a1c786 , aspcl-a1c823 , aspcl-a1c859 , aspcl-a1c881 , aspcl-a1c994 , aspcl-a1cag4 , aspcl-a1caj8 , aspcl-a1cas0 , aspcl-a1cc86 , aspcl-a1ccq2 , aspcl-a1cfv7 , aspcl-a1chj6 , aspcl-a1cif4 , aspcl-a1ck14 , aspcl-a1cke4 , aspcl-a1ckq1 , aspcl-a1cli1 , aspcl-a1cln8 , aspcl-a1cm72 , aspcl-a1cns2 , aspcl-a1cpk9 , aspcl-a1cra8 , aspcl-a1crr5 , aspcl-a1crs9 , aspcl-a1cs04 , aspcl-a1cs39 , aspcl-a1cu39 , aspcl-atg15 , aspcl-axe1 , aspcl-cuti1 , aspcl-cuti3 , aspcl-dapb , aspcl-dpp4 , aspcl-dpp5 , aspcl-faeb , aspcl-faec1 , aspcl-faec2 , aspfc-b0xp50 , aspfc-b0xu40 , aspfc-b0xzj6 , aspfc-b0y2h6 , aspfc-b0y962 , aspfc-b0yaj6 , aspfc-dpp5 , aspfu-DPP4 , aspfu-faeb1 , aspfu-faec , aspfu-ppme1 , aspfu-q4w9r3 , aspfu-q4w9t5 , aspfu-q4w9z4 , aspfu-q4wa57 , aspfu-q4wa78 , aspfu-q4wag0 , aspfu-q4wal3 , aspfu-q4wbc5 , aspfu-q4wbj7 , aspfu-q4wdg2 , aspfu-q4wf06 , aspfu-q4wf29 , aspfu-q4wf56 , aspfu-q4wfq9 , aspfu-q4wg73 , aspfu-q4wgm4 , aspfu-q4win2 , aspfu-q4wk31 , aspfu-q4wk44 , aspfu-q4wk90 , aspfu-q4wm12 , aspfu-q4wm84 , aspfu-q4wm86 , aspfu-q4wmr0 , aspfu-q4wny7 , aspfu-q4wp19 , aspfu-q4wpb9 , aspfu-q4wqj8 , aspfu-q4wqv2 , aspfu-q4wrr7 , aspfu-q4wu51 , aspfu-q4wub2 , aspfu-q4wui7 , aspfu-q4wuk8 , aspfu-q4wum3 , aspfu-q4wuw0 , aspfu-q4wvy1 , aspfu-q4ww22 , aspfu-q4wx13 , aspfu-q4wxd0 , aspfu-q4wxe4 , aspfu-q4wxr1 , aspfu-q4wyq5 , aspfu-q4wz16 , aspfu-q4wzd5 , aspfu-q4wzh6 , aspfu-q4x0n6 , aspfu-q4x1n0 , aspfu-q4x1w9 , aspfu-q4x078 , neofi-a1cwa6 , neofi-a1d4m8 , neofi-a1d4p0 , neofi-a1d5p2 , neofi-a1d104 , neofi-a1d380 , neofi-a1d512 , neofi-a1d654 , neofi-a1da18 , neofi-a1dal8 , neofi-a1df46 , neofi-a1dhj0 , neofi-a1di44 , neofi-a1dk35 , neofi-a1dki7 , neofi-a1dkt6 , neofi-a1dn55 , neofi-atg15 , neofi-axe1 , neofi-faeb1 , neofi-faeb2 , neofi-faec , aspcl-a1cd34 , aspcl-a1cd88 , neofi-a1dc66 , aspcl-a1ceh5 , neofi-a1dfr9 , aspfm-a0a084bf80 , aspcl-a1cqb5 , aspcl-a1cs44 , neofi-a1d517 , neofi-a1dbz0 , neofi-a1cuz0 , aspcl-a1c5e8 , neofi-a1d0b8 , aspcl-a1cdf0 , aspcl-a1ccd3 , neofi-a1da82 , neofi-a1d5e6 , aspcl-kex1 , aspcl-cbpya

Title : Genome sequence of Babesia bovis and comparative analysis of apicomplexan hemoprotozoa - Brayton_2007_PLoS.Pathog_3_1401
Author(s) : Brayton KA , Lau AO , Herndon DR , Hannick L , Kappmeyer LS , Berens SJ , Bidwell SL , Brown WC , Crabtree J , Fadrosh D , Feldblum T , Forberger HA , Haas BJ , Howell JM , Khouri H , Koo H , Mann DJ , Norimine J , Paulsen IT , Radune D , Ren Q , Smith RK, Jr. , Suarez CE , White O , Wortman JR , Knowles DP, Jr. , McElwain TF , Nene VM
Ref : PLoS Pathog , 3 :1401 , 2007
Abstract : Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The approximately 150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development.
ESTHER : Brayton_2007_PLoS.Pathog_3_1401
PubMedSearch : Brayton_2007_PLoS.Pathog_3_1401
PubMedID: 17953480
Gene_locus related to this paper: babbo-a7amu4 , babbo-a7as90 , babbo-a7au28 , babbo-a7avh4

Title : Genome sequence of Aedes aegypti, a major arbovirus vector - Nene_2007_Science_316_1718
Author(s) : Nene V , Wortman JR , Lawson D , Haas B , Kodira C , Tu ZJ , Loftus B , Xi Z , Megy K , Grabherr M , Ren Q , Zdobnov EM , Lobo NF , Campbell KS , Brown SE , Bonaldo MF , Zhu J , Sinkins SP , Hogenkamp DG , Amedeo P , Arensburger P , Atkinson PW , Bidwell S , Biedler J , Birney E , Bruggner RV , Costas J , Coy MR , Crabtree J , Crawford M , Debruyn B , Decaprio D , Eiglmeier K , Eisenstadt E , El-Dorry H , Gelbart WM , Gomes SL , Hammond M , Hannick LI , Hogan JR , Holmes MH , Jaffe D , Johnston JS , Kennedy RC , Koo H , Kravitz S , Kriventseva EV , Kulp D , LaButti K , Lee E , Li S , Lovin DD , Mao C , Mauceli E , Menck CF , Miller JR , Montgomery P , Mori A , Nascimento AL , Naveira HF , Nusbaum C , O'Leary S , Orvis J , Pertea M , Quesneville H , Reidenbach KR , Rogers YH , Roth CW , Schneider JR , Schatz M , Shumway M , Stanke M , Stinson EO , Tubio JM , Vanzee JP , Verjovski-Almeida S , Werner D , White O , Wyder S , Zeng Q , Zhao Q , Zhao Y , Hill CA , Raikhel AS , Soares MB , Knudson DL , Lee NH , Galagan J , Salzberg SL , Paulsen IT , Dimopoulos G , Collins FH , Birren B , Fraser-Liggett CM , Severson DW
Ref : Science , 316 :1718 , 2007
Abstract : We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
ESTHER : Nene_2007_Science_316_1718
PubMedSearch : Nene_2007_Science_316_1718
PubMedID: 17510324
Gene_locus related to this paper: aedae-ACHE , aedae-ACHE1 , aedae-glita , aedae-q0iea6 , aedae-q0iev6 , aedae-q0ifn6 , aedae-q0ifn8 , aedae-q0ifn9 , aedae-q0ifp0 , aedae-q0ig41 , aedae-q1dgl0 , aedae-q1dh03 , aedae-q1dh19 , aedae-q1hqe6 , aedae-Q8ITU8 , aedae-Q8MMJ6 , aedae-Q8T9V6 , aedae-q16e91 , aedae-q16f04 , aedae-q16f25 , aedae-q16f26 , aedae-q16f28 , aedae-q16f29 , aedae-q16f30 , aedae-q16gq5 , aedae-q16iq5 , aedae-q16je0 , aedae-q16je1 , aedae-q16je2 , aedae-q16ks8 , aedae-q16lf2 , aedae-q16lv6 , aedae-q16m61 , aedae-q16mc1 , aedae-q16mc6 , aedae-q16mc7 , aedae-q16md1 , aedae-q16ms7 , aedae-q16nk5 , aedae-q16rl5 , aedae-q16rz9 , aedae-q16si8 , aedae-q16t49 , aedae-q16wf1 , aedae-q16x18 , aedae-q16xp8 , aedae-q16xu6 , aedae-q16xw5 , aedae-q16xw6 , aedae-q16y04 , aedae-q16y05 , aedae-q16y06 , aedae-q16y07 , aedae-q16y39 , aedae-q16y40 , aedae-q16yg4 , aedae-q16z03 , aedae-q17aa7 , aedae-q17av1 , aedae-q17av2 , aedae-q17av3 , aedae-q17av4 , aedae-q17b28 , aedae-q17b29 , aedae-q17b30 , aedae-q17b31 , aedae-q17b32 , aedae-q17bm3 , aedae-q17bm4 , aedae-q17bv7 , aedae-q17c44 , aedae-q17cz1 , aedae-q17d32 , aedae-q17g39 , aedae-q17g40 , aedae-q17g41 , aedae-q17g42 , aedae-q17g43 , aedae-q17g44 , aedae-q17gb8 , aedae-q17gr3 , aedae-q17if7 , aedae-q17if9 , aedae-q17ig1 , aedae-q17ig2 , aedae-q17is4 , aedae-q17l09 , aedae-q17m26 , aedae-q17mg9 , aedae-q17mv4 , aedae-q17mv5 , aedae-q17mv6 , aedae-q17mv7 , aedae-q17mw8 , aedae-q17mw9 , aedae-q17nw5 , aedae-q17nx5 , aedae-q17pa4 , aedae-q17q69 , aedae-q170k7 , aedae-q171y4 , aedae-q172e0 , aedae-q176i8 , aedae-q176j0 , aedae-q177k1 , aedae-q177k2 , aedae-q177l9 , aedae-j9hic3 , aedae-q179r9 , aedae-u483 , aedae-j9hj23 , aedae-q17d68 , aedae-q177c7 , aedae-q0ifp1 , aedae-a0a1s4fx83 , aedae-a0a1s4g2m0 , aedae-q1hr49

Title : Draft genome of the filarial nematode parasite Brugia malayi - Ghedin_2007_Science_317_1756
Author(s) : Ghedin E , Wang S , Spiro D , Caler E , Zhao Q , Crabtree J , Allen JE , Delcher AL , Guiliano DB , Miranda-Saavedra D , Angiuoli SV , Creasy T , Amedeo P , Haas B , El-Sayed NM , Wortman JR , Feldblyum T , Tallon L , Schatz M , Shumway M , Koo H , Salzberg SL , Schobel S , Pertea M , Pop M , White O , Barton GJ , Carlow CK , Crawford MJ , Daub J , Dimmic MW , Estes CF , Foster JM , Ganatra M , Gregory WF , Johnson NM , Jin J , Komuniecki R , Korf I , Kumar S , Laney S , Li BW , Li W , Lindblom TH , Lustigman S , Ma D , Maina CV , Martin DM , McCarter JP , McReynolds L , Mitreva M , Nutman TB , Parkinson J , Peregrin-Alvarez JM , Poole C , Ren Q , Saunders L , Sluder AE , Smith K , Stanke M , Unnasch TR , Ware J , Wei AD , Weil G , Williams DJ , Zhang Y , Williams SA , Fraser-Liggett C , Slatko B , Blaxter ML , Scott AL
Ref : Science , 317 :1756 , 2007
Abstract : Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the approximately 90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict approximately 11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during approximately 350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.
ESTHER : Ghedin_2007_Science_317_1756
PubMedSearch : Ghedin_2007_Science_317_1756
PubMedID: 17885136
Gene_locus related to this paper: bruma-a8ndk6 , bruma-a8njt8 , bruma-a8nl88 , bruma-a8npi4 , bruma-a8npi6 , bruma-a8p6g9 , bruma-a8pah3 , bruma-a8pc38 , bruma-a8pek5 , bruma-a8piq4 , bruma-a8pnw8 , bruma-a8psu4 , bruma-a8pte1 , bruma-a8q606 , bruma-a8q632 , bruma-a8q937 , bruma-a8qav5 , bruma-a8qbd9 , bruma-a8qgj6 , bruma-a8qh78 , bruma-a8q143 , bruma-a0a024mej5 , bruma-a0a0k0jju9 , bruma-a0a0i9n517

Title : Comparative genomics of emerging human ehrlichiosis agents - Dunning Hotopp_2006_PLoS.Genet_2_e21
Author(s) : Dunning Hotopp JC , Lin M , Madupu R , Crabtree J , Angiuoli SV , Eisen JA , Seshadri R , Ren Q , Wu M , Utterback TR , Smith S , Lewis M , Khouri H , Zhang C , Niu H , Lin Q , Ohashi N , Zhi N , Nelson W , Brinkac LM , Dodson RJ , Rosovitz MJ , Sundaram J , Daugherty SC , Davidsen T , Durkin AS , Gwinn M , Haft DH , Selengut JD , Sullivan SA , Zafar N , Zhou L , Benahmed F , Forberger H , Halpin R , Mulligan S , Robinson J , White O , Rikihisa Y , Tettelin H
Ref : PLoS Genet , 2 :e21 , 2006
Abstract : Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.
ESTHER : Dunning Hotopp_2006_PLoS.Genet_2_e21
PubMedSearch : Dunning Hotopp_2006_PLoS.Genet_2_e21
PubMedID: 16482227
Gene_locus related to this paper: anapz-q2gj80 , anapz-q2gle9 , anapz-q2glf0 , anapz-q2gln7 , ehrch-q40iu0 , ehrch-q40jj7 , ehrcr-q2gfq9 , neosm-q2gcq8 , neosm-q2gdf2 , neosm-q2gcn8 , anapz-q2gk48 , ehrcr-q2ggj6

Title : Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition - Joardar_2005_J.Bacteriol_187_6488
Author(s) : Joardar V , Lindeberg M , Jackson RW , Selengut J , Dodson R , Brinkac LM , Daugherty SC , Deboy R , Durkin AS , Giglio MG , Madupu R , Nelson WC , Rosovitz MJ , Sullivan S , Crabtree J , Creasy T , Davidsen T , Haft DH , Zafar N , Zhou L , Halpin R , Holley T , Khouri H , Feldblyum T , White O , Fraser CM , Chatterjee AK , Cartinhour S , Schneider DJ , Mansfield J , Collmer A , Buell CR
Ref : Journal of Bacteriology , 187 :6488 , 2005
Abstract : Pseudomonas syringae pv. phaseolicola, a gram-negative bacterial plant pathogen, is the causal agent of halo blight of bean. In this study, we report on the genome sequence of P. syringae pv. phaseolicola isolate 1448A, which encodes 5,353 open reading frames (ORFs) on one circular chromosome (5,928,787 bp) and two plasmids (131,950 bp and 51,711 bp). Comparative analyses with a phylogenetically divergent pathovar, P. syringae pv. tomato DC3000, revealed a strong degree of conservation at the gene and genome levels. In total, 4,133 ORFs were identified as putative orthologs in these two pathovars using a reciprocal best-hit method, with 3,941 ORFs present in conserved, syntenic blocks. Although these two pathovars are highly similar at the physiological level, they have distinct host ranges; 1448A causes disease in beans, and DC3000 is pathogenic on tomato and Arabidopsis. Examination of the complement of ORFs encoding virulence, fitness, and survival factors revealed a substantial, but not complete, overlap between these two pathovars. Another distinguishing feature between the two pathovars is their distinctive sets of transposable elements. With access to a fifth complete pseudomonad genome sequence, we were able to identify 3,567 ORFs that likely comprise the core Pseudomonas genome and 365 ORFs that are P. syringae specific.
ESTHER : Joardar_2005_J.Bacteriol_187_6488
PubMedSearch : Joardar_2005_J.Bacteriol_187_6488
PubMedID: 16159782
Gene_locus related to this paper: pse14-q48cb3 , pse14-q48ck7 , pse14-q48cs3 , pse14-q48ct2 , pse14-q48d82 , pse14-q48da3 , pse14-q48dj9 , pse14-q48dq5 , pse14-q48e33 , pse14-q48es1 , pse14-q48f84 , pse14-q48fg2 , pse14-q48g47 , pse14-q48g51 , pse14-q48gq9 , pse14-q48h40 , pse14-q48ha4 , pse14-q48hb4 , pse14-q48he1 , pse14-q48hq0 , pse14-q48hq2 , pse14-q48ia0 , pse14-q48im0 , pse14-q48j48 , pse14-q48ji2 , pse14-q48k54 , pse14-q48k55 , pse14-q48k63 , pse14-q48kc1 , pse14-q48kt9 , pse14-q48ku0 , pse14-q48lb6 , pse14-q48lj1 , pse14-q48ln2 , pse14-q48m56 , pse14-q48mh5 , pse14-q48mq7 , pse14-q48nt0 , pse14-q48p24 , pse14-q48pi7 , pse14-q48pi8 , pse14-q48pi9 , pse14-q48pq2 , pse14-q48pq5 , psesm-METX , psesm-q87y20 , psesm-q889k3 , psesy-PIP , psesy-PSPTO0162 , psesy-PSPTO1766 , psesy-PSPTO2134 , psesy-PSPTO3135 , pseu2-q4zwv7 , psesg-e7p3i0

Title : The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease - El-Sayed_2005_Science_309_409
Author(s) : El-Sayed NM , Myler PJ , Bartholomeu DC , Nilsson D , Aggarwal G , Tran AN , Ghedin E , Worthey EA , Delcher AL , Blandin G , Westenberger SJ , Caler E , Cerqueira GC , Branche C , Haas B , Anupama A , Arner E , Aslund L , Attipoe P , Bontempi E , Bringaud F , Burton P , Cadag E , Campbell DA , Carrington M , Crabtree J , Darban H , da Silveira JF , de Jong P , Edwards K , Englund PT , Fazelina G , Feldblyum T , Ferella M , Frasch AC , Gull K , Horn D , Hou L , Huang Y , Kindlund E , Klingbeil M , Kluge S , Koo H , Lacerda D , Levin MJ , Lorenzi H , Louie T , Machado CR , McCulloch R , McKenna A , Mizuno Y , Mottram JC , Nelson S , Ochaya S , Osoegawa K , Pai G , Parsons M , Pentony M , Pettersson U , Pop M , Ramirez JL , Rinta J , Robertson L , Salzberg SL , Sanchez DO , Seyler A , Sharma R , Shetty J , Simpson AJ , Sisk E , Tammi MT , Tarleton R , Teixeira S , Van Aken S , Vogt C , Ward PN , Wickstead B , Wortman J , White O , Fraser CM , Stuart KD , Andersson B
Ref : Science , 309 :409 , 2005
Abstract : Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention.
ESTHER : El-Sayed_2005_Science_309_409
PubMedSearch : El-Sayed_2005_Science_309_409
PubMedID: 16020725
Gene_locus related to this paper: tryb2-q6h9e3 , tryb2-q6ha27 , tryb2-q38cd5 , tryb2-q38cd6 , tryb2-q38cd7 , tryb2-q38dc1 , tryb2-q38de4 , tryb2-q38ds6 , tryb2-q38dx1 , tryb2-q380z6 , tryb2-q382l4 , tryb2-q383a9 , tryb2-q386e3 , tryb2-q387r7 , tryb2-q388n1 , tryb2-q389w3 , trybr-PEPTB , trycr-q4cq28 , trycr-q4cq94 , trycr-q4cq95 , trycr-q4cq96 , trycr-q4cqq5 , trycr-q4csm0 , trycr-q4cwv3 , trycr-q4cx66 , trycr-q4cxr6 , trycr-q4cyc3 , trycr-q4cyc5 , trycr-q4cyf6 , trycr-q4czy3 , trycr-q4d1s2 , trycr-q4d2n1 , trycr-q4d3a2 , trycr-q4d3x3 , trycr-q4d3y4 , trycr-q4d6h1 , trycr-q4d8h8 , trycr-q4d8h9 , trycr-q4d8i0 , trycr-q4d786 , trycr-q4d975 , trycr-q4da08 , trycr-q4dab1 , trycr-q4dap6 , trycr-q4dap7 , trycr-q4dbm2 , trycr-q4dbn1 , trycr-q4ddw7 , trycr-q4de42 , trycr-q4dhn8 , trycr-q4dkk8 , trycr-q4dkk9 , trycr-q4dm56 , trycr-q4dp03 , trycr-q4dqa6 , trycr-q4dry8 , trycr-q4dt91 , trycr-q4dvl8 , trycr-q4dvp1 , trycr-q4dvp2 , trycr-q4dw34 , trycr-q4dwm3 , trycr-q4dy49 , trycr-q4dy82 , trycr-q4dzp6 , trycr-q4e3m8 , trycr-q4e4t5 , trycr-q4e5d1 , trycr-q4e5z2 , trycr-q6y3z8 , trycr-Q94795 , trycr-TCPO

Title : Comparative genomics of trypanosomatid parasitic protozoa - El-Sayed_2005_Science_309_404
Author(s) : El-Sayed NM , Myler PJ , Blandin G , Berriman M , Crabtree J , Aggarwal G , Caler E , Renauld H , Worthey EA , Hertz-Fowler C , Ghedin E , Peacock C , Bartholomeu DC , Haas BJ , Tran AN , Wortman JR , Alsmark UC , Angiuoli S , Anupama A , Badger J , Bringaud F , Cadag E , Carlton JM , Cerqueira GC , Creasy T , Delcher AL , Djikeng A , Embley TM , Hauser C , Ivens AC , Kummerfeld SK , Pereira-Leal JB , Nilsson D , Peterson J , Salzberg SL , Shallom J , Silva JC , Sundaram J , Westenberger S , White O , Melville SE , Donelson JE , Andersson B , Stuart KD , Hall N
Ref : Science , 309 :404 , 2005
Abstract : A comparison of gene content and genome architecture of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, three related pathogens with different life cycles and disease pathology, revealed a conserved core proteome of about 6200 genes in large syntenic polycistronic gene clusters. Many species-specific genes, especially large surface antigen families, occur at nonsyntenic chromosome-internal and subtelomeric regions. Retroelements, structural RNAs, and gene family expansion are often associated with syntenic discontinuities that-along with gene divergence, acquisition and loss, and rearrangement within the syntenic regions-have shaped the genomes of each parasite. Contrary to recent reports, our analyses reveal no evidence that these species are descended from an ancestor that contained a photosynthetic endosymbiont.
ESTHER : El-Sayed_2005_Science_309_404
PubMedSearch : El-Sayed_2005_Science_309_404
PubMedID: 16020724
Gene_locus related to this paper: tryb2-q382c1 , trycr-q4dhv2 , trycr-q4dpt2 , trycr-q4dpy4

Title : Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes - Gardner_2005_Science_309_134
Author(s) : Gardner MJ , Bishop R , Shah T , de Villiers EP , Carlton JM , Hall N , Ren Q , Paulsen IT , Pain A , Berriman M , Wilson RJ , Sato S , Ralph SA , Mann DJ , Xiong Z , Shallom SJ , Weidman J , Jiang L , Lynn J , Weaver B , Shoaibi A , Domingo AR , Wasawo D , Crabtree J , Wortman JR , Haas B , Angiuoli SV , Creasy TH , Lu C , Suh B , Silva JC , Utterback TR , Feldblyum TV , Pertea M , Allen J , Nierman WC , Taracha EL , Salzberg SL , White OR , Fitzhugh HA , Morzaria S , Venter JC , Fraser CM , Nene V
Ref : Science , 309 :134 , 2005
Abstract : We report the genome sequence of Theileria parva, an apicomplexan pathogen causing economic losses to smallholder farmers in Africa. The parasite chromosomes exhibit limited conservation of gene synteny with Plasmodium falciparum, and its plastid-like genome represents the first example where all apicoplast genes are encoded on one DNA strand. We tentatively identify proteins that facilitate parasite segregation during host cell cytokinesis and contribute to persistent infection of transformed host cells. Several biosynthetic pathways are incomplete or absent, suggesting substantial metabolic dependence on the host cell. One protein family that may generate parasite antigenic diversity is not telomere-associated.
ESTHER : Gardner_2005_Science_309_134
PubMedSearch : Gardner_2005_Science_309_134
PubMedID: 15994558
Gene_locus related to this paper: thepa-q4mzr2 , thepa-q4n0b4 , thepa-q4n2i4 , thepa-q4n4i8 , thepa-q4n5d6 , thepa-q4n5m4 , thepa-q4n006 , thepa-q4n9g7 , thepa-q4n315 , thepa-q4n349 , thepa-q4n803

Title : Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial pan-genome - Tettelin_2005_Proc.Natl.Acad.Sci.U.S.A_102_13950
Author(s) : Tettelin H , Masignani V , Cieslewicz MJ , Donati C , Medini D , Ward NL , Angiuoli SV , Crabtree J , Jones AL , Durkin AS , DeBoy RT , Davidsen TM , Mora M , Scarselli M , Margarit y Ros I , Peterson JD , Hauser CR , Sundaram JP , Nelson WC , Madupu R , Brinkac LM , Dodson RJ , Rosovitz MJ , Sullivan SA , Daugherty SC , Haft DH , Selengut J , Gwinn ML , Zhou L , Zafar N , Khouri H , Radune D , Dimitrov G , Watkins K , O'Connor KJ , Smith S , Utterback TR , White O , Rubens CE , Grandi G , Madoff LC , Kasper DL , Telford JL , Wessels MR , Rappuoli R , Fraser CM
Ref : Proc Natl Acad Sci U S A , 102 :13950 , 2005
Abstract : The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
ESTHER : Tettelin_2005_Proc.Natl.Acad.Sci.U.S.A_102_13950
PubMedSearch : Tettelin_2005_Proc.Natl.Acad.Sci.U.S.A_102_13950
PubMedID: 16172379
Gene_locus related to this paper: strag-ESTA , strag-GBS0040 , strag-GBS0107 , strag-GBS1828 , strag-pepx , strag-q3dah6 , strag-SAG0246 , strag-SAG0383 , strag-SAG0679 , strag-SAG0680 , strag-SAG0785 , strag-SAG0912 , strag-SAG1562 , strag-SAG2132

Title : The DNA sequence of human chromosome 22 - Dunham_1999_Nature_402_489
Author(s) : Dunham I , Hunt AR , Collins JE , Bruskiewich R , Beare DM , Clamp M , Smink LJ , Ainscough R , Almeida JP , Babbage AK , Bagguley C , Bailey J , Barlow KF , Bates KN , Beasley OP , Bird CP , Blakey SE , Bridgeman AM , Buck D , Burgess J , Burrill WD , Burton J , Carder C , Carter NP , Chen Y , Clark G , Clegg SM , Cobley VE , Cole CG , Collier RE , Connor R , Conroy D , Corby NR , Coville GJ , Cox AV , Davis J , Dawson E , Dhami PD , Dockree C , Dodsworth SJ , Durbin RM , Ellington AG , Evans KL , Fey JM , Fleming K , French L , Garner AA , Gilbert JGR , Goward ME , Grafham DV , Griffiths MND , Hall C , Hall RE , Hall-Tamlyn G , Heathcott RW , Ho S , Holmes S , Hunt SE , Jones MC , Kershaw J , Kimberley AM , King A , Laird GK , Langford CF , Leversha MA , Lloyd C , Lloyd DM , Martyn ID , Mashreghi-Mohammadi M , Matthews LH , Mccann OT , Mcclay J , Mclaren S , McMurray AA , Milne SA , Mortimore BJ , Odell CN , Pavitt R , Pearce AV , Pearson D , Phillimore BJCT , Phillips SH , Plumb RW , Ramsay H , Ramsey Y , Rogers L , Ross MT , Scott CE , Sehra HK , Skuce CD , Smalley S , Smith ML , Soderlund C , Spragon L , Steward CA , Sulston JE , Swann RM , Vaudin M , Wall M , Wallis JM , Whiteley MN , Willey DL , Williams L , Williams SA , Williamson H , Wilmer TE , Wilming L , Wright CL , Hubbard T , Bentley DR , Beck S , Rogers J , Shimizu N , Minoshima S , Kawasaki K , Sasaki T , Asakawa S , Kudoh J , Shintani A , Shibuya K , Yoshizaki Y , Aoki N , Mitsuyama S , Roe BA , Chen F , Chu L , Crabtree J , Deschamps S , Do A , Do T , Dorman A , Fang F , Fu Y , Hu P , Hua A , Kenton S , Lai H , Lao HI , Lewis J , Lewis S , Lin S-P , Loh P , Malaj E , Nguyen T , Pan H , Phan S , Qi S , Qian Y , Ray L , Ren Q , Shaull S , Sloan D , Song L , Wang Q , Wang Y , Wang Z , White J , Willingham D , Wu H , Yao Z , Zhan M , Zhang G , Chissoe S , Murray J , Miller N , Minx P , Fulton R , Johnson D , Bemis G , Bentley D , Bradshaw H , Bourne S , Cordes M , Du Z , Fulton L , Goela D , Graves T , Hawkins J , Hinds K , Kemp K , Latreille P , Layman D , Ozersky P , Rohlfing T , Scheet P , Walker C , Wamsley A , Wohldmann P , Pepin K , Nelson J , Korf I , Bedell JA , Hillier L , Mardis E , Waterston R , Wilson R , Emanuel BS , Shaikh T , Kurahashi H , Saitta S , Budarf ML , McDermid HE , Johnson A , Wong ACC , Morrow BE , Edelmann L , Kim UJ , Shizuya H , Simon MI , Dumanski JP , Peyrard M , Kedra D , Seroussi E , Fransson I , Tapia I , Bruder CE , O'Brien KP
Ref : Nature , 402 :489 , 1999
Abstract : Knowledge of the complete genomic DNA sequence of an organism allows a systematic approach to defining its genetic components. The genomic sequence provides access to the complete structures of all genes, including those without known function, their control elements, and, by inference, the proteins they encode, as well as all other biologically important sequences. Furthermore, the sequence is a rich and permanent source of information for the design of further biological studies of the organism and for the study of evolution through cross-species sequence comparison. The power of this approach has been amply demonstrated by the determination of the sequences of a number of microbial and model organisms. The next step is to obtain the complete sequence of the entire human genome. Here we report the sequence of the euchromatic part of human chromosome 22. The sequence obtained consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.
ESTHER : Dunham_1999_Nature_402_489
PubMedSearch : Dunham_1999_Nature_402_489
PubMedID: 10591208
Gene_locus related to this paper: human-CES5A , human-SERHL2