Strigolactones (SLs) are plant hormones and important signaling molecules required to promote the arbuscular mycorrhizal (AM) symbiosis. While in plants an alpha/beta-hydrolase, DWARF14 (D14), was shown to act as a receptor that binds and cleaves SLs, the fungal receptor for SLs is unknown. Since AM fungi are currently not genetically tractable, in this study, we used the fungal pathogen Cryphonectria parasitica for which gene deletion protocols exist, as a model, as we have previously shown that it responds to SLs. By means of computational, biochemical and genetic analyses we identified a D14 structural homologue, CpD14. Molecular homology modelling and docking support the prediction that CpD14 interacts with and hydrolyses SLs. The recombinant CpD14 protein shows alpha/beta hydrolytic activity in vitro against the SLs synthetic analogue GR24; its enzymatic activity requires an intact Ser/His/Asp catalytic triad. CpD14 expression in the d14-1 loss-of-function Arabidopsis thaliana line did not rescue the plant mutant phenotype. However, gene inactivation by knock-out homologous recombination reduced fungal sensitivity to SLs. These results indicate that CpD14 is involved in SLs responses in C. parasitica and strengthen the role of SLs as multifunctional molecules acting in plant microbe-interactions.
Strigolactones (SLs) are plant hormones exuded in the rhizosphere with a signaling role for the development of arbuscular mycorrhizal (AM) fungi and as stimulants of seed germination of the parasitic weeds Orobanche, Phelipanche, and Striga, the most threatening weeds of major crops worldwide. Phelipanche ramosa is present mainly on rape, hemp, and tobacco in France. P. ramosa 2a preferentially attacks hemp, while P. ramosa 1 attacks rapeseed. The recently isolated cannalactone (14) from hemp root exudates has been characterized as a noncanonical SL that selectively stimulates the germination of P. ramosa 2a seeds in comparison with P. ramosa 1. In the present work, (-)-solanacol (5), a canonical orobanchol-type SL exuded by tobacco and tomato, was established to possess a remarkable selective germination stimulant activity for P. ramosa 2a seeds. Two cannalactone analogues, named (+/-)-SdL19 and (+/-)-SdL118, have been synthesized. They have an unsaturated acyclic carbon chain with a tertiary hydroxy group and a methyl or a cyclopropyl group instead of a cyclohexane A-ring, respectively. (+/-)-SdL analogues are able to selectively stimulate P. ramosa 2a, revealing that these minimal structural elements are key for this selective bioactivity. In addition, (+/-)-SdL19 is able to inhibit shoot branching in Pisum sativum and Arabidopsis thaliana and induces hyphal branching in the AM fungus Rhizophagus irregularis, like SLs.
KAI2 proteins are plant alpha/beta hydrolase receptors which perceive smoke-derived butenolide signals and endogenous, yet unidentified KAI2-ligands (KLs). The number of functional KAI2 receptors varies among species and KAI2 gene duplication and sub-functionalization likely plays an adaptative role by altering specificity towards different KLs. Legumes represent one of the largest families of flowering plants and contain many agronomic crops. Prior to their diversification, KAI2 underwent duplication resulting in KAI2A and KAI2B. Here we demonstrate that Pisum sativum KAI2A and KAI2B are active receptors and enzymes with divergent ligand stereoselectivity. KAI2B has a higher affinity for and hydrolyses a broader range of substrates including strigolactone-like stereoisomers. We determine the crystal structures of PsKAI2B in apo and butenolide-bound states. The biochemical, structural, and mass spectra analyses of KAI2s reveal a transient intermediate on the catalytic serine and a stable adduct on the catalytic histidine, confirming its role as a bona fide enzyme. Our work uncovers the stereoselectivity of ligand perception and catalysis by diverged KAI2 receptors and proposes adaptive sensitivity to KAR/KL and strigolactones by KAI2B.
Strigolactones (SLs) are intriguing phytohormones that not only regulate plant development and architecture but also interact with other organisms in the rhizosphere as root parasitic plants (Striga, Orobanche, and Phelipanche) and arbuscular mycorrhizal fungi. Starting with a pioneering work in 2003 for the isolation and identification of the SL receptor in parasitic weeds, fluorescence labeling of analogs has proven a major strategy to gain knowledge in SL perception and signaling. Here, we present novel chemical tools for understanding the SL perception based on the enzymatic properties of SL receptors. We designed different profluorescent SL Guillaume Clave (GC) probes and performed structure-activity relationship studies on pea, Arabidopsis thaliana, and Physcomitrium (formerly Physcomitrella) patens. The binding of the GC probes to PsD14/RMS3, AtD14, and OsD14 proteins was tested. We demonstrated that coumarin-based profluorescent probes were highly bioactive and well-adapted to dissect the enzymatic properties of SL receptors in pea and a resorufin profluorescent probe in moss, contrary to the commercially available fluorescein profluorescent probe, Yoshimulactone Green (YLG). These probes offer novel opportunities for the studies of SL in various plants.
Uncovering the basis of small-molecule hormone receptors' evolution is paramount to a complete understanding of how protein structure drives function. In plants, hormone receptors for strigolactones are well suited to evolutionary inquiries because closely related homologs have different ligand preferences. More importantly, because of facile plant transgenic systems, receptors can be swapped and quickly assessed functionally in vivo. Here, we show that only three mutations are required to turn the nonstrigolactone receptor, KAI2, into a receptor that recognizes the plant hormone strigolactone. This modified receptor still retains its native function to perceive KAI2 ligands. Our directed evolution studies indicate that only a few keystone mutations are required to increase receptor promiscuity of KAI2, which may have implications for strigolactone receptor evolution in parasitic plants.
In angiosperms, the alpha/beta hydrolase DWARF14 (D14), along with the F-box protein MORE AXILLARY GROWTH2 (MAX2), perceives strigolactones (SL) to regulate developmental processes. The key SL biosynthetic enzyme CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) is present in the moss Physcomitrium patens, and PpCCD8-derived compounds regulate moss extension. The PpMAX2 homolog is not involved in the SL response, but 13 PpKAI2LIKE (PpKAI2L) genes homologous to the D14 ancestral paralog KARRIKIN INSENSITIVE2 (KAI2) encode candidate SL receptors. In Arabidopsis thaliana, AtKAI2 perceives karrikins and the elusive endogenous KAI2-Ligand (KL). Here, germination assays of the parasitic plant Phelipanche ramosa suggested that PpCCD8-derived compounds are likely non-canonical SLs. (+)-GR24 SL analog is a good mimic for PpCCD8-derived compounds in P. patens, while the effects of its enantiomer (-)-GR24, a KL mimic in angiosperms, are minimal. Interaction and binding assays of seven PpKAI2L proteins pointed to the stereoselectivity towards (-)-GR24 for a single clade of PpKAI2L (eu-KAI2). Enzyme assays highlighted the peculiar behavior of PpKAI2L-H. Phenotypic characterization of Ppkai2l mutants showed that eu-KAI2 genes are not involved in the perception of PpCCD8-derived compounds but act in a PpMAX2-dependent pathway. By contrast, mutations in PpKAI2L-G, and -J genes abolished the response to the (+)-GR24 enantiomer, suggesting that PpKAI2L-G, and -J proteins are receptors for moss SLs.
Published as a preprint Lopez-Obando_2020_Biorxiv__
        
Title: Synthesis of Profluorescent Strigolactone Probes for Biochemical Studies de Saint Germain A, Clave G, Boyer FD Ref: Methods Mol Biol, 2309:219, 2021 : PubMed
In this chapter, we will describe a method we set up to synthesize two profluorescent strigolactone (SL) mimic probes (GC240 and GC242) and the optimized protocols developed to study the enzymatic properties of various strigolactone receptors. The Arabidopsis AtD14 SL receptor is used here as a model for this purpose.
Phelipanche ramosa is an obligate root-parasitic weed that threatens major crops in central Europe. In order to germinate, it must perceive various structurally divergent host-exuded signals, including isothiocyanates (ITCs) and strigolactones (SLs). However, the receptors involved are still uncharacterized. Here, we identify five putative SL receptors in P. ramosa and show that PrKAI2d3 is involved in the stimulation of seed germination. We demonstrate the high plasticity of PrKAI2d3, which allows it to interact with different chemicals, including ITCs. The SL perception mechanism of PrKAI2d3 is similar to that of endogenous SLs in non-parasitic plants. We provide evidence that PrKAI2d3 enzymatic activity confers hypersensitivity to SLs. Additionally, we demonstrate that methylbutenolide-OH binds PrKAI2d3 and stimulates P. ramosa germination with bioactivity comparable to that of ITCs. This study demonstrates that P. ramosa has extended its signal perception system during evolution, a fact that should be considered for the development of specific and efficient biocontrol methods.
Phelipanche ramosa is an obligate root-parasitic weed threatening major crops in central Europe. For its germination, it has to perceive various structurally diverging host-exuded signals, including isothiocyanates (ITCs) and strigolactones (SLs). However, the receptors involved are still uncharacterized. Here, we identified five putative SL receptors in P. ramosa, of which PrKAI2d3 is involved in seed germination stimulation. We established the high plasticity of PrKAI2d3, allowing interaction with different chemicals, including ITCs. The SL perception mechanism of PrKAI2d3 is similar to that of endogenous SLs in non-parasitic plants. We provide evidence that the PrKAI2d3 enzymatic activity confers hypersensitivity to SLs. Additionally, we demonstrated that methylbutenolide-OH binds PrKAI2d3 and stimulates P. ramosa germination with a bioactivity comparable to that of ITCs. This study highlights that P. ramosa has extended its signal perception system during evolution, a fact to be considered in the development of specific and efficient biocontrol methods.
Strigolactone (SL) plant hormones control plant architecture and are key players in both symbiotic and parasitic interactions. GR24, a synthetic SL analog, is the worldwide reference compound used in all bioassays for investigating the role of SLs in plant development and in rhizospheric interactions. In 2012, the first characterization of the SL receptor reported the detection of an unknown compound after incubation of GR24 samples with the SL receptor. We reveal here the origin of this compound (P270), which comes from a by-product formed during GR24 chemical synthesis. We present the identification of this by-product, named contalactone. A proposed chemical pathway for its formation is provided as well as an evaluation of its bioactivity on pea, Arabidopsis, root parasitic plant seeds and AM fungi, characterizing it as a SL mimic. Quality of GR24 samples can be easily checked by carrying out microscale hydrolysis in a basic aqueous medium to easily detect P270 as indicator of the presence of the contalactone impurity. In all cases, before being used for bioassays, GR24 must be careful purified by preparative HPLC.
Strigolactones (SLs) are key hormonal regulators of flowering plant development and are widely distributed amongst streptophytes. In Arabidopsis, SLs signal via the F-box protein MORE AXILLARY GROWTH2 (MAX2), affecting multiple aspects of development including shoot branching, root architecture and drought tolerance. Previous characterization of a Physcomitrella patens moss mutant with defective SL synthesis supports an ancient role for SLs in land plants, but the origin and evolution of signalling pathway components are unknown. Here we investigate the function of a moss homologue of MAX2, PpMAX2, and characterize its role in SL signalling pathway evolution by genetic analysis. We report that the moss Ppmax2 mutant shows very distinct phenotypes from the moss SL-deficient mutant. In addition, the Ppmax2 mutant remains sensitive to SLs, showing a clear transcriptional SL response in dark conditions, and the response to red light is also altered. These data suggest divergent evolutionary trajectories for SL signalling pathway evolution in mosses and vascular plants. In P. patens, the primary roles for MAX2 are in photomorphogenesis and moss early development rather than in SL response, which may require other, as yet unidentified, factors.
The cell-to-cell transport of signaling molecules is essential for multicellular organisms to coordinate the action of their cells. Recent studies identified DWARF14 (D14) as a receptor of strigolactones (SLs), molecules that act as plant hormones and inhibit shoot branching. Here, we demonstrate that RAMOSUS3, a pea ortholog of D14, works as a graft-transmissible signal to suppress shoot branching. In addition, we show that D14 protein is contained in phloem sap and transported through the phloem to axillary buds in rice. SLs are not required for the transport of D14 protein. Disruption of D14 transport weakens the suppression of axillary bud outgrowth of rice. Taken together, we conclude that the D14 protein works as an intercellular signaling molecule to fine-tune SL function. Our findings provide evidence that the intercellular transport of a receptor can regulate the action of plant hormones.
Strigolactone plant hormones control plant architecture and are key players in both symbiotic and parasitic interactions. They contain an ABC tricyclic lactone connected to a butenolide group, the D ring. The DWARF14 (D14) strigolactone receptor belongs to the superfamily of alpha/beta-hydrolases, and is known to hydrolyze the bond between the ABC lactone and the D ring. Here we characterized the binding and catalytic functions of RAMOSUS3 (RMS3), the pea (Pisum sativum) ortholog of rice (Oryza sativa) D14 strigolactone receptor. Using new profluorescent probes with strigolactone-like bioactivity, we found that RMS3 acts as a single-turnover enzyme that explains its apparent low enzymatic rate. We demonstrated the formation of a covalent RMS3-D-ring complex, essential for bioactivity, in which the D ring was attached to histidine 247 of the catalytic triad. These results reveal an undescribed mechanism of plant hormone reception in which the receptor performs an irreversible enzymatic reaction to generate its own ligand.
Strigolactones (SLs) are known not only as plant hormones, but also as rhizosphere signals for establishing symbiotic and parasitic interactions. The design of new specific SL analogs is a challenging goal in understanding the basic plant biology and is also useful to control plant architectures without favoring the development of parasitic plants. Two different molecules (23 (3'-methyl-GR24), 31 (thia-3'-methyl-debranone-like molecule)) already described, and a new one (AR36), for which the synthesis is presented, are biologically compared with the well-known GR24 and the recently identified CISA-1. These different structures emphasize the wide range of parts attached to the D-ring for the bioactivity as a plant hormone. These new compounds possess a common dimethylbutenolide motif but their structure varies in the ABC part of the molecules: 23 has the same ABC part as GR24, while 31 and AR36 carry, respectively, an aromatic ring and an acyclic carbon chain. Detailed information is given for the bioactivity of such derivatives in strigolactone synthesis or in perception mutant plants (pea rms1 and rms4, Arabidopsis max2 and, max4) for different hormonal functions along with their action in the rhizosphere on arbuscular mycorrhizal hyphal growth and parasitic weed germination.
Strigolactones (SLs), a group of small carotenoid-derived molecules, were first known for their function in the rhizosphere in both symbiotic and parasitic interactions. Most of the progress for deciphering SL biosynthesis and signalling pathways comes from the use of high branching mutants identified in several species demonstrating that SLs also play a hormonal role in plant development. How SLs are perceived by the different organisms on which they show bioactivity is a current major challenge for the growing SL research community. These molecules very likely predate the colonization of land by plants and represent a fascinating example of signalling molecules involved in key innovations during plant evolution.
Strigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4. Cytological analysis of internode epidermal cells indicates that SLs control cell number but not cell length, suggesting that SL may affect stem elongation by stimulating cell division. Consequently, SLs can repress (in axillary buds) or promote (in the stem) cell division in a tissue-dependent manner. Because gibberellins (GAs) increase internode length by affecting both cell division and cell length, we tested if SLs stimulate internode elongation by affecting GA metabolism or signaling. Genetic analyses using SL-deficient and GA-deficient or DELLA-deficient double mutants, together with molecular and physiological approaches, suggest that SLs act independently from GAs to stimulate internode elongation.
Initially known for their role in the rhizosphere in stimulating the seed germination of parasitic weeds such as the Striga and Orobanche species, and later as host recognition signals for arbuscular mycorrhizal fungi, strigolactones (SLs) were recently rediscovered as a new class of plant hormones involved in the control of shoot branching in plants. Herein, we report the synthesis of new SL analogs and, to our knowledge, the first study of SL structure-activity relationships for their hormonal activity in garden pea (Pisum sativum). Comparisons with their action for the germination of broomrape (Phelipanche ramosa) are also presented. The pea rms1 SL-deficient mutant was used in a SL bioassay based on axillary bud length after direct SL application on the bud. This assay was compared with an assay where SLs were fed via the roots using hydroponics and with a molecular assay in which transcript levels of BRANCHED1, the pea homolog of the maize TEOSINTE BRANCHED1 gene were quantified in axillary buds only 6 h after application of SLs. We have demonstrated that the presence of a Michael acceptor and a methylbutenolide or dimethylbutenolide motif in the same molecule is essential. It was established that the more active analog 23 with a dimethylbutenolide as the D-ring could be used to control the plant architecture without strongly favoring the germination of P. ramosa seeds. Bold numerals refer to numbers of compounds.
        
Title: [Strigolactones, a novel class of plant hormones controlling branching] de Saint Germain A, Braun N, Rameau C Ref: Biol Aujourdhui, 204:43, 2010 : PubMed
Plant architecture is a major trait for plant survival and plant fitness and has a huge influence on the agronomical value for most crops. The classical theory of apical dominance based on decapitation experiments suggested that two major plant hormones, auxin and cytokinins, were acting antagonistically on bud outgrowth to promote or repress branching. However this theory was challenged in the late 1930's by Snow who suggested the existence of a second messenger to auxin, as auxin was not acting directly to repress branching. The use of branching mutants in pea, Arabidopsis and rice led to the discovery of a new carotenoid-derived signal repressing branching. Genes involved in synthesis (RMS1, RMS5) as well as in response (RMS4) to this new signal have been identified and have given rise to a new model of the branching control. Two independent group have recently shown, one on pea, the other on rice, that strigolactones correspond to this novel signal which represses branching and to the secondary messenger in the theory of apical dominance. Strigolactones have been first identified for their role in germination of parasitic plants like Striga or Orobanche. They also play a critical role in the widespread association between 80% of plants and fungi, the arbuscular mycorrhizal symbiosis, as they are necessary for interaction between certain plants and fungi in the rhizosphere.