Xu JR

References (7)

Title : Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics - Zhang_2014_Nat.Commun_5_3849
Author(s) : Zhang Y , Zhang K , Fang A , Han Y , Yang J , Xue M , Bao J , Hu D , Zhou B , Sun X , Li S , Wen M , Yao N , Ma LJ , Liu Y , Zhang M , Huang F , Luo C , Zhou L , Li J , Chen Z , Miao J , Wang S , Lai J , Xu JR , Hsiang T , Peng YL , Sun W
Ref : Nat Commun , 5 :3849 , 2014
Abstract : Ustilaginoidea virens (Cooke) Takah is an ascomycetous fungus that causes rice false smut, a devastating emerging disease worldwide. Here we report a 39.4 Mb draft genome sequence of U. virens that encodes 8,426 predicted genes. The genome has ~25% repetitive sequences that have been affected by repeat-induced point mutations. Evolutionarily, U. virens is close to the entomopathogenic Metarhizium spp., suggesting potential host jumping across kingdoms. U. virens possesses reduced gene inventories for polysaccharide degradation, nutrient uptake and secondary metabolism, which may result from adaptations to the specific floret infection and biotrophic lifestyles. Consistent with their potential roles in pathogenicity, genes for secreted proteins and secondary metabolism and the pathogen-host interaction database genes are highly enriched in the transcriptome during early infection. We further show that 18 candidate effectors can suppress plant hypersensitive responses. Together, our analyses offer new insights into molecular mechanisms of evolution, biotrophy and pathogenesis of U. virens.
ESTHER : Zhang_2014_Nat.Commun_5_3849
PubMedSearch : Zhang_2014_Nat.Commun_5_3849
PubMedID: 24846013
Gene_locus related to this paper: ustvr-a0a063bxn3

Title : A New Motif in the N-Terminal of Acetylcholinesterase Triggers Amyloid-beta Aggregation and Deposition - Hou_2014_CNS.Neurosci.Ther_20_59
Author(s) : Hou LN , Xu JR , Zhao QN , Gao XL , Cui YY , Xu J , Wang H , Chen HZ
Ref : CNS Neurosci Ther , 20 :59 , 2014
Abstract : BACKGROUND AND PURPOSE: As a molecular chaperone, acetylcholinesterase (AChE; EC 3.1.1.7) plays a critical role in the pathogenesis of Alzheimer's disease (AD). The peripheral anionic site (PAS) of AChE has been indicated as the amyloid-beta (Abeta) binding domain. The goal of this study was to determine other motifs in AChE involved in Abeta aggregation and deposition. METHODS AND
RESULTS: The beta-hairpin in monomeric Abeta is the key motif of nucleation-dependent Abeta self-aggregation. As AChE could induce Abeta aggregation and deposition, we searched AChE for beta-hairpin structures. In A11-specific dot blot assay, AChE was detected by an oligomer-specific antibody A11, implying the existence of beta-hairpin structures in AChE as beta-hairpin was the core motif of oligomers. A molecular superimposing approach further revealed that the N-terminal region, from Glu7 to Ile20, in AChE (AChE 7-20) was similar to the beta-hairpin domain in Abeta. The results of further dot blot assays, thioflavin T fluorescence assays, and electron microscopy imaging experiments, indicated that the N-terminal synthetic peptide AChE7-20 had nearly the same ability as AChE with regard to triggering Abeta aggregation and deposition.
CONCLUSIONS: AChE 7-20, a beta-hairpin region in AChE, might be a new motif in AChE capable of triggering Abeta aggregation and deposition. This finding will be helpful to design new and more effective Abeta aggregation inhibitors for AD treatment.
ESTHER : Hou_2014_CNS.Neurosci.Ther_20_59
PubMedSearch : Hou_2014_CNS.Neurosci.Ther_20_59
PubMedID: 23981668

Title : Bis(9)-(-)-nor-meptazinol as a novel dual-binding AChEI potently ameliorates scopolamine-induced cognitive deficits in mice - Liu_2013_Pharmacol.Biochem.Behav_104_138
Author(s) : Liu T , Xia Z , Zhang WW , Xu JR , Ge XX , Li J , Cui Y , Qiu ZB , Xu J , Xie Q , Wang H , Chen HZ
Ref : Pharmacol Biochem Behav , 104 :138 , 2013
Abstract : Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder which is characterized by the progressive deterioration of cognition and the emergence of behavioral and psychological symptoms in aging patients. Given that the clinical effectiveness of acetylcholinesterase inhibitors (AChEIs) has still been questioned due to dubious disease-modifying effects, the multi-target directed ligand (MTDL) design has become an emerging strategy for developing new drugs for AD treatment. Bis(9)-(-)-nor-meptazinol (Bis-Mep) was firstly reported by us as a novel MTDL for both potent cholinesterase and amyloid-beta aggregation inhibition. In this study, we further explored its AChE inhibition kinetic features and cognitive amelioration. Bis-Mep was found to be a mixed-type inhibitor on electric eel AChE by enzyme kinetic study. Molecular docking revealed that two "water bridges" located at the two wings of Bis-Mep stabilized its interaction with both catalytic and peripheral anionic sites of AChE. Furthermore, subcutaneous administration of Bis-Mep (10, 100 or 1000ng/kg) significantly reversed the scopolamine-induced memory deficits in a typical bell-shaped dose-response manner. The maximal cognitive amelioration of Bis-Mep was achieved at 100ng/kg, comparable with the effect of a reference drug Huperzine A at 1mg/kg and also the relevant AChE inhibition in brain. These findings suggested that Bis-Mep might be a promising dual-binding AChE inhibitor for potential AD therapeutics.
ESTHER : Liu_2013_Pharmacol.Biochem.Behav_104_138
PubMedSearch : Liu_2013_Pharmacol.Biochem.Behav_104_138
PubMedID: 23262302

Title : Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae - Xue_2012_PLoS.Genet_8_e1002869
Author(s) : Xue M , Yang J , Li Z , Hu S , Yao N , Dean RA , Zhao W , Shen M , Zhang H , Li C , Liu L , Cao L , Xu X , Xing Y , Hsiang T , Zhang Z , Xu JR , Peng YL
Ref : PLoS Genet , 8 :e1002869 , 2012
Abstract : Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice worldwide. The fungal pathogen is notorious for its ability to overcome host resistance. To better understand its genetic variation in nature, we sequenced the genomes of two field isolates, Y34 and P131. In comparison with the previously sequenced laboratory strain 70-15, both field isolates had a similar genome size but slightly more genes. Sequences from the field isolates were used to improve genome assembly and gene prediction of 70-15. Although the overall genome structure is similar, a number of gene families that are likely involved in plant-fungal interactions are expanded in the field isolates. Genome-wide analysis on asynonymous to synonymous nucleotide substitution rates revealed that many infection-related genes underwent diversifying selection. The field isolates also have hundreds of isolate-specific genes and a number of isolate-specific gene duplication events. Functional characterization of randomly selected isolate-specific genes revealed that they play diverse roles, some of which affect virulence. Furthermore, each genome contains thousands of loci of transposon-like elements, but less than 30% of them are conserved among different isolates, suggesting active transposition events in M. oryzae. A total of approximately 200 genes were disrupted in these three strains by transposable elements. Interestingly, transposon-like elements tend to be associated with isolate-specific or duplicated sequences. Overall, our results indicate that gain or loss of unique genes, DNA duplication, gene family expansion, and frequent translocation of transposon-like elements are important factors in genome variation of the rice blast fungus.
ESTHER : Xue_2012_PLoS.Genet_8_e1002869
PubMedSearch : Xue_2012_PLoS.Genet_8_e1002869
PubMedID: 22876203
Gene_locus related to this paper: maggr-q0pnd2 , mago7-g4mk92 , mago7-g4mkc6 , mago7-g4mkk9 , mago7-g4mns9 , mago7-g4ms19 , mago7-g4mvm8 , mago7-g4mvw5 , mago7-g4mvw6 , mago7-g4n6j4 , mago7-g4nal1 , mago7-g4nba0 , mago7-g4nbs0 , mago7-g4nc41 , mago7-g4ncz9 , mago7-g4nhn9 , mago7-g4nil3 , mago7-g4nky6 , mago7-g5ehg6 , mago7-g5ehv6 , mago7-g4msm5 , magoy-l7il05 , magoy-l7i6m7 , magoy-l7ic25

Title : Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium - Ma_2010_Nature_464_367
Author(s) : Ma LJ , van der Does HC , Borkovich KA , Coleman JJ , Daboussi MJ , Di Pietro A , Dufresne M , Freitag M , Grabherr M , Henrissat B , Houterman PM , Kang S , Shim WB , Woloshuk C , Xie X , Xu JR , Antoniw J , Baker SE , Bluhm BH , Breakspear A , Brown DW , Butchko RA , Chapman S , Coulson R , Coutinho PM , Danchin EG , Diener A , Gale LR , Gardiner DM , Goff S , Hammond-Kosack KE , Hilburn K , Hua-Van A , Jonkers W , Kazan K , Kodira CD , Koehrsen M , Kumar L , Lee YH , Li L , Manners JM , Miranda-Saavedra D , Mukherjee M , Park G , Park J , Park SY , Proctor RH , Regev A , Ruiz-Roldan MC , Sain D , Sakthikumar S , Sykes S , Schwartz DC , Turgeon BG , Wapinski I , Yoder O , Young S , Zeng Q , Zhou S , Galagan J , Cuomo CA , Kistler HC , Rep M
Ref : Nature , 464 :367 , 2010
Abstract : Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.
ESTHER : Ma_2010_Nature_464_367
PubMedSearch : Ma_2010_Nature_464_367
PubMedID: 20237561
Gene_locus related to this paper: fusox-a0a1d3s5h0 , gibf5-fus2 , fusof-f9f2k2 , fusof-f9f3l6 , fusof-f9f6t8 , fusof-f9f6v2 , fusof-f9f132 , fusof-f9f781 , fusof-f9fd72 , fusof-f9fd90 , fusof-f9fem0 , fusof-f9fhk2 , fusof-f9fj19 , fusof-f9fj20 , fusof-f9fki8 , fusof-f9fmx2 , fusof-f9fnt4 , fusof-f9fpy4 , fusof-f9fvs6 , fusof-f9fwu0 , fusof-f9fxz4 , fusof-f9fzy5 , fusof-f9g2a2 , fusof-f9g3b1 , fusof-f9g5h7 , fusof-f9g6e6 , fusof-f9g6y7 , fusof-f9g7b0 , fusof-f9g797 , fusof-f9g972 , fusof-f9ga50 , fusof-f9gck4 , fusof-f9gd15 , gibze-a8w610 , gibze-b1pdn0 , gibze-i1r9e6 , gibze-i1rda9 , gibze-i1rdk7 , gibze-i1rec8 , gibze-i1rgs0 , gibze-i1rgy0 , gibze-i1rh52 , gibze-i1rhi8 , gibze-i1rig9 , gibze-i1rip5 , gibze-i1rpg6 , gibze-i1rsg2 , gibze-i1rv36 , gibze-i1rxm5 , gibze-i1rxp8 , gibze-i1rxv5 , gibze-i1s1u3 , gibze-i1s3j9 , gibze-i1s6l7 , gibze-i1s8i8 , gibze-i1s9x4 , gibze-q4huy1 , gibze-i1rg17 , fuso4-j9mvr9 , fuso4-j9ngs6 , fuso4-j9niq8 , fuso4-j9nqm2 , gibze-i1rb76 , gibze-i1s1m7 , gibze-i1s3z6 , gibze-i1rd78 , gibze-i1rgl9 , gibze-i1rjp7 , gibze-i1s1q6 , gibze-i1ri35 , gibze-i1rf76 , gibze-i1rhp3 , fusc1-n4uj11 , fusc4-n1s9p6 , gibf5-s0dqr2 , gibm7-w7n1b5 , fusof-f9g6q0 , gibm7-w7n497 , fusox-x0bme4 , gibm7-w7mcf8 , gibm7-w7mak5 , fusox-x0a2c5 , gibm7-w7mum7 , fusox-w9iyc7 , gibm7-w7maw6 , gibm7-w7msi0 , gibm7-w7luf0 , gibm7-w7msa3 , gibm7-w7mna8 , gibm7-w7n8b7 , gibm7-w7n564 , fusox-w9jpi0 , gibm7-w7ngc3 , gibm7-w7m4v6 , gibm7-w7m4v2 , gibm7-w7lt61 , gibm7-w7mly6 , gibm7-w7ncn3 , fusox-w9ibd7 , fusof-f9fnm6 , gibm7-w7n526 , gibza-a0a016pda4 , gibza-a0a016pl96 , gibm7-w7muq1 , fusof-f9gfd3 , gibm7-w7mt52 , gibze-i1rjb5 , gibf5-s0ehu3 , fusox-w9hvf0 , gibze-i1rkc4 , gibm7-w7mv30 , gibze-a0a1c3ylb1 , fuso4-a0a0c4diy4 , gibm7-w7n4n0 , gibze-gra11 , gibze-fsl2 , gibf5-fub4 , gibf5-fub5 , gibf5-fus5 , gibm7-dlh1

Title : The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization - Cuomo_2007_Science_317_1400
Author(s) : Cuomo CA , Guldener U , Xu JR , Trail F , Turgeon BG , Di Pietro A , Walton JD , Ma LJ , Baker SE , Rep M , Adam G , Antoniw J , Baldwin T , Calvo S , Chang YL , Decaprio D , Gale LR , Gnerre S , Goswami RS , Hammond-Kosack K , Harris LJ , Hilburn K , Kennell JC , Kroken S , Magnuson JK , Mannhaupt G , Mauceli E , Mewes HW , Mitterbauer R , Muehlbauer G , Munsterkotter M , Nelson D , O'Donnell K , Ouellet T , Qi W , Quesneville H , Roncero MI , Seong KY , Tetko IV , Urban M , Waalwijk C , Ward TJ , Yao J , Birren BW , Kistler HC
Ref : Science , 317 :1400 , 2007
Abstract : We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher rates of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.
ESTHER : Cuomo_2007_Science_317_1400
PubMedSearch : Cuomo_2007_Science_317_1400
PubMedID: 17823352
Gene_locus related to this paper: fusof-f9fxz4 , gibze-a8w610 , gibze-b1pdn0 , gibze-i1r9e6 , gibze-i1rda9 , gibze-i1rdk7 , gibze-i1rec8 , gibze-i1rgs0 , gibze-i1rgy0 , gibze-i1rh52 , gibze-i1rhi8 , gibze-i1rig9 , gibze-i1rip5 , gibze-i1rpg6 , gibze-i1rsg2 , gibze-i1rv36 , gibze-i1rxm5 , gibze-i1rxp8 , gibze-i1rxv5 , gibze-i1s1u3 , gibze-i1s3j9 , gibze-i1s6l7 , gibze-i1s8i8 , gibze-i1s9x4 , gibze-ppme1 , gibze-q4huy1 , gibze-i1rg17 , gibze-i1rb76 , gibze-i1s1m7 , gibze-i1s3z6 , gibze-i1rd78 , gibze-i1rgl9 , gibze-i1rjp7 , gibze-i1s1q6 , gibze-i1ri35 , gibze-i1rf76 , gibze-i1rhp3 , gibza-a0a016pda4 , gibza-a0a016pl96 , gibze-i1rjb5 , gibze-i1rkc4 , gibze-a0a1c3ylb1 , gibze-gra11 , gibze-fsl2

Title : The genome sequence of the rice blast fungus Magnaporthe grisea - Dean_2005_Nature_434_980
Author(s) : Dean RA , Talbot NJ , Ebbole DJ , Farman ML , Mitchell TK , Orbach MJ , Thon M , Kulkarni R , Xu JR , Pan H , Read ND , Lee YH , Carbone I , Brown D , Oh YY , Donofrio N , Jeong JS , Soanes DM , Djonovic S , Kolomiets E , Rehmeyer C , Li W , Harding M , Kim S , Lebrun MH , Bohnert H , Coughlan S , Butler J , Calvo S , Ma LJ , Nicol R , Purcell S , Nusbaum C , Galagan JE , Birren BW
Ref : Nature , 434 :980 , 2005
Abstract : Magnaporthe grisea is the most destructive pathogen of rice worldwide and the principal model organism for elucidating the molecular basis of fungal disease of plants. Here, we report the draft sequence of the M. grisea genome. Analysis of the gene set provides an insight into the adaptations required by a fungus to cause disease. The genome encodes a large and diverse set of secreted proteins, including those defined by unusual carbohydrate-binding domains. This fungus also possesses an expanded family of G-protein-coupled receptors, several new virulence-associated genes and large suites of enzymes involved in secondary metabolism. Consistent with a role in fungal pathogenesis, the expression of several of these genes is upregulated during the early stages of infection-related development. The M. grisea genome has been subject to invasion and proliferation of active transposable elements, reflecting the clonal nature of this fungus imposed by widespread rice cultivation.
ESTHER : Dean_2005_Nature_434_980
PubMedSearch : Dean_2005_Nature_434_980
PubMedID: 15846337
Gene_locus related to this paper: maggr-a4qqu1 , maggr-a4uuq1 , mago7-g4n0f1 , maggr-a4qy60 , maggr-a4qyj3 , maggr-a4r8c0 , maggr-a4r257 , maggr-a4rd24 , maggr-a4ri35 , maggr-a4rlz4 , maggr-a4rme6 , maggr-q0pnd2 , maggr-q0pnd5 , maggr-q2keh4 , maggr-q2khf5 , mago7-a4qsp1 , mago7-a4qt55 , mago7-a4qua7 , mago7-a4qup0 , mago7-a4qvx8 , mago7-a4qwz1 , mago7-a4qx26 , mago7-a4qxi6 , mago7-a4qz39 , mago7-a4qzg2 , mago7-a4r4e9 , mago7-a4r4n4 , mago7-a4r6f4 , mago7-a4r106 , mago7-a4ra37 , mago7-a4rdm3 , mago7-a4rgp8 , mago7-a4rlj9 , mago7-a4rpg7 , mago7-a4uc22 , mago7-dapb , mago7-g4mk92 , mago7-g4mkc6 , mago7-g4mkk9 , mago7-g4mns9 , mago7-g4ms19 , mago7-g4mvm8 , mago7-g4mvw5 , mago7-g4mvw6 , mago7-g4n6j4 , mago7-g4nal1 , mago7-g4naw0 , mago7-g4nba0 , mago7-g4nbs0 , mago7-g4nc41 , mago7-g4ncz9 , mago7-g4nhn9 , mago7-g4nil3 , mago7-g4nky6 , mago7-g5ehg6 , mago7-g5ehv6 , mago7-q2kh83 , mago7-q2khe7 , mago7-a4qxp0 , mago7-g4nih2 , mago7-g4mr24 , mago7-g4nff5 , mago7-g4n8c3 , mago7-g4ni03 , mago7-g4nhm4 , mago7-g4nfb6 , mago7-g4mmn3 , mago7-g4mqv7 , mago7-g4mzv6 , mago7-g4nbz1 , mago7-g4ms46 , mago7-g4n0h2 , mago7-g4nev7 , mago7-g4msm5 , magoy-l7i6m7 , mago7-g4ne75 , magor-a0a4p7n714 , magor-a0a4p7nig7 , mago7-g4mzi2 , mago7-cbpya , mago7-kex1 , mago7-g4n703