Vaudin M

References (7)

Title : Genome sequence, comparative analysis, and population genetics of the domestic horse - Wade_2009_Science_326_865
Author(s) : Wade CM , Giulotto E , Sigurdsson S , Zoli M , Gnerre S , Imsland F , Lear TL , Adelson DL , Bailey E , Bellone RR , Blocker H , Distl O , Edgar RC , Garber M , Leeb T , Mauceli E , MacLeod JN , Penedo MC , Raison JM , Sharpe T , Vogel J , Andersson L , Antczak DF , Biagi T , Binns MM , Chowdhary BP , Coleman SJ , Della Valle G , Fryc S , Guerin G , Hasegawa T , Hill EW , Jurka J , Kiialainen A , Lindgren G , Liu J , Magnani E , Mickelson JR , Murray J , Nergadze SG , Onofrio R , Pedroni S , Piras MF , Raudsepp T , Rocchi M , Roed KH , Ryder OA , Searle S , Skow L , Swinburne JE , Syvanen AC , Tozaki T , Valberg SJ , Vaudin M , White JR , Zody MC , Lander ES , Lindblad-Toh K
Ref : Science , 326 :865 , 2009
Abstract : We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.
ESTHER : Wade_2009_Science_326_865
PubMedSearch : Wade_2009_Science_326_865
PubMedID: 19892987
Gene_locus related to this paper: horse-1plip , horse-2plrp , horse-ACHE , horse-BCHE , horse-f6pri5 , horse-f6qlk6 , horse-f6qsc5 , horse-f6r958 , horse-f6sfg0 , horse-f6uif6 , horse-f6un85 , horse-f6vxp7 , horse-f6wfs9 , horse-f6wzv8 , horse-f6x0i7 , horse-f6x5e5 , horse-f6zmg7 , horse-f7afw6 , horse-f7agv7 , horse-f7bj10 , horse-f7bk45 , horse-f7bvl6 , horse-f7c7a8 , horse-f7cdt1 , horse-f7cxj0 , horse-f6ut17 , horse-f6svq9 , horse-f6xgj6 , horse-f6s101 , horse-f6wfa7 , horse-f7cpx3 , horse-f7adj7 , horse-f6r609 , horse-f6y0j2 , horse-f6zvb2 , horse-f7e4g0 , horse-f6ti02 , horse-f6re01 , horse-f6xmp6 , horse-f6vts1 , horse-f6quf7 , horse-f6tn81 , horse-f7bm46 , horse-f6q1u3 , horse-f6zna7 , horse-f6q208 , horse-f7cuh0 , horse-f6tq73 , horse-f6xa70 , horse-f6qj19 , horse-f6wgf3 , horse-f7d8t6 , horse-f6ul42 , horse-f7am73 , horse-f7dme2

Title : The DNA sequence and biological annotation of human chromosome 1 - Gregory_2006_Nature_441_315
Author(s) : Gregory SG , Barlow KF , McLay KE , Kaul R , Swarbreck D , Dunham A , Scott CE , Howe KL , Woodfine K , Spencer CC , Jones MC , Gillson C , Searle S , Zhou Y , Kokocinski F , McDonald L , Evans R , Phillips K , Atkinson A , Cooper R , Jones C , Hall RE , Andrews TD , Lloyd C , Ainscough R , Almeida JP , Ambrose KD , Anderson F , Andrew RW , Ashwell RI , Aubin K , Babbage AK , Bagguley CL , Bailey J , Beasley H , Bethel G , Bird CP , Bray-Allen S , Brown JY , Brown AJ , Buckley D , Burton J , Bye J , Carder C , Chapman JC , Clark SY , Clarke G , Clee C , Cobley V , Collier RE , Corby N , Coville GJ , Davies J , Deadman R , Dunn M , Earthrowl M , Ellington AG , Errington H , Frankish A , Frankland J , French L , Garner P , Garnett J , Gay L , Ghori MR , Gibson R , Gilby LM , Gillett W , Glithero RJ , Grafham DV , Griffiths C , Griffiths-Jones S , Grocock R , Hammond S , Harrison ES , Hart E , Haugen E , Heath PD , Holmes S , Holt K , Howden PJ , Hunt AR , Hunt SE , Hunter G , Isherwood J , James R , Johnson C , Johnson D , Joy A , Kay M , Kershaw JK , Kibukawa M , Kimberley AM , King A , Knights AJ , Lad H , Laird G , Lawlor S , Leongamornlert DA , Lloyd DM , Loveland J , Lovell J , Lush MJ , Lyne R , Martin S , Mashreghi-Mohammadi M , Matthews L , Matthews NS , Mclaren S , Milne S , Mistry S , Moore MJ , Nickerson T , O'Dell CN , Oliver K , Palmeiri A , Palmer SA , Parker A , Patel D , Pearce AV , Peck AI , Pelan S , Phelps K , Phillimore BJ , Plumb R , Rajan J , Raymond C , Rouse G , Saenphimmachak C , Sehra HK , Sheridan E , Shownkeen R , Sims S , Skuce CD , Smith M , Steward C , Subramanian S , Sycamore N , Tracey A , Tromans A , Van Helmond Z , Wall M , Wallis JM , White S , Whitehead SL , Wilkinson JE , Willey DL , Williams H , Wilming L , Wray PW , Wu Z , Coulson A , Vaudin M , Sulston JE , Durbin R , Hubbard T , Wooster R , Dunham I , Carter NP , McVean G , Ross MT , Harrow J , Olson MV , Beck S , Rogers J , Bentley DR , Banerjee R , Bryant SP , Burford DC , Burrill WD , Clegg SM , Dhami P , Dovey O , Faulkner LM , Gribble SM , Langford CF , Pandian RD , Porter KM , Prigmore E
Ref : Nature , 441 :315 , 2006
Abstract : The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.
ESTHER : Gregory_2006_Nature_441_315
PubMedSearch : Gregory_2006_Nature_441_315
PubMedID: 16710414
Gene_locus related to this paper: human-LYPLAL1 , human-PPT1 , human-TMCO4 , human-TMEM53

Title : Evolution of sensory complexity recorded in a myxobacterial genome - Goldman_2006_Proc.Natl.Acad.Sci.U.S.A_103_15200
Author(s) : Goldman BS , Nierman WC , Kaiser D , Slater SC , Durkin AS , Eisen JA , Ronning CM , Barbazuk WB , Blanchard M , Field C , Halling C , Hinkle G , Iartchuk O , Kim HS , Mackenzie C , Madupu R , Miller N , Shvartsbeyn A , Sullivan SA , Vaudin M , Wiegand R , Kaplan HB
Ref : Proc Natl Acad Sci U S A , 103 :15200 , 2006
Abstract : Myxobacteria are single-celled, but social, eubacterial predators. Upon starvation they build multicellular fruiting bodies using a developmental program that progressively changes the pattern of cell movement and the repertoire of genes expressed. Development terminates with spore differentiation and is coordinated by both diffusible and cell-bound signals. The growth and development of Myxococcus xanthus is regulated by the integration of multiple signals from outside the cells with physiological signals from within. A collection of M. xanthus cells behaves, in many respects, like a multicellular organism. For these reasons M. xanthus offers unparalleled access to a regulatory network that controls development and that organizes cell movement on surfaces. The genome of M. xanthus is large (9.14 Mb), considerably larger than the other sequenced delta-proteobacteria. We suggest that gene duplication and divergence were major contributors to genomic expansion from its progenitor. More than 1,500 duplications specific to the myxobacterial lineage were identified, representing >15% of the total genes. Genes were not duplicated at random; rather, genes for cell-cell signaling, small molecule sensing, and integrative transcription control were amplified selectively. Families of genes encoding the production of secondary metabolites are overrepresented in the genome but may have been received by horizontal gene transfer and are likely to be important for predation.
ESTHER : Goldman_2006_Proc.Natl.Acad.Sci.U.S.A_103_15200
PubMedSearch : Goldman_2006_Proc.Natl.Acad.Sci.U.S.A_103_15200
PubMedID: 17015832
Gene_locus related to this paper: myxxa-q4vps9 , myxxa-Q8VQX5 , myxxa-Q84FB1 , myxxa-Q84FE8 , myxxd-q1cvh4 , myxxd-q1cvn3 , myxxd-q1cvz5 , myxxd-q1cw78 , myxxd-q1cwf6 , myxxd-q1cwl7 , myxxd-q1cwt9 , myxxd-q1cxe9 , myxxd-q1cxf0 , myxxd-q1cxj1 , myxxd-q1cze1 , myxxd-q1czi2 , myxxd-q1czk0 , myxxd-q1czr4 , myxxd-q1czy4 , myxxd-q1d0l8 , myxxd-q1d0y6 , myxxd-q1d1c9 , myxxd-q1d2h6 , myxxd-q1d2h8 , myxxd-q1d2m8 , myxxd-q1d2n2 , myxxd-q1d3m2 , myxxd-q1d5c1 , myxxd-q1d6k0 , myxxd-q1d6z6 , myxxd-q1d8v0 , myxxd-q1d145 , myxxd-q1d167 , myxxd-q1d458 , myxxd-q1d796 , myxxd-q1da49 , myxxd-q1dbk1 , myxxd-q1dbn0 , myxxd-q1dbn1 , myxxd-q1dbn9 , myxxd-q1dbp0 , myxxd-q1dbs7 , myxxd-q1dcd0 , myxxd-q1dcj1 , myxxd-q1ddx1 , myxxd-q1ddx8 , myxxd-q1de36 , myxxd-q1det8 , myxxd-q1dey9 , myxxd-q1df33 , myxxd-q1dfs1 , myxxd-q1dfu0 , myxxd-q1dfy2 , myxxd-q1ddu9 , myxxd-q1d1h0 , myxxd-q1cwu7 , myxxd-q1d790

Title : The DNA sequence of the human X chromosome - Ross_2005_Nature_434_325
Author(s) : Ross MT , Grafham DV , Coffey AJ , Scherer S , McLay K , Muzny D , Platzer M , Howell GR , Burrows C , Bird CP , Frankish A , Lovell FL , Howe KL , Ashurst JL , Fulton RS , Sudbrak R , Wen G , Jones MC , Hurles ME , Andrews TD , Scott CE , Searle S , Ramser J , Whittaker A , Deadman R , Carter NP , Hunt SE , Chen R , Cree A , Gunaratne P , Havlak P , Hodgson A , Metzker ML , Richards S , Scott G , Steffen D , Sodergren E , Wheeler DA , Worley KC , Ainscough R , Ambrose KD , Ansari-Lari MA , Aradhya S , Ashwell RI , Babbage AK , Bagguley CL , Ballabio A , Banerjee R , Barker GE , Barlow KF , Barrett IP , Bates KN , Beare DM , Beasley H , Beasley O , Beck A , Bethel G , Blechschmidt K , Brady N , Bray-Allen S , Bridgeman AM , Brown AJ , Brown MJ , Bonnin D , Bruford EA , Buhay C , Burch P , Burford D , Burgess J , Burrill W , Burton J , Bye JM , Carder C , Carrel L , Chako J , Chapman JC , Chavez D , Chen E , Chen G , Chen Y , Chen Z , Chinault C , Ciccodicola A , Clark SY , Clarke G , Clee CM , Clegg S , Clerc-Blankenburg K , Clifford K , Cobley V , Cole CG , Conquer JS , Corby N , Connor RE , David R , Davies J , Davis C , Davis J , Delgado O , Deshazo D , Dhami P , Ding Y , Dinh H , Dodsworth S , Draper H , Dugan-Rocha S , Dunham A , Dunn M , Durbin KJ , Dutta I , Eades T , Ellwood M , Emery-Cohen A , Errington H , Evans KL , Faulkner L , Francis F , Frankland J , Fraser AE , Galgoczy P , Gilbert J , Gill R , Glockner G , Gregory SG , Gribble S , Griffiths C , Grocock R , Gu Y , Gwilliam R , Hamilton C , Hart EA , Hawes A , Heath PD , Heitmann K , Hennig S , Hernandez J , Hinzmann B , Ho S , Hoffs M , Howden PJ , Huckle EJ , Hume J , Hunt PJ , Hunt AR , Isherwood J , Jacob L , Johnson D , Jones S , de Jong PJ , Joseph SS , Keenan S , Kelly S , Kershaw JK , Khan Z , Kioschis P , Klages S , Knights AJ , Kosiura A , Kovar-Smith C , Laird GK , Langford C , Lawlor S , Leversha M , Lewis L , Liu W , Lloyd C , Lloyd DM , Loulseged H , Loveland JE , Lovell JD , Lozado R , Lu J , Lyne R , Ma J , Maheshwari M , Matthews LH , McDowall J , Mclaren S , McMurray A , Meidl P , Meitinger T , Milne S , Miner G , Mistry SL , Morgan M , Morris S , Muller I , Mullikin JC , Nguyen N , Nordsiek G , Nyakatura G , O'Dell CN , Okwuonu G , Palmer S , Pandian R , Parker D , Parrish J , Pasternak S , Patel D , Pearce AV , Pearson DM , Pelan SE , Perez L , Porter KM , Ramsey Y , Reichwald K , Rhodes S , Ridler KA , Schlessinger D , Schueler MG , Sehra HK , Shaw-Smith C , Shen H , Sheridan EM , Shownkeen R , Skuce CD , Smith ML , Sotheran EC , Steingruber HE , Steward CA , Storey R , Swann RM , Swarbreck D , Tabor PE , Taudien S , Taylor T , Teague B , Thomas K , Thorpe A , Timms K , Tracey A , Trevanion S , Tromans AC , d'Urso M , Verduzco D , Villasana D , Waldron L , Wall M , Wang Q , Warren J , Warry GL , Wei X , West A , Whitehead SL , Whiteley MN , Wilkinson JE , Willey DL , Williams G , Williams L , Williamson A , Williamson H , Wilming L , Woodmansey RL , Wray PW , Yen J , Zhang J , Zhou J , Zoghbi H , Zorilla S , Buck D , Reinhardt R , Poustka A , Rosenthal A , Lehrach H , Meindl A , Minx PJ , Hillier LW , Willard HF , Wilson RK , Waterston RH , Rice CM , Vaudin M , Coulson A , Nelson DL , Weinstock G , Sulston JE , Durbin R , Hubbard T , Gibbs RA , Beck S , Rogers J , Bentley DR
Ref : Nature , 434 :325 , 2005
Abstract : The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.
ESTHER : Ross_2005_Nature_434_325
PubMedSearch : Ross_2005_Nature_434_325
PubMedID: 15772651
Gene_locus related to this paper: human-NLGN3 , human-NLGN4X

Title : The DNA sequence and comparative analysis of human chromosome 20 - Deloukas_2001_Nature_414_865
Author(s) : Deloukas P , Matthews LH , Ashurst J , Burton J , Gilbert JG , Jones M , Stavrides G , Almeida JP , Babbage AK , Bagguley CL , Bailey J , Barlow KF , Bates KN , Beard LM , Beare DM , Beasley OP , Bird CP , Blakey SE , Bridgeman AM , Brown AJ , Buck D , Burrill W , Butler AP , Carder C , Carter NP , Chapman JC , Clamp M , Clark G , Clark LN , Clark SY , Clee CM , Clegg S , Cobley VE , Collier RE , Connor R , Corby NR , Coulson A , Coville GJ , Deadman R , Dhami P , Dunn M , Ellington AG , Frankland JA , Fraser A , French L , Garner P , Grafham DV , Griffiths C , Griffiths MN , Gwilliam R , Hall RE , Hammond S , Harley JL , Heath PD , Ho S , Holden JL , Howden PJ , Huckle E , Hunt AR , Hunt SE , Jekosch K , Johnson CM , Johnson D , Kay MP , Kimberley AM , King A , Knights A , Laird GK , Lawlor S , Lehvaslaiho MH , Leversha M , Lloyd C , Lloyd DM , Lovell JD , Marsh VL , Martin SL , McConnachie LJ , McLay K , McMurray AA , Milne S , Mistry D , Moore MJ , Mullikin JC , Nickerson T , Oliver K , Parker A , Patel R , Pearce TA , Peck AI , Phillimore BJ , Prathalingam SR , Plumb RW , Ramsay H , Rice CM , Ross MT , Scott CE , Sehra HK , Shownkeen R , Sims S , Skuce CD , Smith ML , Soderlund C , Steward CA , Sulston JE , Swann M , Sycamore N , Taylor R , Tee L , Thomas DW , Thorpe A , Tracey A , Tromans AC , Vaudin M , Wall M , Wallis JM , Whitehead SL , Whittaker P , Willey DL , Williams L , Williams SA , Wilming L , Wray PW , Hubbard T , Durbin RM , Bentley DR , Beck S , Rogers J
Ref : Nature , 414 :865 , 2001
Abstract : The finished sequence of human chromosome 20 comprises 59,187,298 base pairs (bp) and represents 99.4% of the euchromatic DNA. A single contig of 26 megabases (Mb) spans the entire short arm, and five contigs separated by gaps totalling 320 kb span the long arm of this metacentric chromosome. An additional 234,339 bp of sequence has been determined within the pericentromeric region of the long arm. We annotated 727 genes and 168 pseudogenes in the sequence. About 64% of these genes have a 5' and a 3' untranslated region and a complete open reading frame. Comparative analysis of the sequence of chromosome 20 to whole-genome shotgun-sequence data of two other vertebrates, the mouse Mus musculus and the puffer fish Tetraodon nigroviridis, provides an independent measure of the efficiency of gene annotation, and indicates that this analysis may account for more than 95% of all coding exons and almost all genes.
ESTHER : Deloukas_2001_Nature_414_865
PubMedSearch : Deloukas_2001_Nature_414_865
PubMedID: 11780052
Gene_locus related to this paper: human-ABHD12 , human-ABHD16B , human-CTSA , human-NDRG3 , human-RBBP9

Title : Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58 - Goodner_2001_Science_294_2323
Author(s) : Goodner B , Hinkle G , Gattung S , Miller N , Blanchard M , Qurollo B , Goldman BS , Cao Y , Askenazi M , Halling C , Mullin L , Houmiel K , Gordon J , Vaudin M , Iartchouk O , Epp A , Liu F , Wollam C , Allinger M , Doughty D , Scott C , Lappas C , Markelz B , Flanagan C , Crowell C , Gurson J , Lomo C , Sear C , Strub G , Cielo C , Slater S
Ref : Science , 294 :2323 , 2001
Abstract : Agrobacterium tumefaciens is a plant pathogen capable of transferring a defined segment of DNA to a host plant, generating a gall tumor. Replacing the transferred tumor-inducing genes with exogenous DNA allows the introduction of any desired gene into the plant. Thus, A. tumefaciens has been critical for the development of modern plant genetics and agricultural biotechnology. Here we describe the genome of A. tumefaciens strain C58, which has an unusual structure consisting of one circular and one linear chromosome. We discuss genome architecture and evolution and additional genes potentially involved in virulence and metabolic parasitism of host plants.
ESTHER : Goodner_2001_Science_294_2323
PubMedSearch : Goodner_2001_Science_294_2323
PubMedID: 11743194
Gene_locus related to this paper: agrt5-a9cf94 , agrt5-a9cfa9 , agrt5-a9cfs8 , agrt5-a9cfu7 , agrt5-a9cie7 , agrt5-a9cj11 , agrt5-a9cjp2 , agrt5-a9cki2 , agrt5-a9ckr2 , agrt5-a9ckt2 , agrt5-a9cle4 , agrt5-a9clq8 , agrt5-a9clq9 , agrt5-q7cx24 , agrt5-q7d1j0 , agrt5-q7d1j3 , agrt5-q7d3m5 , agrt5-q7d3t6 , agrt5-y5261 , agrtu-ACVB , agrtu-ATTS , agrtu-ATU0253 , agrtu-ATU0403 , agrtu-ATU0841 , agrtu-ATU1045 , agrtu-ATU1102 , agrtu-ATU1572 , agrtu-ATU1617 , agrtu-ATU1826 , agrtu-ATU1842 , agrtu-ATU2061 , agrtu-ATU2126 , agrtu-ATU2171 , agrtu-ATU2409 , agrtu-ATU2452 , agrtu-ATU2481 , agrtu-ATU2497 , agrtu-ATU2576 , agrtu-ATU3428 , agrtu-ATU3651 , agrtu-ATU3652 , agrtu-ATU4238 , agrtu-ATU5190 , agrtu-ATU5193 , agrtu-ATU5275 , agrtu-ATU5296 , agrtu-ATU5348 , agrtu-ATU5389 , agrtu-ATU5446 , agrtu-ATU5495 , agrtu-CPO , agrtu-DHAA , agrtu-DLHH , agrtu-EPHA , agrtu-GRST , agrtu-PCA , agrtu-PCAD , agrtu-PHBC , agrtu-PTRB , agrt5-a9cji8

Title : The DNA sequence of human chromosome 22 - Dunham_1999_Nature_402_489
Author(s) : Dunham I , Hunt AR , Collins JE , Bruskiewich R , Beare DM , Clamp M , Smink LJ , Ainscough R , Almeida JP , Babbage AK , Bagguley C , Bailey J , Barlow KF , Bates KN , Beasley OP , Bird CP , Blakey SE , Bridgeman AM , Buck D , Burgess J , Burrill WD , Burton J , Carder C , Carter NP , Chen Y , Clark G , Clegg SM , Cobley VE , Cole CG , Collier RE , Connor R , Conroy D , Corby NR , Coville GJ , Cox AV , Davis J , Dawson E , Dhami PD , Dockree C , Dodsworth SJ , Durbin RM , Ellington AG , Evans KL , Fey JM , Fleming K , French L , Garner AA , Gilbert JGR , Goward ME , Grafham DV , Griffiths MND , Hall C , Hall RE , Hall-Tamlyn G , Heathcott RW , Ho S , Holmes S , Hunt SE , Jones MC , Kershaw J , Kimberley AM , King A , Laird GK , Langford CF , Leversha MA , Lloyd C , Lloyd DM , Martyn ID , Mashreghi-Mohammadi M , Matthews LH , Mccann OT , Mcclay J , Mclaren S , McMurray AA , Milne SA , Mortimore BJ , Odell CN , Pavitt R , Pearce AV , Pearson D , Phillimore BJCT , Phillips SH , Plumb RW , Ramsay H , Ramsey Y , Rogers L , Ross MT , Scott CE , Sehra HK , Skuce CD , Smalley S , Smith ML , Soderlund C , Spragon L , Steward CA , Sulston JE , Swann RM , Vaudin M , Wall M , Wallis JM , Whiteley MN , Willey DL , Williams L , Williams SA , Williamson H , Wilmer TE , Wilming L , Wright CL , Hubbard T , Bentley DR , Beck S , Rogers J , Shimizu N , Minoshima S , Kawasaki K , Sasaki T , Asakawa S , Kudoh J , Shintani A , Shibuya K , Yoshizaki Y , Aoki N , Mitsuyama S , Roe BA , Chen F , Chu L , Crabtree J , Deschamps S , Do A , Do T , Dorman A , Fang F , Fu Y , Hu P , Hua A , Kenton S , Lai H , Lao HI , Lewis J , Lewis S , Lin S-P , Loh P , Malaj E , Nguyen T , Pan H , Phan S , Qi S , Qian Y , Ray L , Ren Q , Shaull S , Sloan D , Song L , Wang Q , Wang Y , Wang Z , White J , Willingham D , Wu H , Yao Z , Zhan M , Zhang G , Chissoe S , Murray J , Miller N , Minx P , Fulton R , Johnson D , Bemis G , Bentley D , Bradshaw H , Bourne S , Cordes M , Du Z , Fulton L , Goela D , Graves T , Hawkins J , Hinds K , Kemp K , Latreille P , Layman D , Ozersky P , Rohlfing T , Scheet P , Walker C , Wamsley A , Wohldmann P , Pepin K , Nelson J , Korf I , Bedell JA , Hillier L , Mardis E , Waterston R , Wilson R , Emanuel BS , Shaikh T , Kurahashi H , Saitta S , Budarf ML , McDermid HE , Johnson A , Wong ACC , Morrow BE , Edelmann L , Kim UJ , Shizuya H , Simon MI , Dumanski JP , Peyrard M , Kedra D , Seroussi E , Fransson I , Tapia I , Bruder CE , O'Brien KP
Ref : Nature , 402 :489 , 1999
Abstract : Knowledge of the complete genomic DNA sequence of an organism allows a systematic approach to defining its genetic components. The genomic sequence provides access to the complete structures of all genes, including those without known function, their control elements, and, by inference, the proteins they encode, as well as all other biologically important sequences. Furthermore, the sequence is a rich and permanent source of information for the design of further biological studies of the organism and for the study of evolution through cross-species sequence comparison. The power of this approach has been amply demonstrated by the determination of the sequences of a number of microbial and model organisms. The next step is to obtain the complete sequence of the entire human genome. Here we report the sequence of the euchromatic part of human chromosome 22. The sequence obtained consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.
ESTHER : Dunham_1999_Nature_402_489
PubMedSearch : Dunham_1999_Nature_402_489
PubMedID: 10591208
Gene_locus related to this paper: human-CES5A , human-SERHL2