Borkovich KA

References (2)

Title : Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium - Ma_2010_Nature_464_367
Author(s) : Ma LJ , van der Does HC , Borkovich KA , Coleman JJ , Daboussi MJ , Di Pietro A , Dufresne M , Freitag M , Grabherr M , Henrissat B , Houterman PM , Kang S , Shim WB , Woloshuk C , Xie X , Xu JR , Antoniw J , Baker SE , Bluhm BH , Breakspear A , Brown DW , Butchko RA , Chapman S , Coulson R , Coutinho PM , Danchin EG , Diener A , Gale LR , Gardiner DM , Goff S , Hammond-Kosack KE , Hilburn K , Hua-Van A , Jonkers W , Kazan K , Kodira CD , Koehrsen M , Kumar L , Lee YH , Li L , Manners JM , Miranda-Saavedra D , Mukherjee M , Park G , Park J , Park SY , Proctor RH , Regev A , Ruiz-Roldan MC , Sain D , Sakthikumar S , Sykes S , Schwartz DC , Turgeon BG , Wapinski I , Yoder O , Young S , Zeng Q , Zhou S , Galagan J , Cuomo CA , Kistler HC , Rep M
Ref : Nature , 464 :367 , 2010
Abstract : Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.
ESTHER : Ma_2010_Nature_464_367
PubMedSearch : Ma_2010_Nature_464_367
PubMedID: 20237561
Gene_locus related to this paper: fusox-a0a1d3s5h0 , gibf5-fus2 , fusof-f9f2k2 , fusof-f9f3l6 , fusof-f9f6t8 , fusof-f9f6v2 , fusof-f9f132 , fusof-f9f781 , fusof-f9fd72 , fusof-f9fd90 , fusof-f9fem0 , fusof-f9fhk2 , fusof-f9fj19 , fusof-f9fj20 , fusof-f9fki8 , fusof-f9fmx2 , fusof-f9fnt4 , fusof-f9fpy4 , fusof-f9fvs6 , fusof-f9fwu0 , fusof-f9fxz4 , fusof-f9fzy5 , fusof-f9g2a2 , fusof-f9g3b1 , fusof-f9g5h7 , fusof-f9g6e6 , fusof-f9g6y7 , fusof-f9g7b0 , fusof-f9g797 , fusof-f9g972 , fusof-f9ga50 , fusof-f9gck4 , fusof-f9gd15 , gibze-a8w610 , gibze-b1pdn0 , gibze-i1r9e6 , gibze-i1rda9 , gibze-i1rdk7 , gibze-i1rec8 , gibze-i1rgs0 , gibze-i1rgy0 , gibze-i1rh52 , gibze-i1rhi8 , gibze-i1rig9 , gibze-i1rip5 , gibze-i1rpg6 , gibze-i1rsg2 , gibze-i1rv36 , gibze-i1rxm5 , gibze-i1rxp8 , gibze-i1rxv5 , gibze-i1s1u3 , gibze-i1s3j9 , gibze-i1s6l7 , gibze-i1s8i8 , gibze-i1s9x4 , gibze-q4huy1 , gibze-i1rg17 , fuso4-j9mvr9 , fuso4-j9ngs6 , fuso4-j9niq8 , fuso4-j9nqm2 , gibze-i1rb76 , gibze-i1s1m7 , gibze-i1s3z6 , gibze-i1rd78 , gibze-i1rgl9 , gibze-i1rjp7 , gibze-i1s1q6 , gibze-i1ri35 , gibze-i1rf76 , gibze-i1rhp3 , fusc1-n4uj11 , fusc4-n1s9p6 , gibf5-s0dqr2 , gibm7-w7n1b5 , fusof-f9g6q0 , gibm7-w7n497 , fusox-x0bme4 , gibm7-w7mcf8 , gibm7-w7mak5 , fusox-x0a2c5 , gibm7-w7mum7 , fusox-w9iyc7 , gibm7-w7maw6 , gibm7-w7msi0 , gibm7-w7luf0 , gibm7-w7msa3 , gibm7-w7mna8 , gibm7-w7n8b7 , gibm7-w7n564 , fusox-w9jpi0 , gibm7-w7ngc3 , gibm7-w7m4v6 , gibm7-w7m4v2 , gibm7-w7lt61 , gibm7-w7mly6 , gibm7-w7ncn3 , fusox-w9ibd7 , fusof-f9fnm6 , gibm7-w7n526 , gibza-a0a016pda4 , gibza-a0a016pl96 , gibm7-w7muq1 , fusof-f9gfd3 , gibm7-w7mt52 , gibze-i1rjb5 , gibf5-s0ehu3 , fusox-w9hvf0 , gibze-i1rkc4 , gibm7-w7mv30 , gibze-a0a1c3ylb1 , fuso4-a0a0c4diy4 , gibm7-w7n4n0 , gibze-gra11 , gibze-fsl2 , gibf5-fub4 , gibf5-fub5 , gibf5-fus5 , gibm7-dlh1

Title : The genome sequence of the filamentous fungus Neurospora crassa - Galagan_2003_Nature_422_859
Author(s) : Galagan JE , Calvo SE , Borkovich KA , Selker EU , Read ND , Jaffe D , FitzHugh W , Ma LJ , Smirnov S , Purcell S , Rehman B , Elkins T , Engels R , Wang S , Nielsen CB , Butler J , Endrizzi M , Qui D , Ianakiev P , Bell-Pedersen D , Nelson MA , Werner-Washburne M , Selitrennikoff CP , Kinsey JA , Braun EL , Zelter A , Schulte U , Kothe GO , Jedd G , Mewes W , Staben C , Marcotte E , Greenberg D , Roy A , Foley K , Naylor J , Stange-Thomann N , Barrett R , Gnerre S , Kamal M , Kamvysselis M , Mauceli E , Bielke C , Rudd S , Frishman D , Krystofova S , Rasmussen C , Metzenberg RL , Perkins DD , Kroken S , Cogoni C , Macino G , Catcheside D , Li W , Pratt RJ , Osmani SA , DeSouza CP , Glass L , Orbach MJ , Berglund JA , Voelker R , Yarden O , Plamann M , Seiler S , Dunlap J , Radford A , Aramayo R , Natvig DO , Alex LA , Mannhaupt G , Ebbole DJ , Freitag M , Paulsen I , Sachs MS , Lander ES , Nusbaum C , Birren B
Ref : Nature , 422 :859 , 2003
Abstract : Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000 protein-coding genes--more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurospora biology including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism, and important differences in Ca2+ signalling as compared with plants and animals. Neurospora possesses the widest array of genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes.
ESTHER : Galagan_2003_Nature_422_859
PubMedSearch : Galagan_2003_Nature_422_859
PubMedID: 12712197
Gene_locus related to this paper: neucr-5E6.090 , neucr-64C2.080 , neucr-90C4.300 , neucr-a7uw78 , neucr-a7uwh6 , neucr-a7uwy7 , neucr-apth1 , neucr-ATG15 , neucr-B7H23.190 , neucr-B11O8.160 , neucr-B13B3.090 , neucr-B14D6.130 , neucr-B18E6.050 , neucr-B19A17.360 , neucr-B23G1.090 , neucr-CBPYA , neucr-MET5 , neucr-NCU00292.1 , neucr-NCU00350.1 , neucr-NCU00536.1 , neucr-NCU00825.1 , neucr-NCU02148.1 , neucr-NCU02679.1 , neucr-NCU02904.1 , neucr-NCU02924.1 , neucr-NCU03158.1 , neucr-NCU04930.1 , neucr-NCU06332.1 , neucr-NCU06573.1 , neucr-NCU07081.1 , neucr-NCU07415.1 , neucr-NCU07909.1 , neucr-NCU08752.1 , neucr-NCU09575.1 , neucr-NCU10022.1 , neucr-ppme1 , neucr-q6mfs7 , neucr-q7rxb4 , neucr-q7rxv5 , neucr-q7ry06 , neucr-q7ryd2 , neucr-q7rzk2 , neucr-q7s0g7 , neucr-q7s1x0 , neucr-q7s2b3 , neucr-q7s2c5 , neucr-q7s2p4 , neucr-q7s2u9 , neucr-q7s3c6 , neucr-q7s3c8 , neucr-q7s3m2 , neucr-q7s4e3 , neucr-q7s4f8 , neucr-q7s4j4 , neucr-q7s5d6 , neucr-q7s5m2 , neucr-q7s5v8 , neucr-q7s6c5 , neucr-q7s8h2 , neucr-q7s070 , neucr-q7s082 , neucr-q7s134 , neucr-q7s216 , neucr-q7s259 , neucr-q7s260 , neucr-q7s283 , neucr-q7s512 , neucr-q7s736 , neucr-q7s828 , neucr-q7s897 , neucr-q7sbf9 , neucr-q7sbn0 , neucr-q7scr4 , neucr-q7sdw5 , neucr-q7sdx9 , neucr-q7se51 , neucr-q7sea3 , neucr-q7sez8 , neucr-q7sff7 , neucr-q7sga3 , neucr-q7sgj0 , neucr-q7sgp3 , neucr-q7sha3 , neucr-q7sha5 , neucr-q7shu8 , neucr-q9p6a7 , neucr-q872l1 , neucr-f5hbr2 , neucr-q7ry64