Zeng Q

References (43)

Title : Molecular, behavioral, and growth responses of juvenile yellow catfish (Tachysurus fulvidraco) exposed to carbamazepine - Chen_2024_Aquat.Toxicol_271_106929
Author(s) : Chen H , Gu X , Mao Z , Zeng Q , Jin M , Wang W , Martyniuk CJ
Ref : Aquat Toxicol , 271 :106929 , 2024
Abstract : Carbamazepine (CBZ) is an anticonvulsant medication used to treat epilepsy and bipolar disorder. Due to its persistence and low removal rate in wastewater treatment plants, it is frequently detected in the environment, raising concerns regarding its potential adverse effects on aquatic organisms and ecosystems. In this study, we aimed to assess the impact of CBZ on the behavior and growth of juvenile yellow catfish Tachysurus fulvidraco, a native and economically important species in China. Fish were exposed to CBZ at three concentrations of 1, 10, or 100 microg/L for 14 days. The fish exposed to 10 and 100 microg/L of CBZ exhibited decreased feeding, and a significant increase in cannibalistic tendencies was observed in fish exposed to 100 microg/L CBZ. Acetylcholinesterase activity was increased in the brain of fish exposed to 100 microg/L CBZ. CBZ also inhibited the growth of yellow catfish. To better elucidate mechanisms of toxicity, transcriptomics was conducted in both the brain and liver. In the brain, gene networks associated with neurotransmitter dysfunction were altered by CBZ, as well as networks associated with mitochondrial dysfunction and metabolism. In the liver, gene networks associated with the immune system were altered by CBZ. The current study improves comprehension of the sub-lethal effects of CBZ and reveals novel insight into molecular and biochemical pathways disrupted by CBZ, identifying putative key events associated with reduced growth and altered behavior. This study emphasizes the necessity for improved comprehension of the effects of pharmaceutical contaminants on fish at environmentally relevant levels.
ESTHER : Chen_2024_Aquat.Toxicol_271_106929
PubMedSearch : Chen_2024_Aquat.Toxicol_271_106929
PubMedID: 38663201

Title : Depolymerization of the polyester-polyurethane by amidase GatA250 and enhancing the production of 4,4'-methylenedianiline with cutinase LCC - Xin_2024_Biotechnol.J_19_e2300723
Author(s) : Xin K , Lu J , Zeng Q , Zhang T , Liu J , Zhou J , Dong W , Jiang M
Ref : Biotechnol J , 19 :e2300723 , 2024
Abstract : Polyurethane (PU) is a complex polymer synthesized from polyols and isocyanates. It contains urethane bonds that resist hydrolysis, which decreases the efficiency of biodegradation. In this study, we first expressed the amidase GatA250, and then, assessed the enzymatic characterization of GatA250 and its efficiency in degrading the polyester-PU. GatA250 degraded self-synthesized thermoplastic PU film and postconsumption foam with degradation efficiency of 8.17% and 4.29%, respectively. During the degradation, the film released 14.8 microm 4,4'-methylenedianiline (MDA), but 1,4-butanediol (BDO) and adipic acid (AA) were not released. Our findings indicated that GatA250 only cleaved urethane bonds in PU, and the degradation efficiency was extremely low. Hence, we introduced the cutinase LCC, which possesses hydrolytic activity on the ester bonds in PU, and then used both enzymes simultaneously to degrade the polyester-PU. The combined system (LCC-GatA250) had higher degradation efficiency for the degradation of PU film (42.2%) and foam (13.94%). The combined system also showed a 1.80 time increase in the production of the monomer MDA, and a 1.23 and 3.62 times increase in the production of AA and BDO, respectively, compared to their production recorded after treatment with only GatA250 or LCC. This study provides valuable insights into PU pollution control and also proposes applicable solutions to manage PU wastes through bio-recycling.
ESTHER : Xin_2024_Biotechnol.J_19_e2300723
PubMedSearch : Xin_2024_Biotechnol.J_19_e2300723
PubMedID: 38622797
Gene_locus related to this paper: 9bact-g9by57

Title : FsCGBP, a Cutinase G-Box Binding Protein, Regulates the Growth, Development, and Virulence of Fusarium sacchari, the Pathogen of Sugarcane Pokkah Boeng Disease - Liang_2024_J.Fungi.(Basel)_10_
Author(s) : Liang H , Li F , Huang Y , Yu Q , Huang Z , Zeng Q , Chen B , Meng J
Ref : J Fungi (Basel) , 10 : , 2024
Abstract : Fusarium sacchari is a causal agent of sugarcane Pokkah boeng, an important fungal disease that causes a considerable reduction in yield and sugar content in susceptible varieties of sugarcane worldwide. Despite its importance, the fungal factors that regulate the virulence of this pathogen remain largely unknown. In our previous study, mapping of an insertional mutant defect in virulence resulted in the identification of a cutinase G-box binding protein gene, designated FsCGBP, that encodes a C2H2-type transcription factor (TF). FsCGBP was shown to localize in the nuclei, and the transcript level of FsCGBP was significantly upregulated during the infection process or in response to abiotic stresses. Deletion or silencing of FsCGBP resulted in a reduction in mycelial growth, conidial production, and virulence and a delay in conidial germination in the F. sacchari. Cutinase genes FsCUT2, FsCUT3, and FsCUT4 and the mitogen-activated protein kinase (MAPK) genes FsHOG1, FsMGV1, and FsGPMK1, which were significantly downregulated in deltaFsCGBP. Except for FsHOG1, all of these genes were found to be transcriptionally activated by FsCGBP using the yeast one-hybrid system in vitro. The deletion of individual cutinase genes did not result in any of the phenotypes exhibited in the deltaFsCGBP mutant, except for cutinase activity. However, disruption of the MAPK pathway upon deletion of FsMGV1 or FsGPMK1 resulted in phenotypes similar to those of the deltaFsCGBP mutant. The above results suggest that FsCGBP functions by regulating the MAPK pathway and cutinase genes, providing new insights into the mechanism of virulence regulation in F. sacchari.
ESTHER : Liang_2024_J.Fungi.(Basel)_10_
PubMedSearch : Liang_2024_J.Fungi.(Basel)_10_
PubMedID: 38667917

Title : Omics techniques reveal the toxicity mechanisms of three antiepileptic drugs to juvenile zebrafish (Danio rerio) brain and liver - Yang_2023_Aquat.Toxicol_262_106668
Author(s) : Yang H , Gu X , Chen H , Zeng Q , Mao Z , Ge Y
Ref : Aquat Toxicol , 262 :106668 , 2023
Abstract : Epilepsy, a neurological disorder, is characterized by seizures that are an appearance of excessive brain activity and is symptomatically treated with antiepileptic drugs (AEDs). Oxcarbazepine (OCBZ), lamotrigine (LTG), and carbamazepine (CBZ) are widely used AEDs in clinics and are very often detected in aquatic environments. However, neither the sub-lethal effects nor the specific mechanisms of these AEDs' action on the fish are well understood. In this study, juvenile zebrafish were exposed to a sub-lethal concentration (100 microg/L) of OCBZ, LTG, and CBZ for 28 d, after which indicators of oxidative stress (i.e. superoxide dismutase (SOD) activity, catalase (CAT) activity, and malondialdehyde (MDA) level) and neurotoxicity (i.e. acetylcholinesterase (AChE) activity, gamma-aminobutyric acid (GABA) level, and glutamic acid (Glu) level) were measured. Brain SOD activity was significantly increased by three AEDs, while brain CAT activity was significantly inhibited by LTG and CBZ. Liver SOD activity was significantly enhanced by CBZ, and liver CAT activity was significantly induced by OCBZ and LTG. Liver MDA level was significantly increased by three AEDs. Brain AChE activity was significantly increased by LTG and CBZ, and brain GABA level was significantly enhanced by three AEDs. However, there were no significant alterations in the levels of MDA and Glu in zebrafish brain. To ascertain mechanisms of AEDs-induced toxicity, brain transcriptomics and liver metabolomics were conducted in zebrafish. The brain transcriptomics results showed that lots of differentially expressed genes (DEGs) were enriched in the sensory system, the immune system, the digestive system, the metabolic processes, and others in three AEDs treated groups. The metabolomics data indicated dysregulation of glycerophospholipid signaling and lipid homeostasis in zebrafish liver after three AEDs exposure. The overall results of this study improve understanding of the sub-lethal effects and potential molecular mechanisms of action of AEDs in fish.
ESTHER : Yang_2023_Aquat.Toxicol_262_106668
PubMedSearch : Yang_2023_Aquat.Toxicol_262_106668
PubMedID: 37659109

Title : Xanthophyll esterases in association with fibrillins control the stable storage of carotenoids in yellow flowers of rapeseed (Brassica juncea) - Li_2023_New.Phytol__
Author(s) : Li R , Zeng Q , Zhang X , Jing J , Ge X , Zhao L , Yi B , Tu J , Fu T , Wen J , Shen J
Ref : New Phytol , : , 2023
Abstract : Biosynthesis, stabilization, and storage of carotenoids are vital processes in plants that collectively contribute to the vibrant colors observed in flowers and fruits. Despite its importance, the carotenoid storage pathway remains poorly understood and lacks thorough characterization. We identified two homologous genes, BjA02.PC1 and BjB04.PC2, belonging to the esterase/lipase/thioesterase (ELT) family of acyltransferases. We showed that BjPCs in association with fibrillin gene BjFBN1b control the stable storage of carotenoids in yellow flowers of Brassica juncea. Through genetic, high-resolution mass spectrometry and transmission electron microscopy analyses, we demonstrated that both BjA02.PC1 and BjB04.PC2 can promote the accumulation of esterified xanthophylls, facilitating the formation of carotenoid-enriched plastoglobules (PGs) and ultimately producing yellow pigments in flowers. The elimination of BjPCs led to the redirection of metabolic flux from xanthophyll ester biosynthesis to lipid biosynthesis, resulting in white flowers for B. juncea. Moreover, we genetically verified the function of two fibrillin genes, BjA01.FBN1b and BjB05.FBN1b, in mediating PG formation and demonstrated that xanthophyll esters must be deposited in PGs for stable storage. These findings identified a previously unknown carotenoid storage pathway that is regulated by BjPCs and BjFBN1b, while offering unique opportunities for improving the stability, deposition, and bioavailability of carotenoids.
ESTHER : Li_2023_New.Phytol__
PubMedSearch : Li_2023_New.Phytol__
PubMedID: 37194444

Title : Catalytic Features and Thermal Adaptation Mechanisms of a Deep Sea Bacterial Cutinase-Type Poly(Ethylene Terephthalate) Hydrolase - Liu_2022_Front.Bioeng.Biotechnol_10_865787
Author(s) : Liu Y , Liu C , Liu H , Zeng Q , Tian X , Long L , Yang J
Ref : Front Bioeng Biotechnol , 10 :865787 , 2022
Abstract : Poly (ethylene terephthalate) (PET) plastic is chemically inert and persistent. Massive quantities of PET waste end up in landfill sites and oceans, posing major global pollution concerns. PET degrading enzymes with high efficiency provide plastic recycling and bioremediation possibilities. Here, we report a novel cutinase, MtCut with distinct catalytic behaviors, derived from the deep sea Nocardiopsaceae family strain. Biochemical analyses showed MtCut efficiently hydrolyzed PET at ambient temperatures and in an exo-type manner. The activity and stability of MtCut were enhanced by the addition of calcium ions. Notably, no hydrolysis products inhibition was observed during PET depolymerization, suggesting MtCut is a better biocatalyst when compared to other PET hydrolases. In addition, structural components associated with thermal adaptation were investigated using molecular dynamic (MD) simulations, and key regions regulating MtCut thermostability were identified. Our biochemical and structural analyses of MtCut deepen the understanding of PET hydrolysis by cutinases, and provide invaluable insights on improvement and performance engineering strategies for PET-degrading biocatalysts.
ESTHER : Liu_2022_Front.Bioeng.Biotechnol_10_865787
PubMedSearch : Liu_2022_Front.Bioeng.Biotechnol_10_865787
PubMedID: 35557867
Gene_locus related to this paper: 9actn-a0a1t4kk94

Title : Molecular and behavioral responses of zebrafish embryos\/larvae after sertraline exposure - Yang_2021_Ecotoxicol.Environ.Saf_208_111700
Author(s) : Yang H , Liang X , Zhao Y , Gu X , Mao Z , Zeng Q , Chen H , Martyniuk CJ
Ref : Ecotoxicology & Environmental Safety , 208 :111700 , 2021
Abstract : Sertraline (SER) is one of the most frequently detected antidepressant drugs in aquatic environments. However, knowledge regarding SER-induced behavioral alterations in fish is insufficient, as well as the mechanisms underlying SER-induced toxicity. The present study aimed to determine behavioral and molecular responses in larval fish following SER exposure with a focus on its mode of action. Zebrafish embryos (~6 h-post-fertilization, hpf) were exposed to one of three concentrations of SER (1, 10, 100 microg/L) for 6 days, respectively. Evaluated parameters included development, behavior, transcripts related to serotonin signaling, serotonin levels, and acetylcholinesterase activity. Accelerated hatching of zebrafish embryos was observed for those fish exposed to 100 microg/L SER at 54 hpf. Locomotor activity (e.g. distance moved and mobile cumulative duration) was significantly reduced in larval zebrafish following exposure to 10 and 100 microg/L SER. Conversely, larval fish showed increased dark-avoidance after exposure to 1-100 microg/L SER. Of the measured transcripts related to serotonin signaling, only serotonin transporter (serta) and serotonin receptor 2c (5-ht2c) mRNA levels were increased in fish in response to 10 microg/L SER treatment. However, serotonin levels were unaltered in larvae exposed to SER. There were no differences among groups in acetylcholinesterase activity at any concentration tested. Taking together, the results evidenced that exposure to SER alters behavioral responses in early-staged zebrafish, which may be related to the abnormal expression of 5-ht2c. This study elucidates molecular responses to SER and characterizes targets that may be sensitive to antidepressant pharmaceuticals in larval fish.
ESTHER : Yang_2021_Ecotoxicol.Environ.Saf_208_111700
PubMedSearch : Yang_2021_Ecotoxicol.Environ.Saf_208_111700
PubMedID: 33396031

Title : Environmentally relevant concentrations of sertraline disrupts behavior and the brain and liver transcriptome of juvenile yellow catfish (Tachysurus fulvidraco): Implications for the feeding and growth axis - Chen_2020_J.Hazard.Mater_409_124974
Author(s) : Chen H , Liang X , Gu X , Zeng Q , Mao Z , Martyniuk CJ
Ref : J Hazard Mater , 409 :124974 , 2020
Abstract : Sertraline (SER) is one of the most prevalent antidepressants detected in aquatic environments, but its impact on fish behavior and growth remain poorly understood. As such, behavior and growth were assessed in yellow catfish (Tachysurus fulvidraco) following SER exposure. SER induced shoaling, reduced food consumption and growth, and increased cannibalism at environmentally relevant concentrations. To ascertain toxicity mechanisms, acetylcholinesterase (AChE) activity and transcripts related to growth and feeding were measured. AChE activity was increased in fish exposed to 10 and 100 microg/L SER. Transcript levels of neuropeptide Y, somatostatin, growth hormone, and insulin growth factor 1 were reduced in the brain following SER exposure. RNA-seq conducted in brain and liver revealed that gene networks associated with feeding and growth (i.e. leptin expression networks in the brain and insulin signaling pathways in the liver) were altered, proposed to be associated with the decreased food intake and growth. The brain also accumulated SER, which may relate to neurobehavioral responses. Lastly, the main metabolite of SER, norsertraline, was detected in the liver, and may also relate to toxicity. This study uncovers mechanisms and key events proposed to lead to impaired behavior and growth after exposure to some antidepressants.
ESTHER : Chen_2020_J.Hazard.Mater_409_124974
PubMedSearch : Chen_2020_J.Hazard.Mater_409_124974
PubMedID: 33450510

Title : Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota) - Teixeira_2017_Stud.Mycol_86_1
Author(s) : Teixeira MM , Moreno LF , Stielow BJ , Muszewska A , Hainaut M , Gonzaga L , Abouelleil A , Patane JS , Priest M , Souza R , Young S , Ferreira KS , Zeng Q , da Cunha MM , Gladki A , Barker B , Vicente VA , de Souza EM , Almeida S , Henrissat B , Vasconcelos AT , Deng S , Voglmayr H , Moussa TA , Gorbushina A , Felipe MS , Cuomo CA , de Hoog GS
Ref : Stud Mycol , 86 :1 , 2017
Abstract : The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important role in generating diversity among those fungi.
ESTHER : Teixeira_2017_Stud.Mycol_86_1
PubMedSearch : Teixeira_2017_Stud.Mycol_86_1
PubMedID: 28348446
Gene_locus related to this paper: exodn-h6btr2 , exodn-h6c4y3

Title : Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts - Ma_2016_Nat.Commun_7_10740
Author(s) : Ma L , Chen Z , Huang da W , Kutty G , Ishihara M , Wang H , Abouelleil A , Bishop L , Davey E , Deng R , Deng X , Fan L , Fantoni G , FitzGerald M , Gogineni E , Goldberg JM , Handley G , Hu X , Huber C , Jiao X , Jones K , Levin JZ , Liu Y , Macdonald P , Melnikov A , Raley C , Sassi M , Sherman BT , Song X , Sykes S , Tran B , Walsh L , Xia Y , Yang J , Young S , Zeng Q , Zheng X , Stephens R , Nusbaum C , Birren BW , Azadi P , Lempicki RA , Cuomo CA , Kovacs JA
Ref : Nat Commun , 7 :10740 , 2016
Abstract : Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.
ESTHER : Ma_2016_Nat.Commun_7_10740
PubMedSearch : Ma_2016_Nat.Commun_7_10740
PubMedID: 26899007
Gene_locus related to this paper: pnec8-a0a0w4zi95 , pnemu-m7nra0 , pnej8-l0pgn2 , pnemu-m7nsb0

Title : The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia - Munoz_2015_PLoS.Genet_11_e1005493
Author(s) : Munoz JF , Gauthier GM , Desjardins CA , Gallo JE , Holder J , Sullivan TD , Marty AJ , Carmen JC , Chen Z , Ding L , Gujja S , Magrini V , Misas E , Mitreva M , Priest M , Saif S , Whiston EA , Young S , Zeng Q , Goldman WE , Mardis ER , Taylor JW , McEwen JG , Clay OK , Klein BS , Cuomo CA
Ref : PLoS Genet , 11 :e1005493 , 2015
Abstract : Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated tracts of low GC-content sequence. These GC-poor isochore-like regions are enriched for gypsy elements, are variable in total size between isolates, and are least expanded in the avirulent B. dermatitidis strain ER-3 as compared with the virulent B. gilchristii strain SLH14081. The lack of similar regions in related species suggests these isochore-like regions originated recently in the ancestor of the Blastomyces lineage. While gene content is highly conserved between Blastomyces and related fungi, we identified changes in copy number of genes potentially involved in host interaction, including proteases and characterized antigens. In addition, we studied gene expression changes of B. dermatitidis during the interaction of the infectious yeast form with macrophages and in a mouse model. Both experiments highlight a strong antioxidant defense response in Blastomyces, and upregulation of dioxygenases in vivo suggests that dioxide produced by antioxidants may be further utilized for amino acid metabolism. We identify a number of functional categories upregulated exclusively in vivo, such as secreted proteins, zinc acquisition proteins, and cysteine and tryptophan metabolism, which may include critical virulence factors missed before in in vitro studies. Across the dimorphic fungi, loss of certain zinc acquisition genes and differences in amino acid metabolism suggest unique adaptations of Blastomyces to its host environment. These results reveal the dynamics of genome evolution and of factors contributing to virulence in Blastomyces.
ESTHER : Munoz_2015_PLoS.Genet_11_e1005493
PubMedSearch : Munoz_2015_PLoS.Genet_11_e1005493
PubMedID: 26439490
Gene_locus related to this paper: ajedr-c5gqv9 , 9euro-a0a2b7ztc4 , 9euro-a0a2b7wr51 , blags-a0a179v0z0 , 9euro-a0a0h1bel0 , blags-a0a179udh1 , ajedr-kex1 , ajedr-cbpya

Title : Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus - Perlin_2015_BMC.Genomics_16_461
Author(s) : Perlin MH , Amselem J , Fontanillas E , Toh SS , Chen Z , Goldberg J , Duplessis S , Henrissat B , Young S , Zeng Q , Aguileta G , Petit E , Badouin H , Andrews J , Razeeq D , Gabaldon T , Quesneville H , Giraud T , Hood ME , Schultz DJ , Cuomo CA
Ref : BMC Genomics , 16 :461 , 2015
Abstract : BACKGROUND: The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development. RESULTS: We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14% of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions. CONCLUSIONS: The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation.
ESTHER : Perlin_2015_BMC.Genomics_16_461
PubMedSearch : Perlin_2015_BMC.Genomics_16_461
PubMedID: 26076695
Gene_locus related to this paper: ustv1-u5h5e5

Title : Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water - Yang_2015_Drug.Des.Devel.Ther_9_4719
Author(s) : Yang G , Zhou Z , Cen Y , Gui X , Zeng Q , Ao Y , Li Q , Wang S , Li J , Zhang A
Ref : Drug Des Devel Ther , 9 :4719 , 2015
Abstract : Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.
ESTHER : Yang_2015_Drug.Des.Devel.Ther_9_4719
PubMedSearch : Yang_2015_Drug.Des.Devel.Ther_9_4719
PubMedID: 26316710

Title : Genome Sequence of the Pathogenic Fungus Sporothrix schenckii (ATCC 58251) - Cuomo_2014_Genome.Announc_2_E00446
Author(s) : Cuomo CA , Rodriguez-Del Valle N , Perez-Sanchez L , Abouelleil A , Goldberg J , Young S , Zeng Q , Birren BW
Ref : Genome Announc , 2 :E0044614 , 2014
Abstract : Sporothrix schenckii is a pathogenic dimorphic fungus that grows as a yeast and as mycelia. This species is the causative agent of sporotrichosis, typically a skin infection. We report the genome sequence of S. schenckii, which will facilitate the study of this fungus and of the Sporothrix schenckii group.
ESTHER : Cuomo_2014_Genome.Announc_2_E00446
PubMedSearch : Cuomo_2014_Genome.Announc_2_E00446
PubMedID: 24855299
Gene_locus related to this paper: spos1-u7q5l6 , spos1-u7phh2 , spos1-u7pxz2 , spos1-u7q332 , spos1-u7pw92

Title : Genome Sequence of Fusarium oxysporum f. sp. melonis Strain NRRL 26406, a Fungus Causing Wilt Disease on Melon - Ma_2014_Genome.Announc_2_e00730
Author(s) : Ma LJ , Shea T , Young S , Zeng Q , Kistler HC
Ref : Genome Announc , 2 : , 2014
Abstract : Horizontal chromosome transfer introduces host-specific pathogenicity among members of the Fusarium oxysporum species complex and is responsible for some of the most destructive and intractable plant diseases. This paper reports the genome sequence of F. oxysporum f. sp. melonis (NRRL 26406), a causal agent of Fusarium wilt disease on melon.
ESTHER : Ma_2014_Genome.Announc_2_e00730
PubMedSearch : Ma_2014_Genome.Announc_2_e00730
PubMedID: 25081257
Gene_locus related to this paper: fusox-a0a1d3s5h0 , fusox-w9p5i8 , fusox-w9hvf0

Title : Efficient strategy for maintaining and enhancing the huperzine A production of Shiraia sp. Slf14 through inducer elicitation - Yan_2014_J.Ind.Microbiol.Biotechnol_41_1175
Author(s) : Yan R , Zhang Z , Wang Y , Yang H , Zeng Q , Zhu D
Ref : J Ind Microbiol Biotechnol , 41 :1175 , 2014
Abstract : Huperzine A (HupA), a naturally occurring lycopodium alkaloid, is a potent, highly specific and reversible inhibitor of acetylcholinesterase and is a potential treatment for Alzheimer's disease. However, isolating HupA from Huperziaceae plants is inefficient; thus, extracting this compound from endophytic fungi may be more controllable and sustainable. However, the large-scale production of this chemical from endophytes is limited by the innate instability of endophytic fungi. In this study, we maintained the stability and viability of the HupA-producing endophytic fungus Shiraia sp. Slf14 and enhanced the HupA titers during fermentation by adding Huperzia serrata extracts (HSE), L-lysine, and acetic acid into the culture as inducers. Adding trace amounts of HupA clearly improved the HupA production of Shiraia sp. Slf14, reaching a maximum content of approximately 40 mug g(-1). Moreover, the addition of HSE and L-lysine promoted HupA production in the flask fermentation. The aforementioned bioprocessing strategy may be potentially applied to other endophytic fungal culture systems for the efficient production of plant secondary metabolites.
ESTHER : Yan_2014_J.Ind.Microbiol.Biotechnol_41_1175
PubMedSearch : Yan_2014_J.Ind.Microbiol.Biotechnol_41_1175
PubMedID: 24865990

Title : Comparative genomic and transcriptomic analysis of wangiella dermatitidis, a major cause of phaeohyphomycosis and a model black yeast human pathogen - Chen_2014_G3.(Bethesda)_4_561
Author(s) : Chen Z , Martinez DA , Gujja S , Sykes SM , Zeng Q , Szaniszlo PJ , Wang Z , Cuomo CA
Ref : G3 (Bethesda) , 4 :561 , 2014
Abstract : Black or dark brown (phaeoid) fungi cause cutaneous, subcutaneous, and systemic infections in humans. Black fungi thrive in stressful conditions such as intense light, high radiation, and very low pH. Wangiella (Exophiala) dermatitidis is arguably the most studied phaeoid fungal pathogen of humans. Here, we report our comparative analysis of the genome of W. dermatitidis and the transcriptional response to low pH stress. This revealed that W. dermatitidis has lost the ability to synthesize alpha-glucan, a cell wall compound many pathogenic fungi use to evade the host immune system. In contrast, W. dermatitidis contains a similar profile of chitin synthase genes as related fungi and strongly induces genes involved in cell wall synthesis in response to pH stress. The large portfolio of transporters may provide W. dermatitidis with an enhanced ability to remove harmful products as well as to survive on diverse nutrient sources. The genome encodes three independent pathways for producing melanin, an ability linked to pathogenesis; these are active during pH stress, potentially to produce a barrier to accumulated oxidative damage that might occur under stress conditions. In addition, a full set of fungal light-sensing genes is present, including as part of a carotenoid biosynthesis gene cluster. Finally, we identify a two-gene cluster involved in nucleotide sugar metabolism conserved with a subset of fungi and characterize a horizontal transfer event of this cluster between fungi and algal viruses. This work reveals how W. dermatitidis has adapted to stress and survives in diverse environments, including during human infections.
ESTHER : Chen_2014_G3.(Bethesda)_4_561
PubMedSearch : Chen_2014_G3.(Bethesda)_4_561
PubMedID: 24496724
Gene_locus related to this paper: exodn-h6bmp3 , exodn-h6btr2 , exodn-h6c4y3

Title : Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica - Jiang_2013_PLoS.Genet_9_e1003272
Author(s) : Jiang RH , de Bruijn I , Haas BJ , Belmonte R , Lobach L , Christie J , Van den Ackerveken G , Bottin A , Bulone V , Diaz-Moreno SM , Dumas B , Fan L , Gaulin E , Govers F , Grenville-Briggs LJ , Horner NR , Levin JZ , Mammella M , Meijer HJ , Morris P , Nusbaum C , Oome S , Phillips AJ , van Rooyen D , Rzeszutek E , Saraiva M , Secombes CJ , Seidl MF , Snel B , Stassen JH , Sykes S , Tripathy S , van den Berg H , Vega-Arreguin JC , Wawra S , Young SK , Zeng Q , Dieguez-Uribeondo J , Russ C , Tyler BM , van West P
Ref : PLoS Genet , 9 :e1003272 , 2013
Abstract : Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica.
ESTHER : Jiang_2013_PLoS.Genet_9_e1003272
PubMedSearch : Jiang_2013_PLoS.Genet_9_e1003272
PubMedID: 23785293
Gene_locus related to this paper: sappc-a0a067bqc9 , sappc-a0a067cbi1

Title : Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence - Manning_2013_G3.(Bethesda)_3_41
Author(s) : Manning VA , Pandelova I , Dhillon B , Wilhelm LJ , Goodwin SB , Berlin AM , Figueroa M , Freitag M , Hane JK , Henrissat B , Holman WH , Kodira CD , Martin J , Oliver RP , Robbertse B , Schackwitz W , Schwartz DC , Spatafora JW , Turgeon BG , Yandava C , Young S , Zhou S , Zeng Q , Grigoriev IV , Ma LJ , Ciuffetti LM
Ref : G3 (Bethesda) , 3 :41 , 2013
Abstract : Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.
ESTHER : Manning_2013_G3.(Bethesda)_3_41
PubMedSearch : Manning_2013_G3.(Bethesda)_3_41
PubMedID: 23316438
Gene_locus related to this paper: pyrtr-b2vxe8 , pyrtr-b2vvm1 , pyrtr-b2vzr5 , pyrtr-b2vu22 , pyrtr-kex1

Title : High-Quality Draft Genome Sequence of Vagococcus lutrae Strain LBD1, Isolated from the Largemouth Bass Micropterus salmoides - Lebreton_2013_Genome.Announc_1_e01087
Author(s) : Lebreton F , Valentino MD , Duncan LB , Zeng Q , Manson McGuire A , Earl AM , Gilmore MS
Ref : Genome Announc , 1 : , 2013
Abstract : Vagococci are usually isolated from marine hosts and occasionally from endodontic infections. Using 16S rRNA gene comparison, the closest relatives are members of the genera Enterococcus and Carnobacterium. A draft sequence of Vagococcus lutrae was generated to clarify the relationship of Vagococcus to these and other related low-G+C Gram-positive bacteria.
ESTHER : Lebreton_2013_Genome.Announc_1_e01087
PubMedSearch : Lebreton_2013_Genome.Announc_1_e01087
PubMedID: 24371201
Gene_locus related to this paper: 9ente-v6q7i5

Title : Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection - Martinez_2012_MBio_3_e00259
Author(s) : Martinez DA , Oliver BG , Graser Y , Goldberg JM , Li W , Martinez-Rossi NM , Monod M , Shelest E , Barton RC , Birch E , Brakhage AA , Chen Z , Gurr SJ , Heiman D , Heitman J , Kosti I , Rossi A , Saif S , Samalova M , Saunders CW , Shea T , Summerbell RC , Xu J , Young S , Zeng Q , Birren BW , Cuomo CA , White TC
Ref : MBio , 3 :e00259 , 2012
Abstract : The major cause of athlete's foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum. These species differ in host range, mating, and disease progression. The dermatophyte genomes are highly colinear yet contain gene family expansions not found in other human-associated fungi. Dermatophyte genomes are enriched for gene families containing the LysM domain, which binds chitin and potentially related carbohydrates. These LysM domains differ in sequence from those in other species in regions of the peptide that could affect substrate binding. The dermatophytes also encode novel sets of fungus-specific kinases with unknown specificity, including nonfunctional pseudokinases, which may inhibit phosphorylation by competing for kinase sites within substrates, acting as allosteric effectors, or acting as scaffolds for signaling. The dermatophytes are also enriched for a large number of enzymes that synthesize secondary metabolites, including dermatophyte-specific genes that could synthesize novel compounds. Finally, dermatophytes are enriched in several classes of proteases that are necessary for fungal growth and nutrient acquisition on keratinized tissues. Despite differences in mating ability, genes involved in mating and meiosis are conserved across species, suggesting the possibility of cryptic mating in species where it has not been previously detected. These genome analyses identify gene families that are important to our understanding of how dermatophytes cause chronic infections, how they interact with epithelial cells, and how they respond to the host immune response.
ESTHER : Martinez_2012_MBio_3_e00259
PubMedSearch : Martinez_2012_MBio_3_e00259
PubMedID: 22951933
Gene_locus related to this paper: artgp-e4uup9 , artgp-e4v450 , artgp-e5qzf5 , artgp-e5r1t8 , artoc-c5fc55 , artoc-c5fds1 , artoc-c5fig8 , artoc-c5fj58 , artoc-c5fme4 , artoc-c5fva9 , triec-f2ph15 , triec-f2plk8 , triec-f2pwm2 , trirc-f2sf42 , trirc-f2sn39 , trirc-f2srv5 , trirc-f2sy06 , triru-q5j6j0 , triru-SCPB , triru-SPCA , trit1-f2rna8 , trit1-f2s2t8 , trivh-d4dbr9 , artbc-d4avu9 , artoc-c5fsf7 , artgp-e4unv7 , artoc-c5g0v3 , triec-f2pub4 , triec-f2pi43 , artgp-e4v6t4 , trit1-f2s3n3 , artoc-c5fnl7 , artgp-e4upq1 , artgp-e4uzl7 , triec-f2pp24 , triru-a0a022u299 , 9euro-a0a059jk56 , artoc-c5fu24 , artoc-c5fic4 , artgp-e4uza8 , triec-f2pqf3 , artgp-e4uv28 , artoc-c5fiv8 , triru-a0a022w2d0 , artgp-e4uvk8 , triru-a0a178f289 , artoc-c5fyj1 , artoc-cbpya , artoc-kex1

Title : Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses - O'Connell_2012_Nat.Genet_44_1060
Author(s) : O'Connell RJ , Thon MR , Hacquard S , Amyotte SG , Kleemann J , Torres MF , Damm U , Buiate EA , Epstein L , Alkan N , Altmuller J , Alvarado-Balderrama L , Bauser CA , Becker C , Birren BW , Chen Z , Choi J , Crouch JA , Duvick JP , Farman MA , Gan P , Heiman D , Henrissat B , Howard RJ , Kabbage M , Koch C , Kracher B , Kubo Y , Law AD , Lebrun MH , Lee YH , Miyara I , Moore N , Neumann U , Nordstrom K , Panaccione DG , Panstruga R , Place M , Proctor RH , Prusky D , Rech G , Reinhardt R , Rollins JA , Rounsley S , Schardl CL , Schwartz DC , Shenoy N , Shirasu K , Sikhakolli UR , Stuber K , Sukno SA , Sweigard JA , Takano Y , Takahara H , Trail F , van der Does HC , Voll LM , Will I , Young S , Zeng Q , Zhang J , Zhou S , Dickman MB , Schulze-Lefert P , Ver Loren van Themaat E , Ma LJ , Vaillancourt LJ
Ref : Nat Genet , 44 :1060 , 2012
Abstract : Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.
ESTHER : O'Connell_2012_Nat.Genet_44_1060
PubMedSearch : O'Connell_2012_Nat.Genet_44_1060
PubMedID: 22885923
Gene_locus related to this paper: colgm-kex1 , colhi-h1vve5 , colhi-h1vkk5 , colgm-e3qtg4 , colhi-h1vbq5 , colgm-e3qyh7 , colgm-e3q7u5 , colhi-h1vs61 , colgm-e3qip4 , colgm-e3qv97 , colhi-h1v665 , colgm-e3qky4 , colhi-h1vd91 , colhi-h1uvl1 , colhi-h1v7k5 , colgm-e3qu96 , colhi-h1vhh1 , colhi-h1v638 , colhi-h1vcz3 , colgm-e3qwt6 , colgm-e3q3z6 , colhi-h1vmh6 , colgm-e3qqq8 , colhi-h1v0e8 , colgm-e3qyt9 , colgm-e3qby6 , colgm-e3qsm5 , colgm-e3q6f6 , colgm-e3qwt4 , colgm-e3qb89 , colhi-h1vh96 , colgm-e3qwz9 , colgm-e3qbd3 , colgm-e3qtz0 , colhi-h1w5n4 , colgm-e3q7y3 , colgm-e3qpz1 , colhi-h1v2e4 , colgm-e3qux5 , colgm-e3qx16 , colgm-cbpya , colgm-e3q8b3

Title : Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011 - Grad_2012_Proc.Natl.Acad.Sci.U.S.A_109_3065
Author(s) : Grad YH , Lipsitch M , Feldgarden M , Arachchi HM , Cerqueira GC , FitzGerald M , Godfrey P , Haas BJ , Murphy CI , Russ C , Sykes S , Walker BJ , Wortman JR , Young S , Zeng Q , Abouelleil A , Bochicchio J , Chauvin S , Desmet T , Gujja S , McCowan C , Montmayeur A , Steelman S , Frimodt-Moller J , Petersen AM , Struve C , Krogfelt KA , Bingen E , Weill FX , Lander ES , Nusbaum C , Birren BW , Hung DT , Hanage WP
Ref : Proc Natl Acad Sci U S A , 109 :3065 , 2012
Abstract : The degree to which molecular epidemiology reveals information about the sources and transmission patterns of an outbreak depends on the resolution of the technology used and the samples studied. Isolates of Escherichia coli O104:H4 from the outbreak centered in Germany in May-July 2011, and the much smaller outbreak in southwest France in June 2011, were indistinguishable by standard tests. We report a molecular epidemiological analysis using multiplatform whole-genome sequencing and analysis of multiple isolates from the German and French outbreaks. Isolates from the German outbreak showed remarkably little diversity, with only two single nucleotide polymorphisms (SNPs) found in isolates from four individuals. Surprisingly, we found much greater diversity (19 SNPs) in isolates from seven individuals infected in the French outbreak. The German isolates form a clade within the more diverse French outbreak strains. Moreover, five isolates derived from a single infected individual from the French outbreak had extremely limited diversity. The striking difference in diversity between the German and French outbreak samples is consistent with several hypotheses, including a bottleneck that purged diversity in the German isolates, variation in mutation rates in the two E. coli outbreak populations, or uneven distribution of diversity in the seed populations that led to each outbreak.
ESTHER : Grad_2012_Proc.Natl.Acad.Sci.U.S.A_109_3065
PubMedSearch : Grad_2012_Proc.Natl.Acad.Sci.U.S.A_109_3065
PubMedID: 22315421
Gene_locus related to this paper: ecoli-fes , ecoli-MCMK , ecoli-yaim , ecoli-ycfp , ecoli-YFBB , ecoli-yhet , ecoli-yiel , ecoli-yqia , ecoli-YfhR

Title : Genome variation in Cryptococcus gattii, an emerging pathogen of immunocompetent hosts - D'Souza_2011_MBio_2_e00342
Author(s) : D'Souza CA , Kronstad JW , Taylor G , Warren R , Yuen M , Hu G , Jung WH , Sham A , Kidd SE , Tangen K , Lee N , Zeilmaker T , Sawkins J , McVicker G , Shah S , Gnerre S , Griggs A , Zeng Q , Bartlett K , Li W , Wang X , Heitman J , Stajich JE , Fraser JA , Meyer W , Carter D , Schein J , Krzywinski M , Kwon-Chung KJ , Varma A , Wang J , Brunham R , Fyfe M , Ouellette BF , Siddiqui A , Marra M , Jones S , Holt R , Birren BW , Galagan JE , Cuomo CA
Ref : MBio , 2 :e00342 , 2011
Abstract : Cryptococcus gattii recently emerged as the causative agent of cryptococcosis in healthy individuals in western North America, despite previous characterization of the fungus as a pathogen in tropical or subtropical regions. As a foundation to study the genetics of virulence in this pathogen, we sequenced the genomes of a strain (WM276) representing the predominant global molecular type (VGI) and a clinical strain (R265) of the major genotype (VGIIa) causing disease in North America. We compared these C. gattii genomes with each other and with the genomes of representative strains of the two varieties of Cryptococcus neoformans that generally cause disease in immunocompromised people. Our comparisons included chromosome alignments, analysis of gene content and gene family evolution, and comparative genome hybridization (CGH). These studies revealed that the genomes of the two representative C. gattii strains (genotypes VGI and VGIIa) are colinear for the majority of chromosomes, with some minor rearrangements. However, multiortholog phylogenetic analysis and an evaluation of gene/sequence conservation support the existence of speciation within the C. gattii complex. More extensive chromosome rearrangements were observed upon comparison of the C. gattii and the C. neoformans genomes. Finally, CGH revealed considerable variation in clinical and environmental isolates as well as changes in chromosome copy numbers in C. gattii isolates displaying fluconazole heteroresistance.
ESTHER : D'Souza_2011_MBio_2_e00342
PubMedSearch : D'Souza_2011_MBio_2_e00342
PubMedID: 21304167
Gene_locus related to this paper: crygw-e6qy09 , crygw-e6r2n3 , crygw-e6r7g6 , crygw-e6rbd6 , crygw-e6rcm3 , crygw-e6rg44 , cryne-q5ka03 , cryne-q5km63 , cryne-q5knq0 , cryne-q55va3 , crynj-q5kpe0 , crygr-a0a095cfy5 , crygw-kex1

Title : Complete genome sequence of Algoriphagus sp. PR1, bacterial prey of a colony-forming choanoflagellate - Alegado_2011_J.Bacteriol_193_1485
Author(s) : Alegado RA , Ferriera S , Nusbaum C , Young SK , Zeng Q , Imamovic A , Fairclough SR , King N
Ref : Journal of Bacteriology , 193 :1485 , 2011
Abstract : Bacteria are the primary food source of choanoflagellates, the closest known relatives of animals. Studying signaling interactions between the Gram-negative Bacteroidetes bacterium Algoriphagus sp. PR1 and its predator, the choanoflagellate Salpingoeca rosetta, provides a promising avenue for testing hypotheses regarding the involvement of bacteria in animal evolution. Here we announce the complete genome sequence of Algoriphagus sp. PR1 and initial findings from its annotation.
ESTHER : Alegado_2011_J.Bacteriol_193_1485
PubMedSearch : Alegado_2011_J.Bacteriol_193_1485
PubMedID: 21183675
Gene_locus related to this paper: 9bact-a3hsc2 , 9bact-a3hsw0 , 9bact-a3ht61 , 9bact-a3hta1.1 , 9bact-a3hta1.2 , 9bact-a3htc8 , 9bact-a3htd6 , 9bact-a3hti5 , 9bact-a3htn1 , 9bact-a3htn2 , 9bact-a3htn3 , 9bact-a3htn9 , 9bact-a3htv3 , 9bact-a3hu26 , 9bact-a3hu92 , 9bact-a3hwh7 , 9bact-a3hws7 , 9bact-a3hws8 , 9bact-a3hy22 , 9bact-a3hzv9 , 9bact-a3i1k2 , 9bact-a3i1r2 , 9bact-a3i1r3 , 9bact-a3i2k7 , 9bact-a3i3a8 , 9bact-a3i056 , 9bact-a3i079 , 9bact-a3i222 , 9bact-a3hun9

Title : High quality draft genome sequence of Segniliparus rugosus CDC 945(T)= (ATCC BAA-974(T)) - Earl_2011_Stand.Genomic.Sci_5_389
Author(s) : Earl AM , Desjardins CA , Fitzgerald MG , Arachchi HM , Zeng Q , Mehta T , Griggs A , Birren BW , Toney NC , Carr J , Posey J , Butler WR
Ref : Stand Genomic Sci , 5 :389 , 2011
Abstract : Segniliparus rugosus represents one of two species in the genus Segniliparus, the sole genus in the family Segniliparaceae. A unique and interesting feature of this family is the presence of extremely long carbon-chain length mycolic acids bound in the cell wall. S. rugosus is also a medically important species because it is an opportunistic pathogen associated with mammalian lung disease. This report represents the second species in the genus to have its genome sequenced. The 3,567,567 bp long genome with 3,516 protein-coding and 49 RNA genes is part of the NIH Roadmap for Medical Research, Human Microbiome Project.
ESTHER : Earl_2011_Stand.Genomic.Sci_5_389
PubMedSearch : Earl_2011_Stand.Genomic.Sci_5_389
PubMedID: 22675588
Gene_locus related to this paper: 9acto-e5xtw5 , 9acto-e5xpt7 , 9acto-e5xpt8 , 9acto-e5xue1 , 9acto-e5xr49 , 9actn-e5xql0

Title : [Isolation of endophytic fungi from Huperzia serrata and their acetylcholinesterase inhibitory activity] - Wang_2011_Zhongguo.Zhong.Yao.Za.Zhi_36_734
Author(s) : Wang Y , Zeng Q , Zhang Z , Yan R , Wang L , Du Z
Ref : Zhongguo Zhong Yao Za Zhi , 36 :734 , 2011
Abstract : A total of 127 strains of endophytic fungi were isolated from roots, branches and leaves of Huperzia serrata. These strains were identified into 19 genera based on morphological characters and ribosomal DNA (rDNA) sequence analysis, there into Penicillium, Aspergillus and Podospora were dominant populations in H. serrata. From analysis results we found some endophytic fungi showed a certain degree of tissue preference. The isolation rate and colonization rate of stems were both larger than those of leaf and roots. After testing the acetylcholinesterase (AChE) inhibitory activity of these endophytic fungi, a total of 39 endophytic fungi belonging to 15 genera showed AChE inhibition. Eleven endophytic fungi showed potent AChE inhibition, 7 of which were isolated from leaf. The research not only provided theoretical basis for developing and utilizing the resources of endophytic fungi in H. serrata but also showed a new path for searching medicines resource which has AChE inhibitory activity.
ESTHER : Wang_2011_Zhongguo.Zhong.Yao.Za.Zhi_36_734
PubMedSearch : Wang_2011_Zhongguo.Zhong.Yao.Za.Zhi_36_734
PubMedID: 21710741

Title : Comparative functional genomics of the fission yeasts - Rhind_2011_Science_332_930
Author(s) : Rhind N , Chen Z , Yassour M , Thompson DA , Haas BJ , Habib N , Wapinski I , Roy S , Lin MF , Heiman DI , Young SK , Furuya K , Guo Y , Pidoux A , Chen HM , Robbertse B , Goldberg JM , Aoki K , Bayne EH , Berlin AM , Desjardins CA , Dobbs E , Dukaj L , Fan L , Fitzgerald MG , French C , Gujja S , Hansen K , Keifenheim D , Levin JZ , Mosher RA , Muller CA , Pfiffner J , Priest M , Russ C , Smialowska A , Swoboda P , Sykes SM , Vaughn M , Vengrova S , Yoder R , Zeng Q , Allshire R , Baulcombe D , Birren BW , Brown W , Ekwall K , Kellis M , Leatherwood J , Levin H , Margalit H , Martienssen R , Nieduszynski CA , Spatafora JW , Friedman N , Dalgaard JZ , Baumann P , Niki H , Regev A , Nusbaum C
Ref : Science , 332 :930 , 2011
Abstract : The fission yeast clade--comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus--occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.
ESTHER : Rhind_2011_Science_332_930
PubMedSearch : Rhind_2011_Science_332_930
PubMedID: 21511999
Gene_locus related to this paper: schjy-b6jxl8 , schjy-b6k0k9 , schjy-b6k7s4 , schjy-b6k575 , schcr-s9vnl9 , schoy-s9q625 , schjy-kex1 , schpo-ykv6

Title : Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea - Amselem_2011_PLoS.Genet_7_e1002230
Author(s) : Amselem J , Cuomo CA , van Kan JA , Viaud M , Benito EP , Couloux A , Coutinho PM , de Vries RP , Dyer PS , Fillinger S , Fournier E , Gout L , Hahn M , Kohn L , Lapalu N , Plummer KM , Pradier JM , Quevillon E , Sharon A , Simon A , ten Have A , Tudzynski B , Tudzynski P , Wincker P , Andrew M , Anthouard V , Beever RE , Beffa R , Benoit I , Bouzid O , Brault B , Chen Z , Choquer M , Collemare J , Cotton P , Danchin EG , Da Silva C , Gautier A , Giraud C , Giraud T , Gonzalez C , Grossetete S , Guldener U , Henrissat B , Howlett BJ , Kodira C , Kretschmer M , Lappartient A , Leroch M , Levis C , Mauceli E , Neuveglise C , Oeser B , Pearson M , Poulain J , Poussereau N , Quesneville H , Rascle C , Schumacher J , Segurens B , Sexton A , Silva E , Sirven C , Soanes DM , Talbot NJ , Templeton M , Yandava C , Yarden O , Zeng Q , Rollins JA , Lebrun MH , Dickman M
Ref : PLoS Genet , 7 :e1002230 , 2011
Abstract : Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.
ESTHER : Amselem_2011_PLoS.Genet_7_e1002230
PubMedSearch : Amselem_2011_PLoS.Genet_7_e1002230
PubMedID: 21876677
Gene_locus related to this paper: botci-cutas , botci-q6rki2 , botf4-g2y7k8 , botfb-dapb , botfu-g2xyd8 , botfu-g2ynh8 , scls1-a7e814 , scls1-a7edc9 , scls1-a7edh1 , scls1-a7emm0 , scls1-a7eti8 , scls1-a7eu48 , scls1-a7f208 , scls1-dapb , botf4-g2xqp7 , scls1-a7eqq8 , botf4-g2xqc6 , scls1-a7ebs4 , botf4-g2xn51 , scls1-a7f5m9 , botf4-g2xti4 , botf4-g2xtu7 , botf4-g2yfp1 , scls1-a7f534 , botf4-g2yys3 , scls1-a7erz9 , botf4-g2y037 , botf4-g2y0e1 , scls1-a7f706 , scls1-a7ewt6 , botf4-g2yuj6 , botf1-m7u3d1 , botf1-m7u430 , botf1-m7tei8 , botf1-m7u0w9 , botf1-m7tij6 , botf1-m7u819 , botf1-m7u6d8 , botf1-m7tzd4 , botf1-m7tqd7 , botf1-m7tyz9 , botf1-m7unl9 , botf1-m7u429 , botf1-m7u4s5 , botf1-m7ul92 , botf1-m7tx42 , botf1-m7u9h4 , botf1-m7u187 , botf1-m7uz64 , botf1-m7u4q4 , botf1-m7u2f6 , botf1-m7tt59 , botf1-m7v3h2 , botf1-m7u6c9 , botf1-m7tud9 , botf1-m7u309 , scls1-a7et87 , botf4-g2ylt4 , scls1-a7f5a0 , scls1-a7f900 , botf4-g2yib9 , scls1-a7f3m9 , scls1-a7er46 , botf4-g2y3y4 , botf4-g2xyy5 , botf1-m7uct5 , scls1-a7ea78 , scls1-kex1 , scls1-cbpya , botfb-cbpya , scls1-a7ecx1

Title : Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens - Klosterman_2011_PLoS.Pathog_7_e1002137
Author(s) : Klosterman SJ , Subbarao KV , Kang S , Veronese P , Gold SE , Thomma BP , Chen Z , Henrissat B , Lee YH , Park J , Garcia-Pedrajas MD , Barbara DJ , Anchieta A , de Jonge R , Santhanam P , Maruthachalam K , Atallah Z , Amyotte SG , Paz Z , Inderbitzin P , Hayes RJ , Heiman DI , Young S , Zeng Q , Engels R , Galagan J , Cuomo CA , Dobinson KF , Ma LJ
Ref : PLoS Pathog , 7 :e1002137 , 2011
Abstract : The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.
ESTHER : Klosterman_2011_PLoS.Pathog_7_e1002137
PubMedSearch : Klosterman_2011_PLoS.Pathog_7_e1002137
PubMedID: 21829347
Gene_locus related to this paper: vera1-c9srn2 , vera1-c9sn46 , verdv-g2wq49 , verdv-g2xca2 , vera1-c9sea3 , verdv-g2wzn4 , vera1-c9sek2 , verdv-g2wym5 , verdv-g2x5f3 , vera1-c9sx20 , vera1-c9sw01 , verdv-g2x1l1 , verdv-g2wuv4 , verdv-g2xaw5 , verdv-g2wsb2 , verdv-g2wty6 , vera1-c9si59 , verdv-g2xdu9 , vera1-c9s818 , verdv-g2xdr1 , verdv-g2wsw7 , verdv-g2wvq8 , 9pezi-a0a0g4li73 , vera1-kex1 , verdv-g2x8m5

Title : Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis - Desjardins_2011_PLoS.Genet_7_e1002345
Author(s) : Desjardins CA , Champion MD , Holder JW , Muszewska A , Goldberg J , Bailao AM , Brigido MM , Ferreira ME , Garcia AM , Grynberg M , Gujja S , Heiman DI , Henn MR , Kodira CD , Leon-Narvaez H , Longo LV , Ma LJ , Malavazi I , Matsuo AL , Morais FV , Pereira M , Rodriguez-Brito S , Sakthikumar S , Salem-Izacc SM , Sykes SM , Teixeira MM , Vallejo MC , Walter ME , Yandava C , Young S , Zeng Q , Zucker J , Felipe MS , Goldman GH , Haas BJ , McEwen JG , Nino-Vega G , Puccia R , San-Blas G , Soares CMF , Birren BW , Cuomo CA
Ref : PLoS Genet , 7 :e1002345 , 2011
Abstract : Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.
ESTHER : Desjardins_2011_PLoS.Genet_7_e1002345
PubMedSearch : Desjardins_2011_PLoS.Genet_7_e1002345
PubMedID: 22046142
Gene_locus related to this paper: parbd-c1gc95 , parbp-c0s0d7 , parbp-c0s257 , parbd-c1g8z9 , parba-c1grf0 , parbp-c0s816 , parbp-c0s5g4 , parbd-c1g5f5 , parbd-c1fzf9 , parba-kex1 , parbd-kex1 , parbp-kex1 , parba-cbpya , parbp-cbpya

Title : Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus) - Stajich_2010_Proc.Natl.Acad.Sci.U.S.A_107_11889
Author(s) : Stajich JE , Wilke SK , Ahren D , Au CH , Birren BW , Borodovsky M , Burns C , Canback B , Casselton LA , Cheng CK , Deng J , Dietrich FS , Fargo DC , Farman ML , Gathman AC , Goldberg J , Guigo R , Hoegger PJ , Hooker JB , Huggins A , James TY , Kamada T , Kilaru S , Kodira C , Kues U , Kupfer D , Kwan HS , Lomsadze A , Li W , Lilly WW , Ma LJ , Mackey AJ , Manning G , Martin F , Muraguchi H , Natvig DO , Palmerini H , Ramesh MA , Rehmeyer CJ , Roe BA , Shenoy N , Stanke M , Ter-Hovhannisyan V , Tunlid A , Velagapudi R , Vision TJ , Zeng Q , Zolan ME , Pukkila PJ
Ref : Proc Natl Acad Sci U S A , 107 :11889 , 2010
Abstract : The mushroom Coprinopsis cinerea is a classic experimental model for multicellular development in fungi because it grows on defined media, completes its life cycle in 2 weeks, produces some 10(8) synchronized meiocytes, and can be manipulated at all stages in development by mutation and transformation. The 37-megabase genome of C. cinerea was sequenced and assembled into 13 chromosomes. Meiotic recombination rates vary greatly along the chromosomes, and retrotransposons are absent in large regions of the genome with low levels of meiotic recombination. Single-copy genes with identifiable orthologs in other basidiomycetes are predominant in low-recombination regions of the chromosome. In contrast, paralogous multicopy genes are found in the highly recombining regions, including a large family of protein kinases (FunK1) unique to multicellular fungi. Analyses of P450 and hydrophobin gene families confirmed that local gene duplications drive the expansions of paralogous copies and the expansions occur in independent lineages of Agaricomycotina fungi. Gene-expression patterns from microarrays were used to dissect the transcriptional program of dikaryon formation (mating). Several members of the FunK1 kinase family are differentially regulated during sexual morphogenesis, and coordinate regulation of adjacent duplications is rare. The genomes of C. cinerea and Laccaria bicolor, a symbiotic basidiomycete, share extensive regions of synteny. The largest syntenic blocks occur in regions with low meiotic recombination rates, no transposable elements, and tight gene spacing, where orthologous single-copy genes are overrepresented. The chromosome assembly of C. cinerea is an essential resource in understanding the evolution of multicellularity in the fungi.
ESTHER : Stajich_2010_Proc.Natl.Acad.Sci.U.S.A_107_11889
PubMedSearch : Stajich_2010_Proc.Natl.Acad.Sci.U.S.A_107_11889
PubMedID: 20547848
Gene_locus related to this paper: copc7-a8n2b8 , copc7-a8n3e0 , copc7-a8n3e1 , copc7-a8n6a5 , copc7-a8n8h4 , copc7-a8n702 , copc7-a8n941 , copc7-a8nkc7 , copc7-a8nll5 , copc7-a8nll6 , copc7-a8nqf4 , copc7-a8nqg3 , copc7-a8nqv8 , copc7-a8nvb5 , copc7-a8nwm2 , copc7-a8nz18 , copc7-a8p0p4 , copc7-d6rlx1 , copc7-d6rnh7 , copc7-kex1 , copci-b9u444 , copc7-a8nb05 , copc7-a8nha0 , copci-b9u443 , copc7-a8nq30 , copc7-a8nh79 , copc7-d6rm78 , copc7-a8nzs7 , copc7-axe1

Title : Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium - Ma_2010_Nature_464_367
Author(s) : Ma LJ , van der Does HC , Borkovich KA , Coleman JJ , Daboussi MJ , Di Pietro A , Dufresne M , Freitag M , Grabherr M , Henrissat B , Houterman PM , Kang S , Shim WB , Woloshuk C , Xie X , Xu JR , Antoniw J , Baker SE , Bluhm BH , Breakspear A , Brown DW , Butchko RA , Chapman S , Coulson R , Coutinho PM , Danchin EG , Diener A , Gale LR , Gardiner DM , Goff S , Hammond-Kosack KE , Hilburn K , Hua-Van A , Jonkers W , Kazan K , Kodira CD , Koehrsen M , Kumar L , Lee YH , Li L , Manners JM , Miranda-Saavedra D , Mukherjee M , Park G , Park J , Park SY , Proctor RH , Regev A , Ruiz-Roldan MC , Sain D , Sakthikumar S , Sykes S , Schwartz DC , Turgeon BG , Wapinski I , Yoder O , Young S , Zeng Q , Zhou S , Galagan J , Cuomo CA , Kistler HC , Rep M
Ref : Nature , 464 :367 , 2010
Abstract : Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.
ESTHER : Ma_2010_Nature_464_367
PubMedSearch : Ma_2010_Nature_464_367
PubMedID: 20237561
Gene_locus related to this paper: fusox-a0a1d3s5h0 , gibf5-fus2 , fusof-f9f2k2 , fusof-f9f3l6 , fusof-f9f6t8 , fusof-f9f6v2 , fusof-f9f132 , fusof-f9f781 , fusof-f9fd72 , fusof-f9fd90 , fusof-f9fem0 , fusof-f9fhk2 , fusof-f9fj19 , fusof-f9fj20 , fusof-f9fki8 , fusof-f9fmx2 , fusof-f9fnt4 , fusof-f9fpy4 , fusof-f9fvs6 , fusof-f9fwu0 , fusof-f9fxz4 , fusof-f9fzy5 , fusof-f9g2a2 , fusof-f9g3b1 , fusof-f9g5h7 , fusof-f9g6e6 , fusof-f9g6y7 , fusof-f9g7b0 , fusof-f9g797 , fusof-f9g972 , fusof-f9ga50 , fusof-f9gck4 , fusof-f9gd15 , gibze-a8w610 , gibze-b1pdn0 , gibze-i1r9e6 , gibze-i1rda9 , gibze-i1rdk7 , gibze-i1rec8 , gibze-i1rgs0 , gibze-i1rgy0 , gibze-i1rh52 , gibze-i1rhi8 , gibze-i1rig9 , gibze-i1rip5 , gibze-i1rpg6 , gibze-i1rsg2 , gibze-i1rv36 , gibze-i1rxm5 , gibze-i1rxp8 , gibze-i1rxv5 , gibze-i1s1u3 , gibze-i1s3j9 , gibze-i1s6l7 , gibze-i1s8i8 , gibze-i1s9x4 , gibze-q4huy1 , gibze-i1rg17 , fuso4-j9mvr9 , fuso4-j9ngs6 , fuso4-j9niq8 , fuso4-j9nqm2 , gibze-i1rb76 , gibze-i1s1m7 , gibze-i1s3z6 , gibze-i1rd78 , gibze-i1rgl9 , gibze-i1rjp7 , gibze-i1s1q6 , gibze-i1ri35 , gibze-i1rf76 , gibze-i1rhp3 , fusc1-n4uj11 , fusc4-n1s9p6 , gibf5-s0dqr2 , gibm7-w7n1b5 , fusof-f9g6q0 , gibm7-w7n497 , fusox-x0bme4 , gibm7-w7mcf8 , gibm7-w7mak5 , fusox-x0a2c5 , gibm7-w7mum7 , fusox-w9iyc7 , gibm7-w7maw6 , gibm7-w7msi0 , gibm7-w7luf0 , gibm7-w7msa3 , gibm7-w7mna8 , gibm7-w7n8b7 , gibm7-w7n564 , fusox-w9jpi0 , gibm7-w7ngc3 , gibm7-w7m4v6 , gibm7-w7m4v2 , gibm7-w7lt61 , gibm7-w7mly6 , gibm7-w7ncn3 , fusox-w9ibd7 , fusof-f9fnm6 , gibm7-w7n526 , gibza-a0a016pda4 , gibza-a0a016pl96 , gibm7-w7muq1 , fusof-f9gfd3 , gibm7-w7mt52 , gibze-i1rjb5 , gibf5-s0ehu3 , fusox-w9hvf0 , gibze-i1rkc4 , gibm7-w7mv30 , gibze-a0a1c3ylb1 , fuso4-a0a0c4diy4 , gibm7-w7n4n0 , gibze-gra11 , gibze-fsl2 , gibf5-fub4 , gibf5-fub5 , gibf5-fus5 , gibm7-dlh1

Title : A catalog of reference genomes from the human microbiome - Nelson_2010_Science_328_994
Author(s) : Nelson KE , Weinstock GM , Highlander SK , Worley KC , Creasy HH , Wortman JR , Rusch DB , Mitreva M , Sodergren E , Chinwalla AT , Feldgarden M , Gevers D , Haas BJ , Madupu R , Ward DV , Birren BW , Gibbs RA , Methe B , Petrosino JF , Strausberg RL , Sutton GG , White OR , Wilson RK , Durkin S , Giglio MG , Gujja S , Howarth C , Kodira CD , Kyrpides N , Mehta T , Muzny DM , Pearson M , Pepin K , Pati A , Qin X , Yandava C , Zeng Q , Zhang L , Berlin AM , Chen L , Hepburn TA , Johnson J , McCorrison J , Miller J , Minx P , Nusbaum C , Russ C , Sykes SM , Tomlinson CM , Young S , Warren WC , Badger J , Crabtree J , Markowitz VM , Orvis J , Cree A , Ferriera S , Fulton LL , Fulton RS , Gillis M , Hemphill LD , Joshi V , Kovar C , Torralba M , Wetterstrand KA , Abouellleil A , Wollam AM , Buhay CJ , Ding Y , Dugan S , Fitzgerald MG , Holder M , Hostetler J , Clifton SW , Allen-Vercoe E , Earl AM , Farmer CN , Liolios K , Surette MG , Xu Q , Pohl C , Wilczek-Boney K , Zhu D
Ref : Science , 328 :994 , 2010
Abstract : The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified ("novel") polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (approximately 97%) were unique. In addition, this set of microbial genomes allows for approximately 40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.
ESTHER : Nelson_2010_Science_328_994
PubMedSearch : Nelson_2010_Science_328_994
PubMedID: 20489017
Gene_locus related to this paper: strp2-q04l35 , strpn-AXE1 , strpn-pepx

Title : Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control - Neafsey_2010_Genome.Res_20_938
Author(s) : Neafsey DE , Barker BM , Sharpton TJ , Stajich JE , Park DJ , Whiston E , Hung CY , McMahan C , White J , Sykes S , Heiman D , Young S , Zeng Q , Abouelleil A , Aftuck L , Bessette D , Brown A , FitzGerald M , Lui A , Macdonald JP , Priest M , Orbach MJ , Galgiani JN , Kirkland TN , Cole GT , Birren BW , Henn MR , Taylor JW , Rounsley SD
Ref : Genome Res , 20 :938 , 2010
Abstract : We have sequenced the genomes of 18 isolates of the closely related human pathogenic fungi Coccidioides immitis and Coccidioides posadasii to more clearly elucidate population genomic structure, bringing the total number of sequenced genomes for each species to 10. Our data confirm earlier microsatellite-based findings that these species are genetically differentiated, but our population genomics approach reveals that hybridization and genetic introgression have recently occurred between the two species. The directionality of introgression is primarily from C. posadasii to C. immitis, and we find more than 800 genes exhibiting strong evidence of introgression in one or more sequenced isolates. We performed PCR-based sequencing of one region exhibiting introgression in 40 C. immitis isolates to confirm and better define the extent of gene flow between the species. We find more coding sequence than expected by chance in the introgressed regions, suggesting that natural selection may play a role in the observed genetic exchange. We find notable heterogeneity in repetitive sequence composition among the sequenced genomes and present the first detailed genome-wide profile of a repeat-induced point mutation (RIP) process distinctly different from what has been observed in Neurospora. We identify promiscuous HLA-I and HLA-II epitopes in both proteomes and discuss the possible implications of introgression and population genomic data for public health and vaccine candidate prioritization. This study highlights the importance of population genomic data for detecting subtle but potentially important phenomena such as introgression.
ESTHER : Neafsey_2010_Genome.Res_20_938
PubMedSearch : Neafsey_2010_Genome.Res_20_938
PubMedID: 20516208
Gene_locus related to this paper: cocp7-c5p2u8 , cocp7-c5p5s7 , cocp7-c5pe69 , cocp7-c5pf68 , cocp7-c5pgk6 , cocim-j3ka92 , cocp7-c5phc6 , cocps-e9d3i4 , cocit-a0a0j8rde7 , cocps-e9csw0 , cocps-e9dgm8

Title : A novel endophytic Huperzine A-producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata - Zhu_2010_J.Appl.Microbiol_109_1469
Author(s) : Zhu D , Wang J , Zeng Q , Zhang Z , Yan R
Ref : J Appl Microbiol , 109 :1469 , 2010
Abstract : AIMS: To characterize and identify a novel Huperzine A (HupA)-producing fungal strain Slf14 isolated from Huperzia serrata (Thunb. ex Murray) Trev. in China. METHODS AND RESULTS: The isolation, identification and characterization of a novel endophytic fungus producing HupA specifically and consistently from the leaves of H. serrata were investigated. The fungus was identified as Shiraia sp. Slf14 by molecular and morphological methods. The HupA produced by this endophytic fungus was shown to be identical to authentic HupA analysed by thin layer chromatographic, High-performance liquid chromatography (HPLC), LC-MS, (1) H NMR and acetylcholinesterase (AChE) inhibition activity in vitro. The amount of HupA produced by Shiraia sp. Slf14 was quantified to be 327.8 mug l(-1) by HPLC, which was far higher than that of the reported endophytic fungi, Acremonium sp., Blastomyces sp. and Botrytis sp. CONCLUSIONS: The production of HupA by endophyte Shiraia sp. Slf14 is an enigmatic observation. It would be interesting to further study the HupA production and regulation by the cultured endophyte in H. serrata and in axenic cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: Although the current accumulation of HupA by the endophyte is not very high, it could provide a promising alterative approach for large-scale production of HupA. However, further strain improvement and the fermentation process optimization are required to result in the consistent and dependable production.
ESTHER : Zhu_2010_J.Appl.Microbiol_109_1469
PubMedSearch : Zhu_2010_J.Appl.Microbiol_109_1469
PubMedID: 20602655

Title : Evolution of pathogenicity and sexual reproduction in eight Candida genomes - Butler_2009_Nature_459_657
Author(s) : Butler G , Rasmussen MD , Lin MF , Santos MA , Sakthikumar S , Munro CA , Rheinbay E , Grabherr M , Forche A , Reedy JL , Agrafioti I , Arnaud MB , Bates S , Brown AJ , Brunke S , Costanzo MC , Fitzpatrick DA , de Groot PW , Harris D , Hoyer LL , Hube B , Klis FM , Kodira C , Lennard N , Logue ME , Martin R , Neiman AM , Nikolaou E , Quail MA , Quinn J , Santos MC , Schmitzberger FF , Sherlock G , Shah P , Silverstein KA , Skrzypek MS , Soll D , Staggs R , Stansfield I , Stumpf MP , Sudbery PE , Srikantha T , Zeng Q , Berman J , Berriman M , Heitman J , Gow NA , Lorenz MC , Birren BW , Kellis M , Cuomo CA
Ref : Nature , 459 :657 , 2009
Abstract : Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.
ESTHER : Butler_2009_Nature_459_657
PubMedSearch : Butler_2009_Nature_459_657
PubMedID: 19465905
Gene_locus related to this paper: canal-ATG15 , canal-bna7 , canal-c4yl13 , canal-LIP1 , canal-LIP2 , canal-LIP3 , canal-LIP4 , canal-LIP5 , canal-LIP6 , canal-LIP7 , canal-LIP8 , canal-LIP9 , canal-LIP10 , canal-ppme1 , canal-q5a0c9 , canal-q5a2i9 , canal-q5a042 , canal-q5ad17 , canal-q5aeu3 , canal-q5afp8 , canal-q5ag57 , canal-q5ai09 , canal-q5ai12 , canal-q5ajt3 , canal-q5akz5 , canal-q5apu4 , canal-q59l46 , canal-q59m48 , canal-q59nw6 , canal-q59u61 , canal-q59u64 , canal-q59vp0 , canal-q59y97 , canaw-c4ykb1 , canaw-c4yrn6 , canaw-c4yrn9 , canaw-c4yrr3 , canaw-c4yrv3 , canaw-c4ys26 , cantt-c5m3d7 , cantt-c5m3y5 , cantt-c5m4x0 , cantt-c5m5e8 , cantt-c5m5w2 , cantt-c5m8s7 , cantt-c5m9c2 , cantt-c5m465 , cantt-c5m751 , cantt-c5m793 , cantt-c5m893 , cantt-c5ma78 , cantt-c5mag0 , cantt-c5mbb8 , cantt-c5mc53 , cantt-c5md87 , cantt-c5mdy3 , cantt-c5mey7 , cantt-c5mfg0 , cantt-c5mfh8 , cantt-c5mg56 , cantt-c5mgj0 , cantt-c5mh75 , cantt-c5mh80 , cantt-c5mh89 , cantt-c5mhh0 , cantt-c5mhn5 , cantt-c5mij5 , cantt-c5min7 , clal4-c4xvt8 , clal4-c4xwy4 , clal4-c4xy03 , clal4-c4xyx9 , clal4-c4xzz1 , clal4-c4y3e1 , clal4-c4y4f2 , clal4-c4y4w8 , clal4-c4y5j4 , clal4-c4y5j9 , clal4-c4y7z7 , clal4-c4y8q1 , clal4-c4y035 , clal4-c4y481 , clal4-c4y538 , clal4-c4y898 , clal4-c4yas2 , clal4-c4yba6 , clal4-c4yba7 , clal4-c4yc85 , lodel-a5drz3 , lodel-a5ds97 , lodel-a5dsc0 , lodel-a5duu4 , lodel-a5duy7 , lodel-a5dv03 , lodel-a5dv46 , lodel-a5dw16 , lodel-a5dwv7 , lodel-a5dww6 , lodel-a5dxf3 , lodel-a5e0z5 , lodel-a5e1c1 , lodel-a5e1l4 , lodel-a5e1p3 , lodel-a5e2s1 , lodel-a5e2t8 , lodel-a5e2v2 , lodel-a5e4u8 , lodel-a5e5a9 , lodel-a5e5k1 , lodel-a5e5z7 , lodel-a5e6w1 , lodel-a5e028 , lodel-atg15 , lodel-kex1 , picgu-a5d9u2 , picgu-a5dav0 , picgu-a5dbk0 , picgu-a5dc45 , picgu-a5dc73 , picgu-a5dc74 , picgu-a5dc75 , picgu-a5ddt8 , picgu-a5dev7 , picgu-a5dh90 , picgu-a5dhe3 , picgu-a5di38 , picgu-a5dj06 , picgu-a5dkd8 , picgu-a5dle9 , picgu-a5dlj5 , picgu-a5dm19 , picgu-a5dn92 , picgu-a5dnr3 , picgu-a5dnt6 , picgu-a5dqu5 , picgu-a5dr14 , picgu-a5drl3 , picgu-atg15 , picgu-bna7 , picgu-a5d9q3 , picgu-a5dag9 , clal4-c4y5a2 , clal4-c4y0l0 , cantt-c5mcb1 , clal4-c4y8j2 , cantt-c5m494 , clals-a0a202gac7 , canal-hda1 , picgu-a5dks8 , lodel-a5drs6 , canpc-g8bbk1 , cantt-kex1 , clal4-kex1 , picgu-kex1

Title : Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication - Ma_2009_PLoS.Genet_5_e1000549
Author(s) : Ma LJ , Ibrahim AS , Skory C , Grabherr MG , Burger G , Butler M , Elias M , Idnurm A , Lang BF , Sone T , Abe A , Calvo SE , Corrochano LM , Engels R , Fu J , Hansberg W , Kim JM , Kodira CD , Koehrsen MJ , Liu B , Miranda-Saavedra D , O'Leary S , Ortiz-Castellanos L , Poulter R , Rodriguez-Romero J , Ruiz-Herrera J , Shen YQ , Zeng Q , Galagan J , Birren BW , Cuomo CA , Wickes BL
Ref : PLoS Genet , 5 :e1000549 , 2009
Abstract : Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called "zygomycetes," R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99-880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin-proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14alpha-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.
ESTHER : Ma_2009_PLoS.Genet_5_e1000549
PubMedSearch : Ma_2009_PLoS.Genet_5_e1000549
PubMedID: 19578406

Title : Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives - Sharpton_2009_Genome.Res_19_1722
Author(s) : Sharpton TJ , Stajich JE , Rounsley SD , Gardner MJ , Wortman JR , Jordar VS , Maiti R , Kodira CD , Neafsey DE , Zeng Q , Hung CY , McMahan C , Muszewska A , Grynberg M , Mandel MA , Kellner EM , Barker BM , Galgiani JN , Orbach MJ , Kirkland TN , Cole GT , Henn MR , Birren BW , Taylor JW
Ref : Genome Res , 19 :1722 , 2009
Abstract : While most Ascomycetes tend to associate principally with plants, the dimorphic fungi Coccidioides immitis and Coccidioides posadasii are primary pathogens of immunocompetent mammals, including humans. Infection results from environmental exposure to Coccidiodies, which is believed to grow as a soil saprophyte in arid deserts. To investigate hypotheses about the life history and evolution of Coccidioides, the genomes of several Onygenales, including C. immitis and C. posadasii; a close, nonpathogenic relative, Uncinocarpus reesii; and a more diverged pathogenic fungus, Histoplasma capsulatum, were sequenced and compared with those of 13 more distantly related Ascomycetes. This analysis identified increases and decreases in gene family size associated with a host/substrate shift from plants to animals in the Onygenales. In addition, comparison among Onygenales genomes revealed evolutionary changes in Coccidioides that may underlie its infectious phenotype, the identification of which may facilitate improved treatment and prevention of coccidioidomycosis. Overall, the results suggest that Coccidioides species are not soil saprophytes, but that they have evolved to remain associated with their dead animal hosts in soil, and that Coccidioides metabolism genes, membrane-related proteins, and putatively antigenic compounds have evolved in response to interaction with an animal host.
ESTHER : Sharpton_2009_Genome.Res_19_1722
PubMedSearch : Sharpton_2009_Genome.Res_19_1722
PubMedID: 19717792
Gene_locus related to this paper: ajecg-c0nbn5 , ajecg-c0nbz4 , ajecg-c0ndw0 , ajecg-c0nqc6 , ajecg-c0nst6 , ajecg-c0ntx5 , ajecg-c0nu33 , ajecg-c0nzh6 , ajecg-c0p0h0 , ajech-c6h1y9 , ajecn-a6qs62 , ajecn-a6quy7 , ajecn-a6r2c0 , ajecn-a6r491 , ajecn-a6r635 , ajecn-a6rab7 , ajecn-a6ram0 , ajecn-a6rf08 , ajecn-a6rf70 , ajecn-atg15 , ajecn-dapb , ajeds-c5jqx1 , cocim-atg15 , cocim-bst1 , cocim-j3k8a1 , cocp7-c5p0f2 , cocp7-c5p0i6 , cocp7-c5p1s3 , cocp7-c5p1u2 , cocp7-c5p2u8 , cocp7-c5p4s8 , cocp7-c5p4z1 , cocp7-c5p5s7 , cocp7-c5p129 , cocp7-c5p172 , cocp7-c5p250 , cocps-e9ctz7 , cocp7-c5pae0 , cocp7-c5pby4 , cocp7-c5pdn8 , cocp7-c5pdv9 , cocp7-c5pe69 , cocp7-c5pf68 , cocp7-c5pgk6 , cocp7-c5pid0 , cocp7-dapb , cocps-e9cz73 , cocps-e9dbi4 , cocps-e9dbu0 , cocps-e9dfh7 , uncre-c4jf72 , uncre-c4jf79 , uncre-c4ji27 , uncre-c4jj62 , uncre-c4jjs9 , uncre-c4jk71 , uncre-c4jlm9 , uncre-c4jlp5 , uncre-c4jlr7 , uncre-c4jnk2 , uncre-c4jnn3 , uncre-c4juj6 , uncre-c4jve9 , uncre-c4jvh5 , uncre-c4jw09 , uncre-c4jyw9 , uncre-c4jzs5 , uncre-dapb , ajech-c6h9r4 , uncre-c4jds5 , cocp7-c5pii3 , ajecn-a6r5v8 , cocim-j3ka92 , cocp7-c5phc6 , ajecn-a6qtc4 , ajecn-a6r145 , cocps-e9d3i4 , cocp7-c5p7x1 , cocps-e9csw0 , ajecg-c0nww6 , ajecn-kex1 , uncre-kex1 , uncre-cbpya , cocps-kex1 , ajecn-cbpya

Title : Genome sequence of Aedes aegypti, a major arbovirus vector - Nene_2007_Science_316_1718
Author(s) : Nene V , Wortman JR , Lawson D , Haas B , Kodira C , Tu ZJ , Loftus B , Xi Z , Megy K , Grabherr M , Ren Q , Zdobnov EM , Lobo NF , Campbell KS , Brown SE , Bonaldo MF , Zhu J , Sinkins SP , Hogenkamp DG , Amedeo P , Arensburger P , Atkinson PW , Bidwell S , Biedler J , Birney E , Bruggner RV , Costas J , Coy MR , Crabtree J , Crawford M , Debruyn B , Decaprio D , Eiglmeier K , Eisenstadt E , El-Dorry H , Gelbart WM , Gomes SL , Hammond M , Hannick LI , Hogan JR , Holmes MH , Jaffe D , Johnston JS , Kennedy RC , Koo H , Kravitz S , Kriventseva EV , Kulp D , LaButti K , Lee E , Li S , Lovin DD , Mao C , Mauceli E , Menck CF , Miller JR , Montgomery P , Mori A , Nascimento AL , Naveira HF , Nusbaum C , O'Leary S , Orvis J , Pertea M , Quesneville H , Reidenbach KR , Rogers YH , Roth CW , Schneider JR , Schatz M , Shumway M , Stanke M , Stinson EO , Tubio JM , Vanzee JP , Verjovski-Almeida S , Werner D , White O , Wyder S , Zeng Q , Zhao Q , Zhao Y , Hill CA , Raikhel AS , Soares MB , Knudson DL , Lee NH , Galagan J , Salzberg SL , Paulsen IT , Dimopoulos G , Collins FH , Birren B , Fraser-Liggett CM , Severson DW
Ref : Science , 316 :1718 , 2007
Abstract : We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
ESTHER : Nene_2007_Science_316_1718
PubMedSearch : Nene_2007_Science_316_1718
PubMedID: 17510324
Gene_locus related to this paper: aedae-ACHE , aedae-ACHE1 , aedae-glita , aedae-q0iea6 , aedae-q0iev6 , aedae-q0ifn6 , aedae-q0ifn8 , aedae-q0ifn9 , aedae-q0ifp0 , aedae-q0ig41 , aedae-q1dgl0 , aedae-q1dh03 , aedae-q1dh19 , aedae-q1hqe6 , aedae-Q8ITU8 , aedae-Q8MMJ6 , aedae-Q8T9V6 , aedae-q16e91 , aedae-q16f04 , aedae-q16f25 , aedae-q16f26 , aedae-q16f28 , aedae-q16f29 , aedae-q16f30 , aedae-q16gq5 , aedae-q16iq5 , aedae-q16je0 , aedae-q16je1 , aedae-q16je2 , aedae-q16ks8 , aedae-q16lf2 , aedae-q16lv6 , aedae-q16m61 , aedae-q16mc1 , aedae-q16mc6 , aedae-q16mc7 , aedae-q16md1 , aedae-q16ms7 , aedae-q16nk5 , aedae-q16rl5 , aedae-q16rz9 , aedae-q16si8 , aedae-q16t49 , aedae-q16wf1 , aedae-q16x18 , aedae-q16xp8 , aedae-q16xu6 , aedae-q16xw5 , aedae-q16xw6 , aedae-q16y04 , aedae-q16y05 , aedae-q16y06 , aedae-q16y07 , aedae-q16y39 , aedae-q16y40 , aedae-q16yg4 , aedae-q16z03 , aedae-q17aa7 , aedae-q17av1 , aedae-q17av2 , aedae-q17av3 , aedae-q17av4 , aedae-q17b28 , aedae-q17b29 , aedae-q17b30 , aedae-q17b31 , aedae-q17b32 , aedae-q17bm3 , aedae-q17bm4 , aedae-q17bv7 , aedae-q17c44 , aedae-q17cz1 , aedae-q17d32 , aedae-q17g39 , aedae-q17g40 , aedae-q17g41 , aedae-q17g42 , aedae-q17g43 , aedae-q17g44 , aedae-q17gb8 , aedae-q17gr3 , aedae-q17if7 , aedae-q17if9 , aedae-q17ig1 , aedae-q17ig2 , aedae-q17is4 , aedae-q17l09 , aedae-q17m26 , aedae-q17mg9 , aedae-q17mv4 , aedae-q17mv5 , aedae-q17mv6 , aedae-q17mv7 , aedae-q17mw8 , aedae-q17mw9 , aedae-q17nw5 , aedae-q17nx5 , aedae-q17pa4 , aedae-q17q69 , aedae-q170k7 , aedae-q171y4 , aedae-q172e0 , aedae-q176i8 , aedae-q176j0 , aedae-q177k1 , aedae-q177k2 , aedae-q177l9 , aedae-j9hic3 , aedae-q179r9 , aedae-u483 , aedae-j9hj23 , aedae-q17d68 , aedae-q177c7 , aedae-q0ifp1 , aedae-a0a1s4fx83 , aedae-a0a1s4g2m0 , aedae-q1hr49

Title : DNA sequence and analysis of human chromosome 8 - Nusbaum_2006_Nature_439_331
Author(s) : Nusbaum C , Mikkelsen TS , Zody MC , Asakawa S , Taudien S , Garber M , Kodira CD , Schueler MG , Shimizu A , Whittaker CA , Chang JL , Cuomo CA , Dewar K , Fitzgerald MG , Yang X , Allen NR , Anderson S , Asakawa T , Blechschmidt K , Bloom T , Borowsky ML , Butler J , Cook A , Corum B , DeArellano K , Decaprio D , Dooley KT , Dorris L, 3rd , Engels R , Glockner G , Hafez N , Hagopian DS , Hall JL , Ishikawa SK , Jaffe DB , Kamat A , Kudoh J , Lehmann R , Lokitsang T , Macdonald P , Major JE , Matthews CD , Mauceli E , Menzel U , Mihalev AH , Minoshima S , Murayama Y , Naylor JW , Nicol R , Nguyen C , O'Leary SB , O'Neill K , Parker SC , Polley A , Raymond CK , Reichwald K , Rodriguez J , Sasaki T , Schilhabel M , Siddiqui R , Smith CL , Sneddon TP , Talamas JA , Tenzin P , Topham K , Venkataraman V , Wen G , Yamazaki S , Young SK , Zeng Q , Zimmer AR , Rosenthal A , Birren BW , Platzer M , Shimizu N , Lander ES
Ref : Nature , 439 :331 , 2006
Abstract : The International Human Genome Sequencing Consortium (IHGSC) recently completed a sequence of the human genome. As part of this project, we have focused on chromosome 8. Although some chromosomes exhibit extreme characteristics in terms of length, gene content, repeat content and fraction segmentally duplicated, chromosome 8 is distinctly typical in character, being very close to the genome median in each of these aspects. This work describes a finished sequence and gene catalogue for the chromosome, which represents just over 5% of the euchromatic human genome. A unique feature of the chromosome is a vast region of approximately 15 megabases on distal 8p that appears to have a strikingly high mutation rate, which has accelerated in the hominids relative to other sequenced mammals. This fast-evolving region contains a number of genes related to innate immunity and the nervous system, including loci that appear to be under positive selection--these include the major defensin (DEF) gene cluster and MCPH1, a gene that may have contributed to the evolution of expanded brain size in the great apes. The data from chromosome 8 should allow a better understanding of both normal and disease biology and genome evolution.
ESTHER : Nusbaum_2006_Nature_439_331
PubMedSearch : Nusbaum_2006_Nature_439_331
PubMedID: 16421571
Gene_locus related to this paper: human-TG

Title : DNA sequence and analysis of human chromosome 18 - Nusbaum_2005_Nature_437_551
Author(s) : Nusbaum C , Zody MC , Borowsky ML , Kamal M , Kodira CD , Taylor TD , Whittaker CA , Chang JL , Cuomo CA , Dewar K , Fitzgerald MG , Yang X , Abouelleil A , Allen NR , Anderson S , Bloom T , Bugalter B , Butler J , Cook A , Decaprio D , Engels R , Garber M , Gnirke A , Hafez N , Hall JL , Norman CH , Itoh T , Jaffe DB , Kuroki Y , Lehoczky J , Lui A , Macdonald P , Mauceli E , Mikkelsen TS , Naylor JW , Nicol R , Nguyen C , Noguchi H , O'Leary SB , O'Neill K , Piqani B , Smith CL , Talamas JA , Topham K , Totoki Y , Toyoda A , Wain HM , Young SK , Zeng Q , Zimmer AR , Fujiyama A , Hattori M , Birren BW , Sakaki Y , Lander ES
Ref : Nature , 437 :551 , 2005
Abstract : Chromosome 18 appears to have the lowest gene density of any human chromosome and is one of only three chromosomes for which trisomic individuals survive to term. There are also a number of genetic disorders stemming from chromosome 18 trisomy and aneuploidy. Here we report the finished sequence and gene annotation of human chromosome 18, which will allow a better understanding of the normal and disease biology of this chromosome. Despite the low density of protein-coding genes on chromosome 18, we find that the proportion of non-protein-coding sequences evolutionarily conserved among mammals is close to the genome-wide average. Extending this analysis to the entire human genome, we find that the density of conserved non-protein-coding sequences is largely uncorrelated with gene density. This has important implications for the nature and roles of non-protein-coding sequence elements.
ESTHER : Nusbaum_2005_Nature_437_551
PubMedSearch : Nusbaum_2005_Nature_437_551
PubMedID: 16177791
Gene_locus related to this paper: human-LIPG

Title : Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum - Nolling_2001_J.Bacteriol_183_4823
Author(s) : Nolling J , Breton G , Omelchenko MV , Makarova KS , Zeng Q , Gibson R , Lee HM , Dubois J , Qiu D , Hitti J , Wolf YI , Tatusov RL , Sabathe F , Doucette-Stamm L , Soucaille P , Daly MJ , Bennett GN , Koonin EV , Smith DR
Ref : Journal of Bacteriology , 183 :4823 , 2001
Abstract : The genome sequence of the solvent-producing bacterium Clostridium acetobutylicum ATCC 824 has been determined by the shotgun approach. The genome consists of a 3.94-Mb chromosome and a 192-kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria. However, the C. acetobutylicum genome also contains a significant number of predicted operons that are shared with distantly related bacteria and archaea but not with B. subtilis. Phylogenetic analysis is compatible with the dissemination of such operons by horizontal transfer. The enzymes of the solventogenesis pathway and of the cellulosome of C. acetobutylicum comprise a new set of metabolic capacities not previously represented in the collection of complete genomes. These enzymes show a complex pattern of evolutionary affinities, emphasizing the role of lateral gene exchange in the evolution of the unique metabolic profile of the bacterium. Many of the sporulation genes identified in B. subtilis are missing in C. acetobutylicum, which suggests major differences in the sporulation process. Thus, comparative analysis reveals both significant conservation of the genome organization and pronounced differences in many systems that reflect unique adaptive strategies of the two gram-positive bacteria.
ESTHER : Nolling_2001_J.Bacteriol_183_4823
PubMedSearch : Nolling_2001_J.Bacteriol_183_4823
PubMedID: 11466286
Gene_locus related to this paper: cloab-CAC2917 , cloab-q97db4 , cloab-q97fl1 , cloac-CAC0202 , cloac-CAC0719 , cloac-CAC0816 , cloac-CAC1022 , cloac-CAC1028 , cloac-CAC1450 , cloac-CAC1470 , cloac-CAC1962 , cloac-CAC2246 , cloac-CAC2472 , cloac-CAC2688 , cloac-CAC2936 , cloac-CAC3022 , cloac-CAC3402 , cloac-CAC3407 , cloac-CAC3432 , cloac-CAC3515 , cloac-CAC3665 , cloac-CAP0071 , cloac-CAP0097 , cloac-CAP0133 , cloac-pnbae