Rogers J

References (27)

Title : Interspecific and intraspecific venom enzymatic variation among cobras (Naja sp. and Ophiophagus hannah) - Modahl_2020_Comp.Biochem.Physiol.C.Toxicol.Pharmacol_232_108743
Author(s) : Modahl CM , Roointan A , Rogers J , Currier K , Mackessy SP
Ref : Comparative Biochemistry & Physiology C Toxicol Pharmacol , 232 :108743 , 2020
Abstract : The genera Ophiophagus and Naja comprise part of a clade of snakes referred to as cobras, dangerously venomous front-fanged snakes in the family Elapidae responsible for significant human mortality and morbidity throughout Asia and Africa. We evaluated venom enzyme variation for eleven cobra species and three N. kaouthia populations using SDS-PAGE venom fingerprinting and numerous enzyme assays. Acetylcholinesterase and PLA2 activities were the most variable between species, and PLA2 activity was significantly different between Malaysian and Thailand N. kaouthia populations. Venom metalloproteinase activity was low and significantly different among most species, but levels were identical for N. kaouthia populations; minor variation in venom L-amino acid oxidase and phosphodiesterase activities were seen between cobra species. Naja siamensis venom lacked the alpha-fibrinogenolytic activity common to other cobra venoms. In addition, venom from N. siamensis had no detectable metalloproteinase activity and exhibited an SDS-PAGE profile with reduced abundance of higher mass proteins. Venom profiles from spitting cobras (N. siamensis, N. pallida, and N. mossambica) exhibited similar reductions in higher mass proteins, suggesting the evolution of venoms of reduced complexity and decreased enzymatic activity among spitting cobras. Generally, the venom proteomes of cobras show highly abundant three-finger toxin diversity, followed by large quantities of PLA2s. However, PLA2 bands and activity were very reduced for N. haje, N. annulifera and N. nivea. Venom compositionalenzy analysis provides insight into the evolution, diversification and distribution of different venom phenotypes that complements venomic data, and this information is critical for the development of effective antivenoms and snakebite treatment.
ESTHER : Modahl_2020_Comp.Biochem.Physiol.C.Toxicol.Pharmacol_232_108743
PubMedSearch : Modahl_2020_Comp.Biochem.Physiol.C.Toxicol.Pharmacol_232_108743
PubMedID: 32194156

Title : Structural and functional partitioning of bread wheat chromosome 3B - Choulet_2014_Science_345_1249721
Author(s) : Choulet F , Alberti A , Theil S , Glover N , Barbe V , Daron J , Pingault L , Sourdille P , Couloux A , Paux E , Leroy P , Mangenot S , Guilhot N , Le Gouis J , Balfourier F , Alaux M , Jamilloux V , Poulain J , Durand C , Bellec A , Gaspin C , Safar J , Dolezel J , Rogers J , Vandepoele K , Aury JM , Mayer K , Berges H , Quesneville H , Wincker P , Feuillet C
Ref : Science , 345 :1249721 , 2014
Abstract : We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits.
ESTHER : Choulet_2014_Science_345_1249721
PubMedSearch : Choulet_2014_Science_345_1249721
PubMedID: 25035497
Gene_locus related to this paper: wheat-a0a080yuw6 , wheat-w5d1z6 , wheat-a0a077rex4 , wheat-a0a077s1q2

Title : The zebrafish reference genome sequence and its relationship to the human genome - Howe_2013_Nature_496_498
Author(s) : Howe K , Clark MD , Torroja CF , Torrance J , Berthelot C , Muffato M , Collins JE , Humphray S , McLaren K , Matthews L , Mclaren S , Sealy I , Caccamo M , Churcher C , Scott C , Barrett JC , Koch R , Rauch GJ , White S , Chow W , Kilian B , Quintais LT , Guerra-Assuncao JA , Zhou Y , Gu Y , Yen J , Vogel JH , Eyre T , Redmond S , Banerjee R , Chi J , Fu B , Langley E , Maguire SF , Laird GK , Lloyd D , Kenyon E , Donaldson S , Sehra H , Almeida-King J , Loveland J , Trevanion S , Jones M , Quail M , Willey D , Hunt A , Burton J , Sims S , McLay K , Plumb B , Davis J , Clee C , Oliver K , Clark R , Riddle C , Elliot D , Threadgold G , Harden G , Ware D , Begum S , Mortimore B , Kerry G , Heath P , Phillimore B , Tracey A , Corby N , Dunn M , Johnson C , Wood J , Clark S , Pelan S , Griffiths G , Smith M , Glithero R , Howden P , Barker N , Lloyd C , Stevens C , Harley J , Holt K , Panagiotidis G , Lovell J , Beasley H , Henderson C , Gordon D , Auger K , Wright D , Collins J , Raisen C , Dyer L , Leung K , Robertson L , Ambridge K , Leongamornlert D , McGuire S , Gilderthorp R , Griffiths C , Manthravadi D , Nichol S , Barker G , Whitehead S , Kay M , Brown J , Murnane C , Gray E , Humphries M , Sycamore N , Barker D , Saunders D , Wallis J , Babbage A , Hammond S , Mashreghi-Mohammadi M , Barr L , Martin S , Wray P , Ellington A , Matthews N , Ellwood M , Woodmansey R , Clark G , Cooper J , Tromans A , Grafham D , Skuce C , Pandian R , Andrews R , Harrison E , Kimberley A , Garnett J , Fosker N , Hall R , Garner P , Kelly D , Bird C , Palmer S , Gehring I , Berger A , Dooley CM , Ersan-Urun Z , Eser C , Geiger H , Geisler M , Karotki L , Kirn A , Konantz J , Konantz M , Oberlander M , Rudolph-Geiger S , Teucke M , Lanz C , Raddatz G , Osoegawa K , Zhu B , Rapp A , Widaa S , Langford C , Yang F , Schuster SC , Carter NP , Harrow J , Ning Z , Herrero J , Searle SM , Enright A , Geisler R , Plasterk RH , Lee C , Westerfield M , de Jong PJ , Zon LI , Postlethwait JH , Nusslein-Volhard C , Hubbard TJ , Roest Crollius H , Rogers J , Stemple DL
Ref : Nature , 496 :498 , 2013
Abstract : Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
ESTHER : Howe_2013_Nature_496_498
PubMedSearch : Howe_2013_Nature_496_498
PubMedID: 23594743
Gene_locus related to this paper: danre-1neur , danre-ABHD10b , danre-a9jrf7 , danre-d2x2g3 , danre-e7ezq9 , danre-e7ff77 , danre-ndr3 , danre-nlgn4a , danre-q1mti5 , danre-q6nyz4 , danre-q6p2u2 , danre-q7t359 , danre-q08c93 , danre-A2BGU9 , danre-f1q676 , danre-e7f0z8 , danre-e7ez27 , danre-e7f2w1 , danre-f1qid7 , danre-a0a0g2kru2 , danre-f1qla7 , danre-a9jr90 , danre-e7f070 , danre-f172a , danre-e7fb35 , danre-a7mbu9 , danre-f1qtr2

Title : Insights into hominid evolution from the gorilla genome sequence - Scally_2012_Nature_483_169
Author(s) : Scally A , Dutheil JY , Hillier LW , Jordan GE , Goodhead I , Herrero J , Hobolth A , Lappalainen T , Mailund T , Marques-Bonet T , McCarthy S , Montgomery SH , Schwalie PC , Tang YA , Ward MC , Xue Y , Yngvadottir B , Alkan C , Andersen LN , Ayub Q , Ball EV , Beal K , Bradley BJ , Chen Y , Clee CM , Fitzgerald S , Graves TA , Gu Y , Heath P , Heger A , Karakoc E , Kolb-Kokocinski A , Laird GK , Lunter G , Meader S , Mort M , Mullikin JC , Munch K , O'Connor TD , Phillips AD , Prado-Martinez J , Rogers AS , Sajjadian S , Schmidt D , Shaw K , Simpson JT , Stenson PD , Turner DJ , Vigilant L , Vilella AJ , Whitener W , Zhu B , Cooper DN , de Jong P , Dermitzakis ET , Eichler EE , Flicek P , Goldman N , Mundy NI , Ning Z , Odom DT , Ponting CP , Quail MA , Ryder OA , Searle SM , Warren WC , Wilson RK , Schierup MH , Rogers J , Tyler-Smith C , Durbin R
Ref : Nature , 483 :169 , 2012
Abstract : Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.
ESTHER : Scally_2012_Nature_483_169
PubMedSearch : Scally_2012_Nature_483_169
PubMedID: 22398555
Gene_locus related to this paper: gorgo-g3qfr8 , gorgo-g3qgi3 , gorgo-g3r1s1 , gorgo-g3r9p9 , gorgo-a0a2i2zrx6 , gorgo-g3re16 , gorgo-g3s122 , gorgo-a0a2i2y3x8

Title : The Medicago genome provides insight into the evolution of rhizobial symbioses - Young_2011_Nature_480_520
Author(s) : Young ND , Debelle F , Oldroyd GE , Geurts R , Cannon SB , Udvardi MK , Benedito VA , Mayer KF , Gouzy J , Schoof H , Van de Peer Y , Proost S , Cook DR , Meyers BC , Spannagl M , Cheung F , De Mita S , Krishnakumar V , Gundlach H , Zhou S , Mudge J , Bharti AK , Murray JD , Naoumkina MA , Rosen B , Silverstein KA , Tang H , Rombauts S , Zhao PX , Zhou P , Barbe V , Bardou P , Bechner M , Bellec A , Berger A , Berges H , Bidwell S , Bisseling T , Choisne N , Couloux A , Denny R , Deshpande S , Dai X , Doyle JJ , Dudez AM , Farmer AD , Fouteau S , Franken C , Gibelin C , Gish J , Goldstein S , Gonzalez AJ , Green PJ , Hallab A , Hartog M , Hua A , Humphray SJ , Jeong DH , Jing Y , Jocker A , Kenton SM , Kim DJ , Klee K , Lai H , Lang C , Lin S , Macmil SL , Magdelenat G , Matthews L , McCorrison J , Monaghan EL , Mun JH , Najar FZ , Nicholson C , Noirot C , O'Bleness M , Paule CR , Poulain J , Prion F , Qin B , Qu C , Retzel EF , Riddle C , Sallet E , Samain S , Samson N , Sanders I , Saurat O , Scarpelli C , Schiex T , Segurens B , Severin AJ , Sherrier DJ , Shi R , Sims S , Singer SR , Sinharoy S , Sterck L , Viollet A , Wang BB , Wang K , Wang M , Wang X , Warfsmann J , Weissenbach J , White DD , White JD , Wiley GB , Wincker P , Xing Y , Yang L , Yao Z , Ying F , Zhai J , Zhou L , Zuber A , Denarie J , Dixon RA , May GD , Schwartz DC , Rogers J , Quetier F , Town CD , Roe BA
Ref : Nature , 480 :520 , 2011
Abstract : Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing approximately 94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.
ESTHER : Young_2011_Nature_480_520
PubMedSearch : Young_2011_Nature_480_520
PubMedID: 22089132
Gene_locus related to this paper: medtr-b7fki4 , medtr-b7fmi1 , medtr-g7itl1 , medtr-g7iu67 , medtr-g7izm0 , medtr-g7j641 , medtr-g7jtf8 , medtr-g7jtg2 , medtr-g7jtg4 , medtr-g7kem3 , medtr-g7kml3 , medtr-g7ksx5 , medtr-g7leb3 , medtr-q1s5d8 , medtr-q1s9m3 , medtr-q1t171 , medtr-g7k9e1 , medtr-g7k9e3 , medtr-g7k9e5 , medtr-g7k9e8 , medtr-g7k9e9 , medtr-g7lbp2 , medtr-g7lch3 , medtr-g7ib94 , medtr-g7ljk8 , medtr-g7i6w5 , medtr-g7kvg4 , medtr-g7iam1 , medtr-g7iam3 , medtr-g7l754 , medtr-g7jr41 , medtr-g7l4f5 , medtr-g7l755 , medtr-a0a072vyl4 , medtr-g7jwk8 , medtr-a0a072vhg0 , medtr-a0a072vrv9 , medtr-g7kmk5 , medtr-a0a072uuf6 , medtr-a0a072urp3 , medtr-g7zzc3 , medtr-g7ie19 , medtr-g7kst7 , medtr-a0a072u5k5 , medtr-a0a072v056 , medtr-scp1 , medtr-g7kyn0 , medtr-g7inw6 , medtr-g7j3q3

Title : Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome - Baxter_2010_Science_330_1549
Author(s) : Baxter L , Tripathy S , Ishaque N , Boot N , Cabral A , Kemen E , Thines M , Ah-Fong A , Anderson R , Badejoko W , Bittner-Eddy P , Boore JL , Chibucos MC , Coates M , Dehal P , Delehaunty K , Dong S , Downton P , Dumas B , Fabro G , Fronick C , Fuerstenberg SI , Fulton L , Gaulin E , Govers F , Hughes L , Humphray S , Jiang RH , Judelson H , Kamoun S , Kyung K , Meijer H , Minx P , Morris P , Nelson J , Phuntumart V , Qutob D , Rehmany A , Rougon-Cardoso A , Ryden P , Torto-Alalibo T , Studholme D , Wang Y , Win J , Wood J , Clifton SW , Rogers J , Van den Ackerveken G , Jones JD , McDowell JM , Beynon J , Tyler BM
Ref : Science , 330 :1549 , 2010
Abstract : Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.
ESTHER : Baxter_2010_Science_330_1549
PubMedSearch : Baxter_2010_Science_330_1549
PubMedID: 21148394
Gene_locus related to this paper: hyaae-m4b4d8 , hyaae-m4b4e0 , hyaae-m4bkr1 , hyaae-m4bkw7

Title : The genome of the blood fluke Schistosoma mansoni - Berriman_2009_Nature_460_352
Author(s) : Berriman M , Haas BJ , LoVerde PT , Wilson RA , Dillon GP , Cerqueira GC , Mashiyama ST , Al-Lazikani B , Andrade LF , Ashton PD , Aslett MA , Bartholomeu DC , Blandin G , Caffrey CR , Coghlan A , Coulson R , Day TA , Delcher A , DeMarco R , Djikeng A , Eyre T , Gamble JA , Ghedin E , Gu Y , Hertz-Fowler C , Hirai H , Hirai Y , Houston R , Ivens A , Johnston DA , Lacerda D , Macedo CD , McVeigh P , Ning Z , Oliveira G , Overington JP , Parkhill J , Pertea M , Pierce RJ , Protasio AV , Quail MA , Rajandream MA , Rogers J , Sajid M , Salzberg SL , Stanke M , Tivey AR , White O , Williams DL , Wortman J , Wu W , Zamanian M , Zerlotini A , Fraser-Liggett CM , Barrell BG , El-Sayed NM
Ref : Nature , 460 :352 , 2009
Abstract : Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.
ESTHER : Berriman_2009_Nature_460_352
PubMedSearch : Berriman_2009_Nature_460_352
PubMedID: 19606141
Gene_locus related to this paper: schma-ACHE1 , schma-ACHE2 , schma-c4qb79 , schma-c4qmk4 , schma-g4v9h7 , schma-BCHE , schma-g4vmf3

Title : Evolutionary and biomedical insights from the rhesus macaque genome - Gibbs_2007_Science_316_222
Author(s) : Gibbs RA , Rogers J , Katze MG , Bumgarner R , Weinstock GM , Mardis ER , Remington KA , Strausberg RL , Venter JC , Wilson RK , Batzer MA , Bustamante CD , Eichler EE , Hahn MW , Hardison RC , Makova KD , Miller W , Milosavljevic A , Palermo RE , Siepel A , Sikela JM , Attaway T , Bell S , Bernard KE , Buhay CJ , Chandrabose MN , Dao M , Davis C , Delehaunty KD , Ding Y , Dinh HH , Dugan-Rocha S , Fulton LA , Gabisi RA , Garner TT , Godfrey J , Hawes AC , Hernandez J , Hines S , Holder M , Hume J , Jhangiani SN , Joshi V , Khan ZM , Kirkness EF , Cree A , Fowler RG , Lee S , Lewis LR , Li Z , Liu YS , Moore SM , Muzny D , Nazareth LV , Ngo DN , Okwuonu GO , Pai G , Parker D , Paul HA , Pfannkoch C , Pohl CS , Rogers YH , Ruiz SJ , Sabo A , Santibanez J , Schneider BW , Smith SM , Sodergren E , Svatek AF , Utterback TR , Vattathil S , Warren W , White CS , Chinwalla AT , Feng Y , Halpern AL , Hillier LW , Huang X , Minx P , Nelson JO , Pepin KH , Qin X , Sutton GG , Venter E , Walenz BP , Wallis JW , Worley KC , Yang SP , Jones SM , Marra MA , Rocchi M , Schein JE , Baertsch R , Clarke L , Csuros M , Glasscock J , Harris RA , Havlak P , Jackson AR , Jiang H , Liu Y , Messina DN , Shen Y , Song HX , Wylie T , Zhang L , Birney E , Han K , Konkel MK , Lee J , Smit AF , Ullmer B , Wang H , Xing J , Burhans R , Cheng Z , Karro JE , Ma J , Raney B , She X , Cox MJ , Demuth JP , Dumas LJ , Han SG , Hopkins J , Karimpour-Fard A , Kim YH , Pollack JR , Vinar T , Addo-Quaye C , Degenhardt J , Denby A , Hubisz MJ , Indap A , Kosiol C , Lahn BT , Lawson HA , Marklein A , Nielsen R , Vallender EJ , Clark AG , Ferguson B , Hernandez RD , Hirani K , Kehrer-Sawatzki H , Kolb J , Patil S , Pu LL , Ren Y , Smith DG , Wheeler DA , Schenck I , Ball EV , Chen R , Cooper DN , Giardine B , Hsu F , Kent WJ , Lesk A , Nelson DL , O'Brien W E , Prufer K , Stenson PD , Wallace JC , Ke H , Liu XM , Wang P , Xiang AP , Yang F , Barber GP , Haussler D , Karolchik D , Kern AD , Kuhn RM , Smith KE , Zwieg AS
Ref : Science , 316 :222 , 2007
Abstract : The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
ESTHER : Gibbs_2007_Science_316_222
PubMedSearch : Gibbs_2007_Science_316_222
PubMedID: 17431167
Gene_locus related to this paper: macmu-3neur , macmu-ACHE , macmu-BCHE , macmu-f6rul6 , macmu-f6sz31 , macmu-f6the6 , macmu-f6unj2 , macmu-f6wtx1 , macmu-f6zkq5 , macmu-f7aa58 , macmu-f7ai42 , macmu-f7aim4 , macmu-f7buk8 , macmu-f7cfi8 , macmu-f7cnr2 , macmu-f7cu68 , macmu-f7flv1 , macmu-f7ggk1 , macmu-f7hir7 , macmu-g7n054 , macmu-KANSL3 , macmu-TEX30 , macmu-Y4neur , macmu-g7n4x3 , macmu-i2cy02 , macmu-f7ba84 , macmu-CES2 , macmu-h9er02 , macmu-a0a1d5rbr3 , macmu-a0a1d5q4k5 , macmu-g7mxj6 , macmu-f7dn71 , macmu-f7hkw9 , macmu-f7hm08 , macmu-g7mke4 , macmu-a0a1d5rh04 , macmu-h9fud6 , macmu-f6qwx1 , macmu-f7h4t2 , macmu-h9zaw9 , macmu-f7h550 , macmu-a0a1d5q9w1 , macmu-f7gkb9 , macmu-f7hp78 , macmu-a0a1d5qvu5

Title : Human chromosome 11 DNA sequence and analysis including novel gene identification - Taylor_2006_Nature_440_497
Author(s) : Taylor TD , Noguchi H , Totoki Y , Toyoda A , Kuroki Y , Dewar K , Lloyd C , Itoh T , Takeda T , Kim DW , She X , Barlow KF , Bloom T , Bruford E , Chang JL , Cuomo CA , Eichler E , Fitzgerald MG , Jaffe DB , LaButti K , Nicol R , Park HS , Seaman C , Sougnez C , Yang X , Zimmer AR , Zody MC , Birren BW , Nusbaum C , Fujiyama A , Hattori M , Rogers J , Lander ES , Sakaki Y
Ref : Nature , 440 :497 , 2006
Abstract : Chromosome 11, although average in size, is one of the most gene- and disease-rich chromosomes in the human genome. Initial gene annotation indicates an average gene density of 11.6 genes per megabase, including 1,524 protein-coding genes, some of which were identified using novel methods, and 765 pseudogenes. One-quarter of the protein-coding genes shows overlap with other genes. Of the 856 olfactory receptor genes in the human genome, more than 40% are located in 28 single- and multi-gene clusters along this chromosome. Out of the 171 disorders currently attributed to the chromosome, 86 remain for which the underlying molecular basis is not yet known, including several mendelian traits, cancer and susceptibility loci. The high-quality data presented here--nearly 134.5 million base pairs representing 99.8% coverage of the euchromatic sequence--provide scientists with a solid foundation for understanding the genetic basis of these disorders and other biological phenomena.
ESTHER : Taylor_2006_Nature_440_497
PubMedSearch : Taylor_2006_Nature_440_497
PubMedID: 16554811
Gene_locus related to this paper: human-PRCP

Title : The DNA sequence and biological annotation of human chromosome 1 - Gregory_2006_Nature_441_315
Author(s) : Gregory SG , Barlow KF , McLay KE , Kaul R , Swarbreck D , Dunham A , Scott CE , Howe KL , Woodfine K , Spencer CC , Jones MC , Gillson C , Searle S , Zhou Y , Kokocinski F , McDonald L , Evans R , Phillips K , Atkinson A , Cooper R , Jones C , Hall RE , Andrews TD , Lloyd C , Ainscough R , Almeida JP , Ambrose KD , Anderson F , Andrew RW , Ashwell RI , Aubin K , Babbage AK , Bagguley CL , Bailey J , Beasley H , Bethel G , Bird CP , Bray-Allen S , Brown JY , Brown AJ , Buckley D , Burton J , Bye J , Carder C , Chapman JC , Clark SY , Clarke G , Clee C , Cobley V , Collier RE , Corby N , Coville GJ , Davies J , Deadman R , Dunn M , Earthrowl M , Ellington AG , Errington H , Frankish A , Frankland J , French L , Garner P , Garnett J , Gay L , Ghori MR , Gibson R , Gilby LM , Gillett W , Glithero RJ , Grafham DV , Griffiths C , Griffiths-Jones S , Grocock R , Hammond S , Harrison ES , Hart E , Haugen E , Heath PD , Holmes S , Holt K , Howden PJ , Hunt AR , Hunt SE , Hunter G , Isherwood J , James R , Johnson C , Johnson D , Joy A , Kay M , Kershaw JK , Kibukawa M , Kimberley AM , King A , Knights AJ , Lad H , Laird G , Lawlor S , Leongamornlert DA , Lloyd DM , Loveland J , Lovell J , Lush MJ , Lyne R , Martin S , Mashreghi-Mohammadi M , Matthews L , Matthews NS , Mclaren S , Milne S , Mistry S , Moore MJ , Nickerson T , O'Dell CN , Oliver K , Palmeiri A , Palmer SA , Parker A , Patel D , Pearce AV , Peck AI , Pelan S , Phelps K , Phillimore BJ , Plumb R , Rajan J , Raymond C , Rouse G , Saenphimmachak C , Sehra HK , Sheridan E , Shownkeen R , Sims S , Skuce CD , Smith M , Steward C , Subramanian S , Sycamore N , Tracey A , Tromans A , Van Helmond Z , Wall M , Wallis JM , White S , Whitehead SL , Wilkinson JE , Willey DL , Williams H , Wilming L , Wray PW , Wu Z , Coulson A , Vaudin M , Sulston JE , Durbin R , Hubbard T , Wooster R , Dunham I , Carter NP , McVean G , Ross MT , Harrow J , Olson MV , Beck S , Rogers J , Bentley DR , Banerjee R , Bryant SP , Burford DC , Burrill WD , Clegg SM , Dhami P , Dovey O , Faulkner LM , Gribble SM , Langford CF , Pandian RD , Porter KM , Prigmore E
Ref : Nature , 441 :315 , 2006
Abstract : The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.
ESTHER : Gregory_2006_Nature_441_315
PubMedSearch : Gregory_2006_Nature_441_315
PubMedID: 16710414
Gene_locus related to this paper: human-LYPLAL1 , human-PPT1 , human-TMCO4 , human-TMEM53

Title : DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage - Zody_2006_Nature_440_1045
Author(s) : Zody MC , Garber M , Adams DJ , Sharpe T , Harrow J , Lupski JR , Nicholson C , Searle SM , Wilming L , Young SK , Abouelleil A , Allen NR , Bi W , Bloom T , Borowsky ML , Bugalter BE , Butler J , Chang JL , Chen CK , Cook A , Corum B , Cuomo CA , de Jong PJ , Decaprio D , Dewar K , FitzGerald M , Gilbert J , Gibson R , Gnerre S , Goldstein S , Grafham DV , Grocock R , Hafez N , Hagopian DS , Hart E , Norman CH , Humphray S , Jaffe DB , Jones M , Kamal M , Khodiyar VK , LaButti K , Laird G , Lehoczky J , Liu X , Lokyitsang T , Loveland J , Lui A , Macdonald P , Major JE , Matthews L , Mauceli E , McCarroll SA , Mihalev AH , Mudge J , Nguyen C , Nicol R , O'Leary SB , Osoegawa K , Schwartz DC , Shaw-Smith C , Stankiewicz P , Steward C , Swarbreck D , Venkataraman V , Whittaker CA , Yang X , Zimmer AR , Bradley A , Hubbard T , Birren BW , Rogers J , Lander ES , Nusbaum C
Ref : Nature , 440 :1045 , 2006
Abstract : Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.
ESTHER : Zody_2006_Nature_440_1045
PubMedSearch : Zody_2006_Nature_440_1045
PubMedID: 16625196
Gene_locus related to this paper: human-NLGN2 , human-NOTUM

Title : Genome sequence, comparative analysis and haplotype structure of the domestic dog - Lindblad-Toh_2005_Nature_438_803
Author(s) : Lindblad-Toh K , Wade CM , Mikkelsen TS , Karlsson EK , Jaffe DB , Kamal M , Clamp M , Chang JL , Kulbokas EJ, 3rd , Zody MC , Mauceli E , Xie X , Breen M , Wayne RK , Ostrander EA , Ponting CP , Galibert F , Smith DR , deJong PJ , Kirkness E , Alvarez P , Biagi T , Brockman W , Butler J , Chin CW , Cook A , Cuff J , Daly MJ , Decaprio D , Gnerre S , Grabherr M , Kellis M , Kleber M , Bardeleben C , Goodstadt L , Heger A , Hitte C , Kim L , Koepfli KP , Parker HG , Pollinger JP , Searle SM , Sutter NB , Thomas R , Webber C , Baldwin J , Abebe A , Abouelleil A , Aftuck L , Ait-Zahra M , Aldredge T , Allen N , An P , Anderson S , Antoine C , Arachchi H , Aslam A , Ayotte L , Bachantsang P , Barry A , Bayul T , Benamara M , Berlin A , Bessette D , Blitshteyn B , Bloom T , Blye J , Boguslavskiy L , Bonnet C , Boukhgalter B , Brown A , Cahill P , Calixte N , Camarata J , Cheshatsang Y , Chu J , Citroen M , Collymore A , Cooke P , Dawoe T , Daza R , Decktor K , DeGray S , Dhargay N , Dooley K , Dorje P , Dorjee K , Dorris L , Duffey N , Dupes A , Egbiremolen O , Elong R , Falk J , Farina A , Faro S , Ferguson D , Ferreira P , Fisher S , FitzGerald M , Foley K , Foley C , Franke A , Friedrich D , Gage D , Garber M , Gearin G , Giannoukos G , Goode T , Goyette A , Graham J , Grandbois E , Gyaltsen K , Hafez N , Hagopian D , Hagos B , Hall J , Healy C , Hegarty R , Honan T , Horn A , Houde N , Hughes L , Hunnicutt L , Husby M , Jester B , Jones C , Kamat A , Kanga B , Kells C , Khazanovich D , Kieu AC , Kisner P , Kumar M , Lance K , Landers T , Lara M , Lee W , Leger JP , Lennon N , Leuper L , LeVine S , Liu J , Liu X , Lokyitsang Y , Lokyitsang T , Lui A , MacDonald J , Major J , Marabella R , Maru K , Matthews C , McDonough S , Mehta T , Meldrim J , Melnikov A , Meneus L , Mihalev A , Mihova T , Miller K , Mittelman R , Mlenga V , Mulrain L , Munson G , Navidi A , Naylor J , Nguyen T , Nguyen N , Nguyen C , Nicol R , Norbu N , Norbu C , Novod N , Nyima T , Olandt P , O'Neill B , O'Neill K , Osman S , Oyono L , Patti C , Perrin D , Phunkhang P , Pierre F , Priest M , Rachupka A , Raghuraman S , Rameau R , Ray V , Raymond C , Rege F , Rise C , Rogers J , Rogov P , Sahalie J , Settipalli S , Sharpe T , Shea T , Sheehan M , Sherpa N , Shi J , Shih D , Sloan J , Smith C , Sparrow T , Stalker J , Stange-Thomann N , Stavropoulos S , Stone C , Stone S , Sykes S , Tchuinga P , Tenzing P , Tesfaye S , Thoulutsang D , Thoulutsang Y , Topham K , Topping I , Tsamla T , Vassiliev H , Venkataraman V , Vo A , Wangchuk T , Wangdi T , Weiand M , Wilkinson J , Wilson A , Yadav S , Yang S , Yang X , Young G , Yu Q , Zainoun J , Zembek L , Zimmer A , Lander ES
Ref : Nature , 438 :803 , 2005
Abstract : Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.
ESTHER : Lindblad-Toh_2005_Nature_438_803
PubMedSearch : Lindblad-Toh_2005_Nature_438_803
PubMedID: 16341006
Gene_locus related to this paper: canfa-1lipg , canfa-2neur , canfa-3neur , canfa-ACHE , canfa-BCHE , canfa-cauxin , canfa-CESDD1 , canfa-e2qsb1 , canfa-e2qsl3 , canfa-e2qsz2 , canfa-e2qvk3 , canfa-e2qw15 , canfa-e2qxs8 , canfa-e2qzs6 , canfa-e2r5t3 , canfa-e2r6f6 , canfa-e2r7e8 , canfa-e2r8v9 , canfa-e2r8z1 , canfa-e2r9h4 , canfa-e2r455 , canfa-e2rb70 , canfa-e2rcq9 , canfa-e2rd94 , canfa-e2rgi0 , canfa-e2rkq0 , canfa-e2rlz9 , canfa-e2rm00 , canfa-e2rqf1 , canfa-e2rss9 , canfa-f1p6w8 , canfa-f1p8b6 , canfa-f1p9d8 , canfa-f1p683 , canfa-f1pb79 , canfa-f1pgw0 , canfa-f1phd0 , canfa-f1phx2 , canfa-f1pke8 , canfa-f1pp08 , canfa-f1ppp9 , canfa-f1ps07 , canfa-f1ptf1 , canfa-f1pvp4 , canfa-f1pw93 , canfa-f1pwk3 , canfa-pafa , canfa-q1ert3 , canfa-q5jzr0 , canfa-e2rmb9 , canlf-f6v865 , canlf-e2rjg6 , canlf-e2r2h2 , canlf-f1p648 , canlf-f1pw90 , canlf-j9p8v6 , canlf-f1pcc4 , canlf-e2qxh0 , canlf-e2r774 , canlf-f1pf96 , canlf-e2rq56 , canlf-j9nwb1 , canlf-f1ptw2 , canlf-j9p8h1 , canlf-e2ree2 , canlf-f1prs1 , canlf-j9nus1 , canlf-e2rf91 , canlf-f1pg57 , canlf-f1q111

Title : The DNA sequence of the human X chromosome - Ross_2005_Nature_434_325
Author(s) : Ross MT , Grafham DV , Coffey AJ , Scherer S , McLay K , Muzny D , Platzer M , Howell GR , Burrows C , Bird CP , Frankish A , Lovell FL , Howe KL , Ashurst JL , Fulton RS , Sudbrak R , Wen G , Jones MC , Hurles ME , Andrews TD , Scott CE , Searle S , Ramser J , Whittaker A , Deadman R , Carter NP , Hunt SE , Chen R , Cree A , Gunaratne P , Havlak P , Hodgson A , Metzker ML , Richards S , Scott G , Steffen D , Sodergren E , Wheeler DA , Worley KC , Ainscough R , Ambrose KD , Ansari-Lari MA , Aradhya S , Ashwell RI , Babbage AK , Bagguley CL , Ballabio A , Banerjee R , Barker GE , Barlow KF , Barrett IP , Bates KN , Beare DM , Beasley H , Beasley O , Beck A , Bethel G , Blechschmidt K , Brady N , Bray-Allen S , Bridgeman AM , Brown AJ , Brown MJ , Bonnin D , Bruford EA , Buhay C , Burch P , Burford D , Burgess J , Burrill W , Burton J , Bye JM , Carder C , Carrel L , Chako J , Chapman JC , Chavez D , Chen E , Chen G , Chen Y , Chen Z , Chinault C , Ciccodicola A , Clark SY , Clarke G , Clee CM , Clegg S , Clerc-Blankenburg K , Clifford K , Cobley V , Cole CG , Conquer JS , Corby N , Connor RE , David R , Davies J , Davis C , Davis J , Delgado O , Deshazo D , Dhami P , Ding Y , Dinh H , Dodsworth S , Draper H , Dugan-Rocha S , Dunham A , Dunn M , Durbin KJ , Dutta I , Eades T , Ellwood M , Emery-Cohen A , Errington H , Evans KL , Faulkner L , Francis F , Frankland J , Fraser AE , Galgoczy P , Gilbert J , Gill R , Glockner G , Gregory SG , Gribble S , Griffiths C , Grocock R , Gu Y , Gwilliam R , Hamilton C , Hart EA , Hawes A , Heath PD , Heitmann K , Hennig S , Hernandez J , Hinzmann B , Ho S , Hoffs M , Howden PJ , Huckle EJ , Hume J , Hunt PJ , Hunt AR , Isherwood J , Jacob L , Johnson D , Jones S , de Jong PJ , Joseph SS , Keenan S , Kelly S , Kershaw JK , Khan Z , Kioschis P , Klages S , Knights AJ , Kosiura A , Kovar-Smith C , Laird GK , Langford C , Lawlor S , Leversha M , Lewis L , Liu W , Lloyd C , Lloyd DM , Loulseged H , Loveland JE , Lovell JD , Lozado R , Lu J , Lyne R , Ma J , Maheshwari M , Matthews LH , McDowall J , Mclaren S , McMurray A , Meidl P , Meitinger T , Milne S , Miner G , Mistry SL , Morgan M , Morris S , Muller I , Mullikin JC , Nguyen N , Nordsiek G , Nyakatura G , O'Dell CN , Okwuonu G , Palmer S , Pandian R , Parker D , Parrish J , Pasternak S , Patel D , Pearce AV , Pearson DM , Pelan SE , Perez L , Porter KM , Ramsey Y , Reichwald K , Rhodes S , Ridler KA , Schlessinger D , Schueler MG , Sehra HK , Shaw-Smith C , Shen H , Sheridan EM , Shownkeen R , Skuce CD , Smith ML , Sotheran EC , Steingruber HE , Steward CA , Storey R , Swann RM , Swarbreck D , Tabor PE , Taudien S , Taylor T , Teague B , Thomas K , Thorpe A , Timms K , Tracey A , Trevanion S , Tromans AC , d'Urso M , Verduzco D , Villasana D , Waldron L , Wall M , Wang Q , Warren J , Warry GL , Wei X , West A , Whitehead SL , Whiteley MN , Wilkinson JE , Willey DL , Williams G , Williams L , Williamson A , Williamson H , Wilming L , Woodmansey RL , Wray PW , Yen J , Zhang J , Zhou J , Zoghbi H , Zorilla S , Buck D , Reinhardt R , Poustka A , Rosenthal A , Lehrach H , Meindl A , Minx PJ , Hillier LW , Willard HF , Wilson RK , Waterston RH , Rice CM , Vaudin M , Coulson A , Nelson DL , Weinstock G , Sulston JE , Durbin R , Hubbard T , Gibbs RA , Beck S , Rogers J , Bentley DR
Ref : Nature , 434 :325 , 2005
Abstract : The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.
ESTHER : Ross_2005_Nature_434_325
PubMedSearch : Ross_2005_Nature_434_325
PubMedID: 15772651
Gene_locus related to this paper: human-NLGN3 , human-NLGN4X

Title : Determinants of variation in serum paraoxonase enzyme activity in baboons - Rainwater_2005_J.Lipid.Res_46_1450
Author(s) : Rainwater DL , Mahaney MC , Wang XL , Rogers J , Cox LA , Vandeberg JL
Ref : J Lipid Res , 46 :1450 , 2005
Abstract : Paraoxonase (PON), an HDL-associated enzyme, is one of many circulating antioxidants thought to play a vital protective role. To better understand the determinants of quantitative variation in serum PON activity, we assayed PON in samples from 611 pedigreed baboons fed three diets. PON was measured enzymatically; the main determinant of variation was genetic and consisted of at least three components: two loci detected by linkage analyses and a residual polygenic component. Multipoint linkage analyses gave peak log of the odds (LOD) scores on the baboon homolog of human chromosome 7q21-22 (near PON1, the structural gene) of 9.1 on the low-cholesterol, high-fat diet and 4.1 on the high-cholesterol, high-fat diet (genome-wide P values were 1 x 10(-8) and 0.0018, respectively). Surprisingly, a second locus on the baboon homolog of human chromosome 12q13 gave a LOD score of 2.9 on the high-cholesterol, high-fat diet (genome-wide P value was 0.032). We identified several significant covariates, including age, sex, diet, and apolipoprotein A-I concentrations. We estimate that 53% of total trait variation in baboons is explained by genes and 17% by covariates, thus accounting for approximately 70% of total variation in baboon PON. Although the generation of free radicals is influenced primarily by environmental factors, our findings suggest strong genetic regulation of one component in the antioxidant defense system that plays a major role in susceptibility to atherosclerosis.
ESTHER : Rainwater_2005_J.Lipid.Res_46_1450
PubMedSearch : Rainwater_2005_J.Lipid.Res_46_1450
PubMedID: 15834129

Title : DNA sequence and analysis of human chromosome 9 - Humphray_2004_Nature_429_369
Author(s) : Humphray SJ , Oliver K , Hunt AR , Plumb RW , Loveland JE , Howe KL , Andrews TD , Searle S , Hunt SE , Scott CE , Jones MC , Ainscough R , Almeida JP , Ambrose KD , Ashwell RI , Babbage AK , Babbage S , Bagguley CL , Bailey J , Banerjee R , Barker DJ , Barlow KF , Bates K , Beasley H , Beasley O , Bird CP , Bray-Allen S , Brown AJ , Brown JY , Burford D , Burrill W , Burton J , Carder C , Carter NP , Chapman JC , Chen Y , Clarke G , Clark SY , Clee CM , Clegg S , Collier RE , Corby N , Crosier M , Cummings AT , Davies J , Dhami P , Dunn M , Dutta I , Dyer LW , Earthrowl ME , Faulkner L , Fleming CJ , Frankish A , Frankland JA , French L , Fricker DG , Garner P , Garnett J , Ghori J , Gilbert JG , Glison C , Grafham DV , Gribble S , Griffiths C , Griffiths-Jones S , Grocock R , Guy J , Hall RE , Hammond S , Harley JL , Harrison ES , Hart EA , Heath PD , Henderson CD , Hopkins BL , Howard PJ , Howden PJ , Huckle E , Johnson C , Johnson D , Joy AA , Kay M , Keenan S , Kershaw JK , Kimberley AM , King A , Knights A , Laird GK , Langford C , Lawlor S , Leongamornlert DA , Leversha M , Lloyd C , Lloyd DM , Lovell J , Martin S , Mashreghi-Mohammadi M , Matthews L , Mclaren S , McLay KE , McMurray A , Milne S , Nickerson T , Nisbett J , Nordsiek G , Pearce AV , Peck AI , Porter KM , Pandian R , Pelan S , Phillimore B , Povey S , Ramsey Y , Rand V , Scharfe M , Sehra HK , Shownkeen R , Sims SK , Skuce CD , Smith M , Steward CA , Swarbreck D , Sycamore N , Tester J , Thorpe A , Tracey A , Tromans A , Thomas DW , Wall M , Wallis JM , West AP , Whitehead SL , Willey DL , Williams SA , Wilming L , Wray PW , Young L , Ashurst JL , Coulson A , Blocker H , Durbin R , Sulston JE , Hubbard T , Jackson MJ , Bentley DR , Beck S , Rogers J , Dunham I
Ref : Nature , 429 :369 , 2004
Abstract : Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.
ESTHER : Humphray_2004_Nature_429_369
PubMedSearch : Humphray_2004_Nature_429_369
PubMedID: 15164053
Gene_locus related to this paper: human-CEL

Title : Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution - Hillier_2004_Nature_432_695
Author(s) : Hillier LW , Miller W , Birney E , Warren W , Hardison RC , Ponting CP , Bork P , Burt DW , Groenen MA , Delany ME , Dodgson JB , Chinwalla AT , Cliften PF , Clifton SW , Delehaunty KD , Fronick C , Fulton RS , Graves TA , Kremitzki C , Layman D , Magrini V , McPherson JD , Miner TL , Minx P , Nash WE , Nhan MN , Nelson JO , Oddy LG , Pohl CS , Randall-Maher J , Smith SM , Wallis JW , Yang SP , Romanov MN , Rondelli CM , Paton B , Smith J , Morrice D , Daniels L , Tempest HG , Robertson L , Masabanda JS , Griffin DK , Vignal A , Fillon V , Jacobbson L , Kerje S , Andersson L , Crooijmans RP , Aerts J , van der Poel JJ , Ellegren H , Caldwell RB , Hubbard SJ , Grafham DV , Kierzek AM , McLaren SR , Overton IM , Arakawa H , Beattie KJ , Bezzubov Y , Boardman PE , Bonfield JK , Croning MD , Davies RM , Francis MD , Humphray SJ , Scott CE , Taylor RG , Tickle C , Brown WR , Rogers J , Buerstedde JM , Wilson SA , Stubbs L , Ovcharenko I , Gordon L , Lucas S , Miller MM , Inoko H , Shiina T , Kaufman J , Salomonsen J , Skjoedt K , Ka-Shu Wong G , Wang J , Liu B , Yu J , Yang H , Nefedov M , Koriabine M , deJong PJ , Goodstadt L , Webber C , Dickens NJ , Letunic I , Suyama M , Torrents D , von Mering C , Zdobnov EM , Makova K , Nekrutenko A , Elnitski L , Eswara P , King DC , Yang S , Tyekucheva S , Radakrishnan A , Harris RS , Chiaromonte F , Taylor J , He J , Rijnkels M , Griffiths-Jones S , Ureta-Vidal A , Hoffman MM , Severin J , Searle SM , Law AS , Speed D , Waddington D , Cheng Z , Tuzun E , Eichler E , Bao Z , Flicek P , Shteynberg DD , Brent MR , Bye JM , Huckle EJ , Chatterji S , Dewey C , Pachter L , Kouranov A , Mourelatos Z , Hatzigeorgiou AG , Paterson AH , Ivarie R , Brandstrom M , Axelsson E , Backstrom N , Berlin S , Webster MT , Pourquie O , Reymond A , Ucla C , Antonarakis SE , Long M , Emerson JJ , Betran E , Dupanloup I , Kaessmann H , Hinrichs AS , Bejerano G , Furey TS , Harte RA , Raney B , Siepel A , Kent WJ , Haussler D , Eyras E , Castelo R , Abril JF , Castellano S , Camara F , Parra G , Guigo R , Bourque G , Tesler G , Pevzner PA , Smit A , Fulton LA , Mardis ER , Wilson RK
Ref : Nature , 432 :695 , 2004
Abstract : We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
ESTHER : Hillier_2004_Nature_432_695
PubMedSearch : Hillier_2004_Nature_432_695
PubMedID: 15592404
Gene_locus related to this paper: chick-a0a1d5pmd9 , chick-b3tzb3 , chick-BCHE , chick-cb043 , chick-d3wgl5 , chick-e1bsm0 , chick-e1bvq6 , chick-e1bwz0 , chick-e1bwz1 , chick-e1byn1 , chick-e1bz81 , chick-e1c0z8 , chick-e1c7p7 , chick-f1nby4 , chick-f1ncz8 , chick-f1ndp3 , chick-f1nep4 , chick-f1nj68 , chick-f1njg6 , chick-f1njk4 , chick-f1njs4 , chick-f1njs5 , chick-f1nk87 , chick-f1nmx9 , chick-f1ntp8 , chick-f1nvg7 , chick-f1nwf2 , chick-f1p1l1 , chick-f1p3j5 , chick-f1p4c6 , chick-f1p508 , chick-fas , chick-h9l0k6 , chick-nlgn1 , chick-NLGN3 , chick-q5f3h8 , chick-q5zhm0 , chick-q5zi81 , chick-q5zij5 , chick-q5zin0 , chick-thyro , chick-f1nrq2 , chick-e1byd4 , chick-e1c2h6 , chick-a0a1d5pk92 , chick-a0a1d5pzg7 , chick-f1nbc2 , chick-f1nf25 , chick-f1nly5 , chick-f1p4h5 , chick-f1nzi7 , chick-f1p5k3 , chick-f1nm35 , chick-a0a1d5pl11 , chick-a0a1d5pj73 , chick-f1nxu6 , chick-a0a1d5nwc0 , chick-e1bxs8 , chick-f1p2g7 , chick-f1nd96

Title : The DNA sequence and analysis of human chromosome 13 - Dunham_2004_Nature_428_522
Author(s) : Dunham A , Matthews LH , Burton J , Ashurst JL , Howe KL , Ashcroft KJ , Beare DM , Burford DC , Hunt SE , Griffiths-Jones S , Jones MC , Keenan SJ , Oliver K , Scott CE , Ainscough R , Almeida JP , Ambrose KD , Andrews DT , Ashwell RI , Babbage AK , Bagguley CL , Bailey J , Bannerjee R , Barlow KF , Bates K , Beasley H , Bird CP , Bray-Allen S , Brown AJ , Brown JY , Burrill W , Carder C , Carter NP , Chapman JC , Clamp ME , Clark SY , Clarke G , Clee CM , Clegg SC , Cobley V , Collins JE , Corby N , Coville GJ , Deloukas P , Dhami P , Dunham I , Dunn M , Earthrowl ME , Ellington AG , Faulkner L , Frankish AG , Frankland J , French L , Garner P , Garnett J , Gilbert JG , Gilson CJ , Ghori J , Grafham DV , Gribble SM , Griffiths C , Hall RE , Hammond S , Harley JL , Hart EA , Heath PD , Howden PJ , Huckle EJ , Hunt PJ , Hunt AR , Johnson C , Johnson D , Kay M , Kimberley AM , King A , Laird GK , Langford CJ , Lawlor S , Leongamornlert DA , Lloyd DM , Lloyd C , Loveland JE , Lovell J , Martin S , Mashreghi-Mohammadi M , McLaren SJ , McMurray A , Milne S , Moore MJ , Nickerson T , Palmer SA , Pearce AV , Peck AI , Pelan S , Phillimore B , Porter KM , Rice CM , Searle S , Sehra HK , Shownkeen R , Skuce CD , Smith M , Steward CA , Sycamore N , Tester J , Thomas DW , Tracey A , Tromans A , Tubby B , Wall M , Wallis JM , West AP , Whitehead SL , Willey DL , Wilming L , Wray PW , Wright MW , Young L , Coulson A , Durbin R , Hubbard T , Sulston JE , Beck S , Bentley DR , Rogers J , Ross MT
Ref : Nature , 428 :522 , 2004
Abstract : Chromosome 13 is the largest acrocentric human chromosome. It carries genes involved in cancer including the breast cancer type 2 (BRCA2) and retinoblastoma (RB1) genes, is frequently rearranged in B-cell chronic lymphocytic leukaemia, and contains the DAOA locus associated with bipolar disorder and schizophrenia. We describe completion and analysis of 95.5 megabases (Mb) of sequence from chromosome 13, which contains 633 genes and 296 pseudogenes. We estimate that more than 95.4% of the protein-coding genes of this chromosome have been identified, on the basis of comparison with other vertebrate genome sequences. Additionally, 105 putative non-coding RNA genes were found. Chromosome 13 has one of the lowest gene densities (6.5 genes per Mb) among human chromosomes, and contains a central region of 38 Mb where the gene density drops to only 3.1 genes per Mb.
ESTHER : Dunham_2004_Nature_428_522
PubMedSearch : Dunham_2004_Nature_428_522
PubMedID: 15057823
Gene_locus related to this paper: human-ESD , human-TEX30

Title : The DNA sequence and comparative analysis of human chromosome 10 - Deloukas_2004_Nature_429_375
Author(s) : Deloukas P , Earthrowl ME , Grafham DV , Rubenfield M , French L , Steward CA , Sims SK , Jones MC , Searle S , Scott C , Howe K , Hunt SE , Andrews TD , Gilbert JG , Swarbreck D , Ashurst JL , Taylor A , Battles J , Bird CP , Ainscough R , Almeida JP , Ashwell RI , Ambrose KD , Babbage AK , Bagguley CL , Bailey J , Banerjee R , Bates K , Beasley H , Bray-Allen S , Brown AJ , Brown JY , Burford DC , Burrill W , Burton J , Cahill P , Camire D , Carter NP , Chapman JC , Clark SY , Clarke G , Clee CM , Clegg S , Corby N , Coulson A , Dhami P , Dutta I , Dunn M , Faulkner L , Frankish A , Frankland JA , Garner P , Garnett J , Gribble S , Griffiths C , Grocock R , Gustafson E , Hammond S , Harley JL , Hart E , Heath PD , Ho TP , Hopkins B , Horne J , Howden PJ , Huckle E , Hynds C , Johnson C , Johnson D , Kana A , Kay M , Kimberley AM , Kershaw JK , Kokkinaki M , Laird GK , Lawlor S , Lee HM , Leongamornlert DA , Laird G , Lloyd C , Lloyd DM , Loveland J , Lovell J , Mclaren S , McLay KE , McMurray A , Mashreghi-Mohammadi M , Matthews L , Milne S , Nickerson T , Nguyen M , Overton-Larty E , Palmer SA , Pearce AV , Peck AI , Pelan S , Phillimore B , Porter K , Rice CM , Rogosin A , Ross MT , Sarafidou T , Sehra HK , Shownkeen R , Skuce CD , Smith M , Standring L , Sycamore N , Tester J , Thorpe A , Torcasso W , Tracey A , Tromans A , Tsolas J , Wall M , Walsh J , Wang H , Weinstock K , West AP , Willey DL , Whitehead SL , Wilming L , Wray PW , Young L , Chen Y , Lovering RC , Moschonas NK , Siebert R , Fechtel K , Bentley D , Durbin R , Hubbard T , Doucette-Stamm L , Beck S , Smith DR , Rogers J
Ref : Nature , 429 :375 , 2004
Abstract : The finished sequence of human chromosome 10 comprises a total of 131,666,441 base pairs. It represents 99.4% of the euchromatic DNA and includes one megabase of heterochromatic sequence within the pericentromeric region of the short and long arm of the chromosome. Sequence annotation revealed 1,357 genes, of which 816 are protein coding, and 430 are pseudogenes. We observed widespread occurrence of overlapping coding genes (either strand) and identified 67 antisense transcripts. Our analysis suggests that both inter- and intrachromosomal segmental duplications have impacted on the gene count on chromosome 10. Multispecies comparative analysis indicated that we can readily annotate the protein-coding genes with current resources. We estimate that over 95% of all coding exons were identified in this study. Assessment of single base changes between the human chromosome 10 and chimpanzee sequence revealed nonsense mutations in only 21 coding genes with respect to the human sequence.
ESTHER : Deloukas_2004_Nature_429_375
PubMedSearch : Deloukas_2004_Nature_429_375
PubMedID: 15164054
Gene_locus related to this paper: human-LIPA , human-LIPK , human-PNLIPRP1 , human-PNLIPRP2 , human-PNLIPRP3

Title : Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation - Aertgeerts_2004_Protein.Sci_13_412
Author(s) : Aertgeerts K , Ye S , Tennant MG , Kraus ML , Rogers J , Sang BC , Skene RJ , Webb DR , Prasad GS
Ref : Protein Science , 13 :412 , 2004
Abstract : Dipeptidyl peptidase IV (DPPIV) is a member of the prolyl oligopeptidase family of serine proteases. DPPIV removes dipeptides from the N terminus of substrates, including many chemokines, neuropeptides, and peptide hormones. Specific inhibition of DPPIV is being investigated in human trials for the treatment of type II diabetes. To understand better the molecular determinants that underlie enzyme catalysis and substrate specificity, we report the crystal structures of DPPIV in the free form and in complex with the first 10 residues of the physiological substrate, Neuropeptide Y (residues 1-10; tNPY). The crystal structure of the free form of the enzyme reveals two potential channels through which substrates could access the active site-a so-called propeller opening, and side opening. The crystal structure of the DPPIV/tNPY complex suggests that bioactive peptides utilize the side opening unique to DPPIV to access the active site. Other structural features in the active site such as the presence of a Glu motif, a well-defined hydrophobic S1 subsite, and minimal long-range interactions explain the substrate recognition and binding properties of DPPIV. Moreover, in the DPPIV/tNPY complex structure, the peptide is not cleaved but trapped in a tetrahedral intermediate that occurs during catalysis. Conformational changes of S630 and H740 between DPPIV in its free form and in complex with tNPY were observed and contribute to the stabilization of the tetrahedral intermediate. Our results facilitate the design of potent, selective small molecule inhibitors of DPPIV that may yield compounds for the development of novel drugs to treat type II diabetes.
ESTHER : Aertgeerts_2004_Protein.Sci_13_412
PubMedSearch : Aertgeerts_2004_Protein.Sci_13_412
PubMedID: 14718659
Gene_locus related to this paper: human-DPP4

Title : The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics - Stein_2003_PLoS.Biol_1_E45
Author(s) : Stein LD , Bao Z , Blasiar D , Blumenthal T , Brent MR , Chen N , Chinwalla A , Clarke L , Clee C , Coghlan A , Coulson A , D'Eustachio P , Fitch DH , Fulton LA , Fulton RE , Griffiths-Jones S , Harris TW , Hillier LW , Kamath R , Kuwabara PE , Mardis ER , Marra MA , Miner TL , Minx P , Mullikin JC , Plumb RW , Rogers J , Schein JE , Sohrmann M , Spieth J , Stajich JE , Wei C , Willey D , Wilson RK , Durbin R , Waterston RH
Ref : PLoS Biol , 1 :E45 , 2003
Abstract : The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.
ESTHER : Stein_2003_PLoS.Biol_1_E45
PubMedSearch : Stein_2003_PLoS.Biol_1_E45
PubMedID: 14624247
Gene_locus related to this paper: caebr-a8wl70 , caebr-a8wm66 , caebr-a8wny7 , caebr-a8wpj6 , caebr-a8wpy7.1 , caebr-a8wq91 , caebr-a8wr10 , caebr-A8WSQ5 , caebr-a8wta1 , caebr-A8WTU9 , caebr-a8wux6 , caebr-A8WX49 , caebr-a8wxx0 , caebr-a8wyd4 , caebr-a8wye8 , caebr-a8wz10 , caebr-a8wz31.1 , caebr-a8wz31.2 , caebr-a8wz31.4 , caebr-a8wzp9 , caebr-a8wzr9.1 , caebr-a8wzr9.2 , caebr-a8wzs0 , caebr-a8wzs1 , caebr-a8x0r9 , caebr-a8x0z5 , caebr-a8x1l6 , caebr-a8x1r6 , caebr-a8x3t6 , caebr-a8x4h0 , caebr-a8x4u8 , caebr-a8x4w8 , caebr-a8x5l4 , caebr-a8x5l5 , caebr-a8x5r5 , caebr-a8x5s6 , caebr-a8x5t4 , caebr-a8x6s0 , caebr-a8x6s1 , caebr-a8x7d1 , caebr-a8x7h0 , caebr-a8x7v6 , caebr-A8X8P2 , caebr-a8x8q5 , caebr-a8x8y6 , caebr-a8x9s4 , caebr-a8x324.1 , caebr-a8x324.2 , caebr-a8x622 , caebr-a8xac7 , caebr-a8xag5 , caebr-a8xb07 , caebr-a8xb88 , caebr-a8xby0 , caebr-a8xdz0 , caebr-a8xf42 , caebr-a8xfd1 , caebr-a8xfe6 , caebr-a8xgi0 , caebr-a8xgz4 , caebr-a8xgz5 , caebr-a8xh38 , caebr-a8xhp8 , caebr-a8xhx9 , caebr-a8xjw4 , caebr-a8xk02 , caebr-a8xk46 , caebr-a8xk76 , caebr-a8xke1 , caebr-A8XLQ2 , caebr-a8xns2.1 , caebr-a8xns2.2 , caebr-a8xq21 , caebr-a8xub3 , caebr-a8xuc2 , caebr-a8xuc8 , caebr-a8xug3 , caebr-a8xuh6 , caebr-a8xui4 , caebr-a8xui5 , caebr-a8xui6 , caebr-a8xui7 , caebr-a8xum8 , caebr-a8y0h0.1 , caebr-a8y0h0.2 , caebr-a8y0h1.1 , caebr-a8y0h1.2 , caebr-a8y1b5 , caebr-a8y1r7 , caebr-a8y2v4 , caebr-a8y3e3 , caebr-a8y3i5 , caebr-a8y3j9 , caebr-a8y4p9 , caebr-a8y100 , caebr-a8y101 , caebr-ACHE1 , caebr-ACHE2 , caebr-ACHE3 , caebr-ACHE4 , caebr-b6ii84 , caebr-G01D9.5 , caebr-ges1e , caebr-a8y4l4 , caebr-A8Y1T9 , caebr-A8Y168 , caebr-A8Y0Z5 , caebr-A8XYQ5 , caebr-A8XXK4 , caebr-A8XWZ8 , caebr-A8XUF0 , caebr-A8XUB6 , caebr-A8XSV2 , caebr-A8XJ37 , caebr-A8XG15 , caebr-A8XFE8 , caebr-A8XEY7 , caebr-A8XEU8 , caebr-A8XDT6 , caebr-A8XDV3 , caebr-A8XDQ3 , caebr-A8XDK8 , caebr-A8XBW4 , caebr-A8XAG3 , caebr-A8X8H5 , caebr-A8X6Z9 , caebr-A8X6H9 , caebr-A8X629 , caebr-A8X438 , caebr-A8X4G2 , caebr-A8X4H8 , caebr-A8X4W2 , caebr-A8X3P4 , caebr-A8X3R1 , caebr-A8X2Z4 , caebr-A8X0N2 , caebr-A8X0B3 , caebr-A8WW80 , caebr-U483 , caebr-A8XPH6 , caebr-A8XNJ0 , caebr-A8XNA2 , caebr-A8XLP0 , caebr-A8XK33 , caebr-A8WTK6 , caebr-A8WU44 , caebr-A8WPJ2 , caebr-A8WNE5 , caebr-A8WMB3 , caebr-a8x1r2

Title : The DNA sequence and analysis of human chromosome 6 - Mungall_2003_Nature_425_805
Author(s) : Mungall AJ , Palmer SA , Sims SK , Edwards CA , Ashurst JL , Wilming L , Jones MC , Horton R , Hunt SE , Scott CE , Gilbert JG , Clamp ME , Bethel G , Milne S , Ainscough R , Almeida JP , Ambrose KD , Andrews TD , Ashwell RI , Babbage AK , Bagguley CL , Bailey J , Banerjee R , Barker DJ , Barlow KF , Bates K , Beare DM , Beasley H , Beasley O , Bird CP , Blakey S , Bray-Allen S , Brook J , Brown AJ , Brown JY , Burford DC , Burrill W , Burton J , Carder C , Carter NP , Chapman JC , Clark SY , Clark G , Clee CM , Clegg S , Cobley V , Collier RE , Collins JE , Colman LK , Corby NR , Coville GJ , Culley KM , Dhami P , Davies J , Dunn M , Earthrowl ME , Ellington AE , Evans KA , Faulkner L , Francis MD , Frankish A , Frankland J , French L , Garner P , Garnett J , Ghori MJ , Gilby LM , Gillson CJ , Glithero RJ , Grafham DV , Grant M , Gribble S , Griffiths C , Griffiths M , Hall R , Halls KS , Hammond S , Harley JL , Hart EA , Heath PD , Heathcott R , Holmes SJ , Howden PJ , Howe KL , Howell GR , Huckle E , Humphray SJ , Humphries MD , Hunt AR , Johnson CM , Joy AA , Kay M , Keenan SJ , Kimberley AM , King A , Laird GK , Langford C , Lawlor S , Leongamornlert DA , Leversha M , Lloyd CR , Lloyd DM , Loveland JE , Lovell J , Martin S , Mashreghi-Mohammadi M , Maslen GL , Matthews L , Mccann OT , McLaren SJ , McLay K , McMurray A , Moore MJ , Mullikin JC , Niblett D , Nickerson T , Novik KL , Oliver K , Overton-Larty EK , Parker A , Patel R , Pearce AV , Peck AI , Phillimore B , Phillips S , Plumb RW , Porter KM , Ramsey Y , Ranby SA , Rice CM , Ross MT , Searle SM , Sehra HK , Sheridan E , Skuce CD , Smith S , Smith M , Spraggon L , Squares SL , Steward CA , Sycamore N , Tamlyn-Hall G , Tester J , Theaker AJ , Thomas DW , Thorpe A , Tracey A , Tromans A , Tubby B , Wall M , Wallis JM , West AP , White SS , Whitehead SL , Whittaker H , Wild A , Willey DJ , Wilmer TE , Wood JM , Wray PW , Wyatt JC , Young L , Younger RM , Bentley DR , Coulson A , Durbin R , Hubbard T , Sulston JE , Dunham I , Rogers J , Beck S
Ref : Nature , 425 :805 , 2003
Abstract : Chromosome 6 is a metacentric chromosome that constitutes about 6% of the human genome. The finished sequence comprises 166,880,988 base pairs, representing the largest chromosome sequenced so far. The entire sequence has been subjected to high-quality manual annotation, resulting in the evidence-supported identification of 1,557 genes and 633 pseudogenes. Here we report that at least 96% of the protein-coding genes have been identified, as assessed by multi-species comparative sequence analysis, and provide evidence for the presence of further, otherwise unsupported exons/genes. Among these are genes directly implicated in cancer, schizophrenia, autoimmunity and many other diseases. Chromosome 6 harbours the largest transfer RNA gene cluster in the genome; we show that this cluster co-localizes with a region of high transcriptional activity. Within the essential immune loci of the major histocompatibility complex, we find HLA-B to be the most polymorphic gene on chromosome 6 and in the human genome.
ESTHER : Mungall_2003_Nature_425_805
PubMedSearch : Mungall_2003_Nature_425_805
PubMedID: 14574404
Gene_locus related to this paper: human-ABHD16A , human-BPHL , human-FAM135A , human-PRSS16 , human-SERAC1

Title : Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs - Okazaki_2002_Nature_420_563
Author(s) : Okazaki Y , Furuno M , Kasukawa T , Adachi J , Bono H , Kondo S , Nikaido I , Osato N , Saito R , Suzuki H , Yamanaka I , Kiyosawa H , Yagi K , Tomaru Y , Hasegawa Y , Nogami A , Schonbach C , Gojobori T , Baldarelli R , Hill DP , Bult C , Hume DA , Quackenbush J , Schriml LM , Kanapin A , Matsuda H , Batalov S , Beisel KW , Blake JA , Bradt D , Brusic V , Chothia C , Corbani LE , Cousins S , Dalla E , Dragani TA , Fletcher CF , Forrest A , Frazer KS , Gaasterland T , Gariboldi M , Gissi C , Godzik A , Gough J , Grimmond S , Gustincich S , Hirokawa N , Jackson IJ , Jarvis ED , Kanai A , Kawaji H , Kawasawa Y , Kedzierski RM , King BL , Konagaya A , Kurochkin IV , Lee Y , Lenhard B , Lyons PA , Maglott DR , Maltais L , Marchionni L , McKenzie L , Miki H , Nagashima T , Numata K , Okido T , Pavan WJ , Pertea G , Pesole G , Petrovsky N , Pillai R , Pontius JU , Qi D , Ramachandran S , Ravasi T , Reed JC , Reed DJ , Reid J , Ring BZ , Ringwald M , Sandelin A , Schneider C , Semple CA , Setou M , Shimada K , Sultana R , Takenaka Y , Taylor MS , Teasdale RD , Tomita M , Verardo R , Wagner L , Wahlestedt C , Wang Y , Watanabe Y , Wells C , Wilming LG , Wynshaw-Boris A , Yanagisawa M , Yang I , Yang L , Yuan Z , Zavolan M , Zhu Y , Zimmer A , Carninci P , Hayatsu N , Hirozane-Kishikawa T , Konno H , Nakamura M , Sakazume N , Sato K , Shiraki T , Waki K , Kawai J , Aizawa K , Arakawa T , Fukuda S , Hara A , Hashizume W , Imotani K , Ishii Y , Itoh M , Kagawa I , Miyazaki A , Sakai K , Sasaki D , Shibata K , Shinagawa A , Yasunishi A , Yoshino M , Waterston R , Lander ES , Rogers J , Birney E , Hayashizaki Y
Ref : Nature , 420 :563 , 2002
Abstract : Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
ESTHER : Okazaki_2002_Nature_420_563
PubMedSearch : Okazaki_2002_Nature_420_563
PubMedID: 12466851
Gene_locus related to this paper: mouse-1lipg , mouse-1llip , mouse-1plrp , mouse-3neur , mouse-ABH15 , mouse-abhd4 , mouse-abhd5 , mouse-Abhd8 , mouse-Abhd11 , mouse-abhda , mouse-acot4 , mouse-adcl4 , mouse-AI607300 , mouse-BAAT , mouse-bphl , mouse-C87498 , mouse-Ldah , mouse-Ces1d , mouse-Ces2e , mouse-CMBL , mouse-DGLB , mouse-dpp9 , mouse-ES10 , mouse-F135A , mouse-FASN , mouse-hslip , mouse-hyes , mouse-Kansl3 , mouse-LIPH , mouse-LIPK , mouse-lipli , mouse-LIPM , mouse-lypla1 , mouse-lypla2 , mouse-MEST , mouse-MGLL , mouse-ndr4 , mouse-OVCA2 , mouse-pafa , mouse-pcp , mouse-ppce , mouse-Ppgb , mouse-PPME1 , mouse-q3uuq7 , mouse-Q8BLF1 , mouse-ACOT6 , mouse-Q8C1A9 , mouse-Q9DAI6 , mouse-Q80UX8 , mouse-Q8BGG9 , mouse-Q8C167 , mouse-rbbp9 , mouse-SERHL , mouse-tssp

Title : The DNA sequence and comparative analysis of human chromosome 20 - Deloukas_2001_Nature_414_865
Author(s) : Deloukas P , Matthews LH , Ashurst J , Burton J , Gilbert JG , Jones M , Stavrides G , Almeida JP , Babbage AK , Bagguley CL , Bailey J , Barlow KF , Bates KN , Beard LM , Beare DM , Beasley OP , Bird CP , Blakey SE , Bridgeman AM , Brown AJ , Buck D , Burrill W , Butler AP , Carder C , Carter NP , Chapman JC , Clamp M , Clark G , Clark LN , Clark SY , Clee CM , Clegg S , Cobley VE , Collier RE , Connor R , Corby NR , Coulson A , Coville GJ , Deadman R , Dhami P , Dunn M , Ellington AG , Frankland JA , Fraser A , French L , Garner P , Grafham DV , Griffiths C , Griffiths MN , Gwilliam R , Hall RE , Hammond S , Harley JL , Heath PD , Ho S , Holden JL , Howden PJ , Huckle E , Hunt AR , Hunt SE , Jekosch K , Johnson CM , Johnson D , Kay MP , Kimberley AM , King A , Knights A , Laird GK , Lawlor S , Lehvaslaiho MH , Leversha M , Lloyd C , Lloyd DM , Lovell JD , Marsh VL , Martin SL , McConnachie LJ , McLay K , McMurray AA , Milne S , Mistry D , Moore MJ , Mullikin JC , Nickerson T , Oliver K , Parker A , Patel R , Pearce TA , Peck AI , Phillimore BJ , Prathalingam SR , Plumb RW , Ramsay H , Rice CM , Ross MT , Scott CE , Sehra HK , Shownkeen R , Sims S , Skuce CD , Smith ML , Soderlund C , Steward CA , Sulston JE , Swann M , Sycamore N , Taylor R , Tee L , Thomas DW , Thorpe A , Tracey A , Tromans AC , Vaudin M , Wall M , Wallis JM , Whitehead SL , Whittaker P , Willey DL , Williams L , Williams SA , Wilming L , Wray PW , Hubbard T , Durbin RM , Bentley DR , Beck S , Rogers J
Ref : Nature , 414 :865 , 2001
Abstract : The finished sequence of human chromosome 20 comprises 59,187,298 base pairs (bp) and represents 99.4% of the euchromatic DNA. A single contig of 26 megabases (Mb) spans the entire short arm, and five contigs separated by gaps totalling 320 kb span the long arm of this metacentric chromosome. An additional 234,339 bp of sequence has been determined within the pericentromeric region of the long arm. We annotated 727 genes and 168 pseudogenes in the sequence. About 64% of these genes have a 5' and a 3' untranslated region and a complete open reading frame. Comparative analysis of the sequence of chromosome 20 to whole-genome shotgun-sequence data of two other vertebrates, the mouse Mus musculus and the puffer fish Tetraodon nigroviridis, provides an independent measure of the efficiency of gene annotation, and indicates that this analysis may account for more than 95% of all coding exons and almost all genes.
ESTHER : Deloukas_2001_Nature_414_865
PubMedSearch : Deloukas_2001_Nature_414_865
PubMedID: 11780052
Gene_locus related to this paper: human-ABHD12 , human-ABHD16B , human-CTSA , human-NDRG3 , human-RBBP9

Title : Phenserine regulates translation of beta -amyloid precursor protein mRNA by a putative interleukin-1 responsive element, a target for drug development - Shaw_2001_Proc.Natl.Acad.Sci.U.S.A_98_7605
Author(s) : Shaw KT , Utsuki T , Rogers J , Yu QS , Sambamurti K , Brossi A , Ge YW , Lahiri DK , Greig NH
Ref : Proc Natl Acad Sci U S A , 98 :7605 , 2001
Abstract : The reduction in levels of the potentially toxic amyloid-beta peptide (Abeta) has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the expression and processing of the Abeta precursor protein (betaAPP). Earlier reports from our laboratory have shown that a novel cholinesterase inhibitor, phenserine, reduces betaAPP levels in vivo. Herein, we studied the mechanism of phenserine's actions to define the regulatory elements in betaAPP processing. Phenserine treatment resulted in decreased secretion of soluble betaAPP and Abeta into the conditioned media of human neuroblastoma cells without cellular toxicity. The regulation of betaAPP protein expression by phenserine was posttranscriptional as it suppressed betaAPP protein expression without altering betaAPP mRNA levels. However, phenserine's action was neither mediated through classical receptor signaling pathways, involving extracellular signal-regulated kinase or phosphatidylinositol 3-kinase activation, nor was it associated with the anticholinesterase activity of the drug. Furthermore, phenserine reduced expression of a chloramphenicol acetyltransferase reporter fused to the 5'-mRNA leader sequence of betaAPP without altering expression of a control chloramphenicol acetyltransferase reporter. These studies suggest that phenserine reduces Abeta levels by regulating betaAPP translation via the recently described iron regulatory element in the 5'-untranslated region of betaAPP mRNA, which has been shown previously to be up-regulated in the presence of interleukin-1. This study identifies an approach for the regulation of betaAPP expression that can result in a substantial reduction in the level of Abeta.
ESTHER : Shaw_2001_Proc.Natl.Acad.Sci.U.S.A_98_7605
PubMedSearch : Shaw_2001_Proc.Natl.Acad.Sci.U.S.A_98_7605
PubMedID: 11404470

Title : Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana - Mayer_1999_Nature_402_769
Author(s) : Mayer K , Schuller C , Wambutt R , Murphy G , Volckaert G , Pohl T , Dusterhoft A , Stiekema W , Entian KD , Terryn N , Harris B , Ansorge W , Brandt P , Grivell L , Rieger M , Weichselgartner M , de Simone V , Obermaier B , Mache R , Muller M , Kreis M , Delseny M , Puigdomenech P , Watson M , Schmidtheini T , Reichert B , Portatelle D , Perez-Alonso M , Boutry M , Bancroft I , Vos P , Hoheisel J , Zimmermann W , Wedler H , Ridley P , Langham SA , McCullagh B , Bilham L , Robben J , Van der Schueren J , Grymonprez B , Chuang YJ , Vandenbussche F , Braeken M , Weltjens I , Voet M , Bastiaens I , Aert R , Defoor E , Weitzenegger T , Bothe G , Ramsperger U , Hilbert H , Braun M , Holzer E , Brandt A , Peters S , van Staveren M , Dirske W , Mooijman P , Klein Lankhorst R , Rose M , Hauf J , Kotter P , Berneiser S , Hempel S , Feldpausch M , Lamberth S , Van den Daele H , De Keyser A , Buysshaert C , Gielen J , Villarroel R , De Clercq R , van Montagu M , Rogers J , Cronin A , Quail M , Bray-Allen S , Clark L , Doggett J , Hall S , Kay M , Lennard N , McLay K , Mayes R , Pettett A , Rajandream MA , Lyne M , Benes V , Rechmann S , Borkova D , Blocker H , Scharfe M , Grimm M , Lohnert TH , Dose S , de Haan M , Maarse A , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Fartmann B , Granderath K , Dauner D , Herzl A , Neumann S , Argiriou A , Vitale D , Liguori R , Piravandi E , Massenet O , Quigley F , Clabauld G , Mundlein A , Felber R , Schnabl S , Hiller R , Schmidt W , Lecharny A , Aubourg S , Chefdor F , Cooke R , Berger C , Montfort A , Casacuberta E , Gibbons T , Weber N , Vandenbol M , Bargues M , Terol J , Torres A , Perez-Perez A , Purnelle B , Bent E , Johnson S , Tacon D , Jesse T , Heijnen L , Schwarz S , Scholler P , Heber S , Francs P , Bielke C , Frishman D , Haase D , Lemcke K , Mewes HW , Stocker S , Zaccaria P , Bevan M , Wilson RK , de la Bastide M , Habermann K , Parnell L , Dedhia N , Gnoj L , Schutz K , Huang E , Spiegel L , Sehkon M , Murray J , Sheet P , Cordes M , Abu-Threideh J , Stoneking T , Kalicki J , Graves T , Harmon G , Edwards J , Latreille P , Courtney L , Cloud J , Abbott A , Scott K , Johnson D , Minx P , Bentley D , Fulton B , Miller N , Greco T , Kemp K , Kramer J , Fulton L , Mardis E , Dante M , Pepin K , Hillier L , Nelson J , Spieth J , Ryan E , Andrews S , Geisel C , Layman D , Du H , Ali J , Berghoff A , Jones K , Drone K , Cotton M , Joshu C , Antonoiu B , Zidanic M , Strong C , Sun H , Lamar B , Yordan C , Ma P , Zhong J , Preston R , Vil D , Shekher M , Matero A , Shah R , Swaby IK , O'Shaughnessy A , Rodriguez M , Hoffmann J , Till S , Granat S , Shohdy N , Hasegawa A , Hameed A , Lodhi M , Johnson A , Chen E , Marra M , Martienssen R , McCombie WR
Ref : Nature , 402 :769 , 1999
Abstract : The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.
ESTHER : Mayer_1999_Nature_402_769
PubMedSearch : Mayer_1999_Nature_402_769
PubMedID: 10617198
Gene_locus related to this paper: arath-AT4G00500 , arath-AT4G16690 , arath-AT4G17480 , arath-AT4G24380 , arath-AT4g30610 , arath-o65513 , arath-o65713 , arath-LPAAT , arath-f4jt64

Title : The DNA sequence of human chromosome 22 - Dunham_1999_Nature_402_489
Author(s) : Dunham I , Hunt AR , Collins JE , Bruskiewich R , Beare DM , Clamp M , Smink LJ , Ainscough R , Almeida JP , Babbage AK , Bagguley C , Bailey J , Barlow KF , Bates KN , Beasley OP , Bird CP , Blakey SE , Bridgeman AM , Buck D , Burgess J , Burrill WD , Burton J , Carder C , Carter NP , Chen Y , Clark G , Clegg SM , Cobley VE , Cole CG , Collier RE , Connor R , Conroy D , Corby NR , Coville GJ , Cox AV , Davis J , Dawson E , Dhami PD , Dockree C , Dodsworth SJ , Durbin RM , Ellington AG , Evans KL , Fey JM , Fleming K , French L , Garner AA , Gilbert JGR , Goward ME , Grafham DV , Griffiths MND , Hall C , Hall RE , Hall-Tamlyn G , Heathcott RW , Ho S , Holmes S , Hunt SE , Jones MC , Kershaw J , Kimberley AM , King A , Laird GK , Langford CF , Leversha MA , Lloyd C , Lloyd DM , Martyn ID , Mashreghi-Mohammadi M , Matthews LH , Mccann OT , Mcclay J , Mclaren S , McMurray AA , Milne SA , Mortimore BJ , Odell CN , Pavitt R , Pearce AV , Pearson D , Phillimore BJCT , Phillips SH , Plumb RW , Ramsay H , Ramsey Y , Rogers L , Ross MT , Scott CE , Sehra HK , Skuce CD , Smalley S , Smith ML , Soderlund C , Spragon L , Steward CA , Sulston JE , Swann RM , Vaudin M , Wall M , Wallis JM , Whiteley MN , Willey DL , Williams L , Williams SA , Williamson H , Wilmer TE , Wilming L , Wright CL , Hubbard T , Bentley DR , Beck S , Rogers J , Shimizu N , Minoshima S , Kawasaki K , Sasaki T , Asakawa S , Kudoh J , Shintani A , Shibuya K , Yoshizaki Y , Aoki N , Mitsuyama S , Roe BA , Chen F , Chu L , Crabtree J , Deschamps S , Do A , Do T , Dorman A , Fang F , Fu Y , Hu P , Hua A , Kenton S , Lai H , Lao HI , Lewis J , Lewis S , Lin S-P , Loh P , Malaj E , Nguyen T , Pan H , Phan S , Qi S , Qian Y , Ray L , Ren Q , Shaull S , Sloan D , Song L , Wang Q , Wang Y , Wang Z , White J , Willingham D , Wu H , Yao Z , Zhan M , Zhang G , Chissoe S , Murray J , Miller N , Minx P , Fulton R , Johnson D , Bemis G , Bentley D , Bradshaw H , Bourne S , Cordes M , Du Z , Fulton L , Goela D , Graves T , Hawkins J , Hinds K , Kemp K , Latreille P , Layman D , Ozersky P , Rohlfing T , Scheet P , Walker C , Wamsley A , Wohldmann P , Pepin K , Nelson J , Korf I , Bedell JA , Hillier L , Mardis E , Waterston R , Wilson R , Emanuel BS , Shaikh T , Kurahashi H , Saitta S , Budarf ML , McDermid HE , Johnson A , Wong ACC , Morrow BE , Edelmann L , Kim UJ , Shizuya H , Simon MI , Dumanski JP , Peyrard M , Kedra D , Seroussi E , Fransson I , Tapia I , Bruder CE , O'Brien KP
Ref : Nature , 402 :489 , 1999
Abstract : Knowledge of the complete genomic DNA sequence of an organism allows a systematic approach to defining its genetic components. The genomic sequence provides access to the complete structures of all genes, including those without known function, their control elements, and, by inference, the proteins they encode, as well as all other biologically important sequences. Furthermore, the sequence is a rich and permanent source of information for the design of further biological studies of the organism and for the study of evolution through cross-species sequence comparison. The power of this approach has been amply demonstrated by the determination of the sequences of a number of microbial and model organisms. The next step is to obtain the complete sequence of the entire human genome. Here we report the sequence of the euchromatic part of human chromosome 22. The sequence obtained consists of 12 contiguous segments spanning 33.4 megabases, contains at least 545 genes and 134 pseudogenes, and provides the first view of the complex chromosomal landscapes that will be found in the rest of the genome.
ESTHER : Dunham_1999_Nature_402_489
PubMedSearch : Dunham_1999_Nature_402_489
PubMedID: 10591208
Gene_locus related to this paper: human-CES5A , human-SERHL2

Title : Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence - Cole_1998_Nature_393_537
Author(s) : Cole ST , Brosch R , Parkhill J , Garnier T , Churcher C , Harris D , Gordon SV , Eiglmeier K , Gas S , Barry CE, 3rd , Tekaia F , Badcock K , Basham D , Brown D , Chillingworth T , Connor R , Davies R , Devlin K , Feltwell T , Gentles S , Hamlin N , Holroyd S , Hornsby T , Jagels K , Krogh A , McLean J , Moule S , Murphy L , Oliver K , Osborne J , Quail MA , Rajandream MA , Rogers J , Rutter S , Seeger K , Skelton J , Squares R , Squares S , Sulston JE , Taylor K , Whitehead S , Barrell BG
Ref : Nature , 393 :537 , 1998
Abstract : Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.
ESTHER : Cole_1998_Nature_393_537
PubMedSearch : Cole_1998_Nature_393_537
PubMedID: 9634230
Gene_locus related to this paper: myctu-a85a , myctu-a85b , myctu-a85c , myctu-bpoC , myctu-cut3 , myctu-cutas1 , myctu-cutas2 , myctu-d5yk66 , myctu-ephA , myctu-ephB , myctu-ephc , myctu-ephd , myctu-ephE , myctu-ephF , myctu-hpx , myctu-linb , myctu-lipG , myctu-lipJ , myctu-LIPS , myctu-lipv , myctu-LPQC , myctu-LPQP , myctu-MBTB , myctu-metx , myctu-mpt51 , myctu-MT1628 , myctu-MT3441 , myctu-p71654 , myctu-p95011 , myctu-PKS6 , myctu-PKS13 , myctu-ppe42 , myctu-ppe63 , myctu-Rv1430 , myctu-RV0045C , myctu-Rv0077c , myctu-Rv0151c , myctu-Rv0152c , myctu-Rv0159c , myctu-Rv0160c , myctu-rv0183 , myctu-Rv0217c , myctu-Rv0220 , myctu-Rv0272c , myctu-RV0293C , myctu-RV0421C , myctu-RV0457C , myctu-RV0519C , myctu-RV0774C , myctu-RV0782 , myctu-RV0840C , myctu-Rv1069c , myctu-Rv1076 , myctu-RV1123C , myctu-Rv1184c , myctu-Rv1190 , myctu-Rv1191 , myctu-RV1192 , myctu-RV1215C , myctu-Rv1399c , myctu-Rv1400c , myctu-Rv1426c , myctu-RV1639C , myctu-RV1683 , myctu-RV1758 , myctu-Rv1800 , myctu-Rv1833c , myctu-RV2054 , myctu-RV2296 , myctu-Rv2385 , myctu-Rv2485c , myctu-RV2627C , myctu-RV2672 , myctu-RV2695 , myctu-RV2765 , myctu-RV2800 , myctu-RV2854 , myctu-Rv2970c , myctu-Rv3084 , myctu-Rv3097c , myctu-rv3177 , myctu-Rv3312c , myctu-RV3452 , myctu-RV3473C , myctu-Rv3487c , myctu-Rv3569c , myctu-Rv3591c , myctu-RV3724 , myctu-Rv3802c , myctu-Rv3822 , myctu-y0571 , myctu-y963 , myctu-Y1834 , myctu-y1835 , myctu-y2079 , myctu-Y2307 , myctu-yc88 , myctu-ym23 , myctu-ym24 , myctu-YR15 , myctu-yt28