Diener A

References (3)

Title : Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium - Ma_2010_Nature_464_367
Author(s) : Ma LJ , van der Does HC , Borkovich KA , Coleman JJ , Daboussi MJ , Di Pietro A , Dufresne M , Freitag M , Grabherr M , Henrissat B , Houterman PM , Kang S , Shim WB , Woloshuk C , Xie X , Xu JR , Antoniw J , Baker SE , Bluhm BH , Breakspear A , Brown DW , Butchko RA , Chapman S , Coulson R , Coutinho PM , Danchin EG , Diener A , Gale LR , Gardiner DM , Goff S , Hammond-Kosack KE , Hilburn K , Hua-Van A , Jonkers W , Kazan K , Kodira CD , Koehrsen M , Kumar L , Lee YH , Li L , Manners JM , Miranda-Saavedra D , Mukherjee M , Park G , Park J , Park SY , Proctor RH , Regev A , Ruiz-Roldan MC , Sain D , Sakthikumar S , Sykes S , Schwartz DC , Turgeon BG , Wapinski I , Yoder O , Young S , Zeng Q , Zhou S , Galagan J , Cuomo CA , Kistler HC , Rep M
Ref : Nature , 464 :367 , 2010
Abstract : Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.
ESTHER : Ma_2010_Nature_464_367
PubMedSearch : Ma_2010_Nature_464_367
PubMedID: 20237561
Gene_locus related to this paper: fusox-a0a1d3s5h0 , gibf5-fus2 , fusof-f9f2k2 , fusof-f9f3l6 , fusof-f9f6t8 , fusof-f9f6v2 , fusof-f9f132 , fusof-f9f781 , fusof-f9fd72 , fusof-f9fd90 , fusof-f9fem0 , fusof-f9fhk2 , fusof-f9fj19 , fusof-f9fj20 , fusof-f9fki8 , fusof-f9fmx2 , fusof-f9fnt4 , fusof-f9fpy4 , fusof-f9fvs6 , fusof-f9fwu0 , fusof-f9fxz4 , fusof-f9fzy5 , fusof-f9g2a2 , fusof-f9g3b1 , fusof-f9g5h7 , fusof-f9g6e6 , fusof-f9g6y7 , fusof-f9g7b0 , fusof-f9g797 , fusof-f9g972 , fusof-f9ga50 , fusof-f9gck4 , fusof-f9gd15 , gibze-a8w610 , gibze-b1pdn0 , gibze-i1r9e6 , gibze-i1rda9 , gibze-i1rdk7 , gibze-i1rec8 , gibze-i1rgs0 , gibze-i1rgy0 , gibze-i1rh52 , gibze-i1rhi8 , gibze-i1rig9 , gibze-i1rip5 , gibze-i1rpg6 , gibze-i1rsg2 , gibze-i1rv36 , gibze-i1rxm5 , gibze-i1rxp8 , gibze-i1rxv5 , gibze-i1s1u3 , gibze-i1s3j9 , gibze-i1s6l7 , gibze-i1s8i8 , gibze-i1s9x4 , gibze-q4huy1 , gibze-i1rg17 , fuso4-j9mvr9 , fuso4-j9ngs6 , fuso4-j9niq8 , fuso4-j9nqm2 , gibze-i1rb76 , gibze-i1s1m7 , gibze-i1s3z6 , gibze-i1rd78 , gibze-i1rgl9 , gibze-i1rjp7 , gibze-i1s1q6 , gibze-i1ri35 , gibze-i1rf76 , gibze-i1rhp3 , fusc1-n4uj11 , fusc4-n1s9p6 , gibf5-s0dqr2 , gibm7-w7n1b5 , fusof-f9g6q0 , gibm7-w7n497 , fusox-x0bme4 , gibm7-w7mcf8 , gibm7-w7mak5 , fusox-x0a2c5 , gibm7-w7mum7 , fusox-w9iyc7 , gibm7-w7maw6 , gibm7-w7msi0 , gibm7-w7luf0 , gibm7-w7msa3 , gibm7-w7mna8 , gibm7-w7n8b7 , gibm7-w7n564 , fusox-w9jpi0 , gibm7-w7ngc3 , gibm7-w7m4v6 , gibm7-w7m4v2 , gibm7-w7lt61 , gibm7-w7mly6 , gibm7-w7ncn3 , fusox-w9ibd7 , fusof-f9fnm6 , gibm7-w7n526 , gibza-a0a016pda4 , gibza-a0a016pl96 , gibm7-w7muq1 , fusof-f9gfd3 , gibm7-w7mt52 , gibze-i1rjb5 , gibf5-s0ehu3 , fusox-w9hvf0 , gibze-i1rkc4 , gibm7-w7mv30 , gibze-a0a1c3ylb1 , fuso4-a0a0c4diy4 , gibm7-w7n4n0 , gibze-gra11 , gibze-fsl2 , gibf5-fub4 , gibf5-fub5 , gibf5-fus5 , gibm7-dlh1

Title : Facilitatory and inhibitory muscarine receptors on the rat phrenic nerve: effects of pirenzepine and dicyclomine - Wessler_1988_Naunyn.Schmiedebergs.Arch.Pharmacol_338_138
Author(s) : Wessler I , Diener A , Offermann M
Ref : Naunyn Schmiedebergs Arch Pharmacol , 338 :138 , 1988
Abstract : Neuronal transmitter stores of the rat phrenic nerve were labelled by an incubation with [3H]choline. Release of [3H]acetylcholine was elicited either by a short (100 pulses, 5 Hz) or by a long (1500 pulses, 5 or 25 Hz) period of electrical nerve stimulation. Pirenzepine and dicyclomine enhanced transmitter release evoked by the short stimulation period. Both antagonists reduced transmitter release evoked by the long stimulation period. Pirenzepine reduced transmitter release at low concentrations (1 nmol/l) whereas a higher concentration was necessary for the enhancing effect; the opposite pattern was found for dicyclomine. A low concentration of oxotremorine (10 nmol/l) enhanced and a high concentration (1 mumol/l) reduced transmitter release evoked by the short stimulation period. Both effects could be prevented by a low concentration of pirenzepine (10 nmol/l). It is concluded that facilitatory and inhibitory muscarine receptors are present on the motor nerve. A short stimulation period activates predominantly the negative muscarinic feedback, whereas during a long period of continuous nerve stimulation the positive muscarinic feedback mechanism is additionally activated. Both the facilitatory and inhibitory receptors might be regarded as M1-receptors but differences in the pharmacological properties between both receptor populations appear possible.
ESTHER : Wessler_1988_Naunyn.Schmiedebergs.Arch.Pharmacol_338_138
PubMedSearch : Wessler_1988_Naunyn.Schmiedebergs.Arch.Pharmacol_338_138
PubMedID: 2847058

Title : Muscarine receptors on the rat phrenic nerve, evidence for positive and negative muscarinic feedback mechanisms - Wessler_1987_Naunyn.Schmiedebergs.Arch.Pharmacol_335_605
Author(s) : Wessler I , Karl M , Mai M , Diener A
Ref : Naunyn Schmiedebergs Arch Pharmacol , 335 :605 , 1987
Abstract : Neuronal transmitter stores of the rat phrenic nerve were labelled by incubation with [3H]choline. Release of [3H]acetylcholine was elicited by electrical nerve stimulation (100 or 1,500 pulses, 5 or 25 Hz) or by high potassium (27 mmol/l) and the effects of the muscarine receptor agonist oxotremorine and the antagonist scopolamine were investigated. Neither oxotremorine nor scopolamine affected the basal tritium efflux. A low concentration of oxotremorine (10 nmol/l) enhanced and a high concentration of oxotremorine (1 mumol/l) reduced the electrically evoked [3H]acetylcholine release. Likewise, the high potassium-evoked [3H]acetylcholine release was reduced by a high concentration of oxotremorine. Both effects of oxotremorine, increase and decrease, were abolished by a pretreatment (30 min before the first stimulation period) with 0.1 mumol/l scopolamine. Scopolamine (0.1 mumol/l) alone, enhanced [3H]acetylcholine release evoked by 100 pulses (5 Hz) or by high potassium. Scopolamine, however, reduced [3H]acetylcholine release evoked by 1,500 pulses (5 Hz or 25 Hz). The concentration-response curves obtained for scopolamine under these latter stimulation conditions were flat-running and biphasic which might indicate the involvement of two opposite effects (increase and decrease) of scopolamine under the present stimulation conditions. Both effects of scopolamine were reduced in the presence of 10 mumol/l neostigmine.
ESTHER : Wessler_1987_Naunyn.Schmiedebergs.Arch.Pharmacol_335_605
PubMedSearch : Wessler_1987_Naunyn.Schmiedebergs.Arch.Pharmacol_335_605
PubMedID: 3627281