Kazan K

References (8)

Title : The Fdb3 transcription factor of the Fusarium Detoxification of Benzoxazolinone gene cluster is required for MBOA but not BOA degradation in Fusarium pseudograminearum - Kettle_2016_Fungal.Genet.Biol_88_44
Author(s) : Kettle AJ , Carere J , Batley J , Manners JM , Kazan K , Gardiner DM
Ref : Fungal Genet Biol , 88 :44 , 2016
Abstract : A number of cereals produce the benzoxazolinone class of phytoalexins. Fusarium species pathogenic towards these hosts can typically degrade these compounds via an aminophenol intermediate, and the ability to do so is encoded by a group of genes found in the Fusarium Detoxification of Benzoxazolinone (FDB) cluster. A zinc finger transcription factor encoded by one of the FDB cluster genes (FDB3) has been proposed to regulate the expression of other genes in the cluster and hence is potentially involved in benzoxazolinone degradation. Herein we show that Fdb3 is essential for the ability of Fusarium pseudograminearum to efficiently detoxify the predominant wheat benzoxazolinone, 6-methoxy-benzoxazolin-2-one (MBOA), but not benzoxazoline-2-one (BOA). Furthermore, additional genes thought to be part of the FDB gene cluster, based upon transcriptional response to benzoxazolinones, are regulated by Fdb3. However, deletion mutants for these latter genes remain capable of benzoxazolinone degradation, suggesting that they are not essential for this process.
ESTHER : Kettle_2016_Fungal.Genet.Biol_88_44
PubMedSearch : Kettle_2016_Fungal.Genet.Biol_88_44
PubMedID: 26828593
Gene_locus related to this paper: fuspc-fdb26

Title : A gamma-lactamase from cereal infecting Fusarium spp. catalyses the first step in the degradation of the benzoxazolinone class of phytoalexins - Kettle_2015_Fungal.Genet.Biol_83_1
Author(s) : Kettle AJ , Carere J , Batley J , Benfield AH , Manners JM , Kazan K , Gardiner DM
Ref : Fungal Genet Biol , 83 :1 , 2015
Abstract : The benzoxazolinone class of phytoalexins are released by wheat, maize, rye and other agriculturally important species in the Poaceae family upon pathogen attack. Benzoxazolinones show antimicrobial effects on plant pathogens, but certain fungi have evolved mechanisms to actively detoxify these compounds which may contribute to the virulence of the pathogens. In many Fusarium spp. a cluster of genes is thought to be involved in the detoxification of benzoxazolinones. However, only one enzyme encoded in the cluster has been unequivocally assigned a role in this process. The first step in the detoxification of benzoxazolinones in Fusarium spp. involves the hydrolysis of a cyclic ester bond. This reaction is encoded by the FDB1 locus in F. verticillioides but the underlying gene is yet to be cloned. We previously proposed that FDB1 encodes a gamma-lactamase, and here direct evidence for this is presented. Expression analyses in the important wheat pathogen F. pseudograminearum demonstrated that amongst the three predicted gamma-lactamase genes only the one designated as FDB1, part of the proposed benzoxazolinone cluster in F. pseudograminearum, was strongly responsive to exogenous benzoxazolinone application. Analysis of independent F. pseudograminearum and F. graminearum FDB1 gene deletion mutants, as well as biochemical assays, demonstrated that the gamma-lactamase enzyme, encoded by FDB1, catalyses the first step in detoxification of benzoxazolinones. Overall, our results support the notion that Fusarium pathogens that cause crown rot and head blight on wheat have adopted strategies to overcome host-derived chemical defences.
ESTHER : Kettle_2015_Fungal.Genet.Biol_83_1
PubMedSearch : Kettle_2015_Fungal.Genet.Biol_83_1
PubMedID: 26296598
Gene_locus related to this paper: fuspc-fdb26

Title : Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat - Kettle_2015_Mol.Plant.Pathol_16_946
Author(s) : Kettle AJ , Batley J , Benfield AH , Manners JM , Kazan K , Gardiner DM
Ref : Mol Plant Pathol , 16 :946 , 2015
Abstract : Wheat, maize, rye and certain other agriculturally important species in the Poaceae family produce the benzoxazolinone class of phytoalexins on pest and pathogen attack. Benzoxazolinones can inhibit the growth of pathogens. However, certain fungi can actively detoxify these compounds. Despite this, a clear link between the ability to detoxify benzoxazolinones and pathogen virulence has not been shown. Here, through comparative genome analysis of several Fusarium species, we have identified a conserved genomic region around the FDB2 gene encoding an N-malonyltransferase enzyme known to be involved in benzoxazolinone degradation in the maize pathogen Fusarium verticillioides. Expression analyses demonstrated that a cluster of nine genes was responsive to exogenous benzoxazolinone in the important wheat pathogen Fusarium pseudograminearum. The analysis of independent F. pseudograminearumFDB2 knockouts and complementation of the knockout with FDB2 homologues from F. graminearum and F. verticillioides confirmed that the N-malonyltransferase enzyme encoded by this gene is central to the detoxification of benzoxazolinones, and that Fdb2 contributes quantitatively to virulence towards wheat in head blight inoculation assays. This contrasts with previous observations in F. verticillioides, where no effect of FDB2 mutations on pathogen virulence towards maize was observed. Overall, our results demonstrate that the detoxification of benzoxazolinones is a strategy adopted by wheat-infecting F. pseudograminearum to overcome host-derived chemical defences.
ESTHER : Kettle_2015_Mol.Plant.Pathol_16_946
PubMedSearch : Kettle_2015_Mol.Plant.Pathol_16_946
PubMedID: 25727347
Gene_locus related to this paper: fuspc-fdb26

Title : Genome Sequence of Fusarium graminearum Isolate CS3005 - Gardiner_2014_Genome.Announc_2_e00227
Author(s) : Gardiner DM , Stiller J , Kazan K
Ref : Genome Announc , 2 : , 2014
Abstract : Fusarium graminearum is one of the most important fungal pathogens of wheat, barley, and maize worldwide. This announcement reports the genome sequence of a highly virulent Australian isolate of this species to supplement the existing genome of the North American F. graminearum isolate Ph1.
ESTHER : Gardiner_2014_Genome.Announc_2_e00227
PubMedSearch : Gardiner_2014_Genome.Announc_2_e00227
PubMedID: 24744326
Gene_locus related to this paper: fusof-f9fxz4 , gibze-a8w610 , gibze-b1pdn0 , gibze-i1r9e6 , gibze-i1rda9 , gibze-i1rdk7 , gibze-i1rec8 , gibze-i1rgs0 , gibze-i1rh52 , gibze-i1rig9 , gibze-i1rip5 , gibze-i1rsg2 , gibze-i1rv36 , gibze-i1rxm5 , gibze-i1rxp8 , gibze-i1rxv5 , gibze-i1s3j9 , gibze-i1s6l7 , gibze-i1s8i8 , gibze-i1s9x4 , fuspc-k3vzd3 , gibza-a0a016pg72 , gibza-a0a016pda4 , gibza-a0a016pl96

Title : Genomic analysis of Xanthomonas translucens pathogenic on wheat and barley reveals cross-kingdom gene transfer events and diverse protein delivery systems - Gardiner_2014_PLoS.One_9_e84995
Author(s) : Gardiner DM , Upadhyaya NM , Stiller J , Ellis JG , Dodds PN , Kazan K , Manners JM
Ref : PLoS ONE , 9 :e84995 , 2014
Abstract : In comparison to dicot-infecting bacteria, only limited numbers of genome sequences are available for monocot-infecting and in particular cereal-infecting bacteria. Herein we report the characterisation and genome sequence of Xanthomonas translucens isolate DAR61454 pathogenic on wheat and barley. Based on phylogenetic analysis of the ATP synthase beta subunit (atpD) gene, DAR61454 is most closely related to other X. translucens strains and the sugarcane- and banana- infecting Xanthomonas strains, but shares a type III secretion system (T3SS) with X. translucens pv. graminis and more distantly related xanthomonads. Assays with an adenylate cyclase reporter protein demonstrate that DAR61454's T3SS is functional in delivering proteins to wheat cells. X. translucens DAR61454 also encodes two type VI secretion systems with one most closely related to those found in some strains of the rice infecting strain X. oryzae pv. oryzae but not other xanthomonads. Comparative analysis of 18 different Xanthomonas isolates revealed 84 proteins unique to cereal (i.e. rice) infecting isolates and the wheat/barley infecting DAR61454. Genes encoding 60 of these proteins are found in gene clusters in the X. translucens DAR61454 genome, suggesting cereal-specific pathogenicity islands. However, none of the cereal pathogen specific proteins were homologous to known Xanthomonas spp. effectors. Comparative analysis outside of the bacterial kingdom revealed a nucleoside triphosphate pyrophosphohydrolase encoding gene in DAR61454 also present in other bacteria as well as a number of pathogenic Fusarium species, suggesting that this gene may have been transmitted horizontally from bacteria to the Fusarium lineage of pathogenic fungi. This example further highlights the importance of horizontal gene acquisition from bacteria in the evolution of fungi.
ESTHER : Gardiner_2014_PLoS.One_9_e84995
PubMedSearch : Gardiner_2014_PLoS.One_9_e84995
PubMedID: 24416331
Gene_locus related to this paper: xanct-k8zjb9

Title : Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts - Gardiner_2012_PLoS.Pathog_8_e1002952
Author(s) : Gardiner DM , McDonald MC , Covarelli L , Solomon PS , Rusu AG , Marshall M , Kazan K , Chakraborty S , McDonald BA , Manners JM
Ref : PLoS Pathog , 8 :e1002952 , 2012
Abstract : Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens.
ESTHER : Gardiner_2012_PLoS.Pathog_8_e1002952
PubMedSearch : Gardiner_2012_PLoS.Pathog_8_e1002952
PubMedID: 23028337
Gene_locus related to this paper: gibze-a8w610 , gibze-i1rda9 , gibze-i1rdk7 , gibze-i1rec8 , gibze-i1rgs0 , gibze-i1rgy0 , gibze-i1rh52 , gibze-i1rig9 , gibze-i1rip5 , gibze-i1rpg6 , gibze-i1rsg2 , gibze-i1rv36 , gibze-i1rxm5 , gibze-i1rxp8 , gibze-i1rxv5 , gibze-i1s3j9 , gibze-i1s8i8 , gibze-i1s9x4 , gibze-q4huy1 , fuspc-k3u8z2 , fuspc-k3vzd3 , fuspc-k3w1u7 , gibza-a0a016pl96 , fuspc-k3ufi3 , gibze-i1rkc4 , fuspc-fdb26 , fuspc-w4935

Title : A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis - Thatcher_2012_Mol.Plant.Microbe.Interact_25_180
Author(s) : Thatcher LF , Gardiner DM , Kazan K , Manners JM
Ref : Mol Plant Microbe Interact , 25 :180 , 2012
Abstract : Secreted-in-xylem (SIX) proteins of the vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici are secreted during infection of tomato and function in virulence or avirulence. F. oxysporum formae speciales have specific host ranges but the roles of SIX proteins in diverse hosts are unknown. We identified homologs of F. oxysporum f. sp. lycopersici SIX1, SIX4, SIX8, and SIX9 in the genome of Arabidopsis infecting isolate Fo5176. A SIX4 homolog (termed Fo5176-SIX4) differed from that of F. oxysporum f. sp. lycopersici (Fol-SIX4) by only two amino acids, and its expression was induced during infection of Arabidopsis. Transgenic Arabidopsis plants constitutively expressing Fo5176-SIX4 had increased disease symptoms with Fo5176. Conversely, Fo5176-SIX4 gene knock-out mutants (Deltasix4) had significantly reduced virulence on Arabidopsis, and this was associated with reduced fungal biomass and host jasmonate-mediated gene expression, the latter known to be essential for host symptom development. Full virulence was restored by complementation of Deltasix4 mutants with either Fo5176-SIX4 or Fol-SIX4. Thus, Fo5176-SIX4 contributes quantitatively to virulence on Arabidopsis whereas, in tomato, Fol-SIX4 acts in host specificity as both an avirulence protein and a suppressor of other race-specific resistances. The strong sequence conservation for SIX4 in F. oxysporum f. sp. lycopersici and Fo5176 suggests a recent common origin.
ESTHER : Thatcher_2012_Mol.Plant.Microbe.Interact_25_180
PubMedSearch : Thatcher_2012_Mol.Plant.Microbe.Interact_25_180
PubMedID: 21942452
Gene_locus related to this paper: fusox-a0a1d3s5h0 , fusof-f9f2k2 , fusof-f9f3l6 , fusof-f9f4n3 , fusof-f9f6t8 , fusof-f9f6v2 , fusof-f9f132 , fusof-f9f781 , fusof-f9fd72 , fusof-f9fd90 , fusof-f9fem0 , fusof-f9fhk2 , fusof-f9fiu4 , fusof-f9fj19 , fusof-f9fj20 , fusof-f9fki8 , fusof-f9fmx2 , fusof-f9fn88 , fusof-f9fnt4 , fusof-f9fpy4 , fusof-f9fvs6 , fusof-f9fwu0 , fusof-f9fxz4 , fusof-f9fzw0 , fusof-f9fzy5 , fusof-f9g2a2 , fusof-f9g3b1 , fusof-f9g5h7 , fusof-f9g5z8 , fusof-f9g6e6 , fusof-f9g6y7 , fusof-f9g7b0 , fusof-f9g797 , fusof-f9g972 , fusof-f9ga50 , fusof-f9gck4 , fusof-f9gd15 , fusof-f9gd77 , fusof-f9fgw0 , fusof-f9ftm6 , fusof-f9fji8 , fusof-f9fgw1 , fusof-f9fcz8 , fusof-f9f800 , fusof-f9f3d9 , fusof-f9gak5 , fusof-f9fsi0 , fusof-f9f4k6 , fusof-f9f4m7 , fusox-CUT , fusof-f9fvf1 , fusc4-n1s9p6 , fusof-f9g6q0 , fusox-x0h323 , fusox-x0bme4 , fusof-f9fnm6 , fusof-f9gfd3 , fusof-f9gf05 , fusof-f9fg31 , fusof-f9f774 , fusox-w9hvf0

Title : Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium - Ma_2010_Nature_464_367
Author(s) : Ma LJ , van der Does HC , Borkovich KA , Coleman JJ , Daboussi MJ , Di Pietro A , Dufresne M , Freitag M , Grabherr M , Henrissat B , Houterman PM , Kang S , Shim WB , Woloshuk C , Xie X , Xu JR , Antoniw J , Baker SE , Bluhm BH , Breakspear A , Brown DW , Butchko RA , Chapman S , Coulson R , Coutinho PM , Danchin EG , Diener A , Gale LR , Gardiner DM , Goff S , Hammond-Kosack KE , Hilburn K , Hua-Van A , Jonkers W , Kazan K , Kodira CD , Koehrsen M , Kumar L , Lee YH , Li L , Manners JM , Miranda-Saavedra D , Mukherjee M , Park G , Park J , Park SY , Proctor RH , Regev A , Ruiz-Roldan MC , Sain D , Sakthikumar S , Sykes S , Schwartz DC , Turgeon BG , Wapinski I , Yoder O , Young S , Zeng Q , Zhou S , Galagan J , Cuomo CA , Kistler HC , Rep M
Ref : Nature , 464 :367 , 2010
Abstract : Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.
ESTHER : Ma_2010_Nature_464_367
PubMedSearch : Ma_2010_Nature_464_367
PubMedID: 20237561
Gene_locus related to this paper: fusox-a0a1d3s5h0 , gibf5-fus2 , fusof-f9f2k2 , fusof-f9f3l6 , fusof-f9f6t8 , fusof-f9f6v2 , fusof-f9f132 , fusof-f9f781 , fusof-f9fd72 , fusof-f9fd90 , fusof-f9fem0 , fusof-f9fhk2 , fusof-f9fj19 , fusof-f9fj20 , fusof-f9fki8 , fusof-f9fmx2 , fusof-f9fnt4 , fusof-f9fpy4 , fusof-f9fvs6 , fusof-f9fwu0 , fusof-f9fxz4 , fusof-f9fzy5 , fusof-f9g2a2 , fusof-f9g3b1 , fusof-f9g5h7 , fusof-f9g6e6 , fusof-f9g6y7 , fusof-f9g7b0 , fusof-f9g797 , fusof-f9g972 , fusof-f9ga50 , fusof-f9gck4 , fusof-f9gd15 , gibze-a8w610 , gibze-b1pdn0 , gibze-i1r9e6 , gibze-i1rda9 , gibze-i1rdk7 , gibze-i1rec8 , gibze-i1rgs0 , gibze-i1rgy0 , gibze-i1rh52 , gibze-i1rhi8 , gibze-i1rig9 , gibze-i1rip5 , gibze-i1rpg6 , gibze-i1rsg2 , gibze-i1rv36 , gibze-i1rxm5 , gibze-i1rxp8 , gibze-i1rxv5 , gibze-i1s1u3 , gibze-i1s3j9 , gibze-i1s6l7 , gibze-i1s8i8 , gibze-i1s9x4 , gibze-q4huy1 , gibze-i1rg17 , fuso4-j9mvr9 , fuso4-j9ngs6 , fuso4-j9niq8 , fuso4-j9nqm2 , gibze-i1rb76 , gibze-i1s1m7 , gibze-i1s3z6 , gibze-i1rd78 , gibze-i1rgl9 , gibze-i1rjp7 , gibze-i1s1q6 , gibze-i1ri35 , gibze-i1rf76 , gibze-i1rhp3 , fusc1-n4uj11 , fusc4-n1s9p6 , gibf5-s0dqr2 , gibm7-w7n1b5 , fusof-f9g6q0 , gibm7-w7n497 , fusox-x0bme4 , gibm7-w7mcf8 , gibm7-w7mak5 , fusox-x0a2c5 , gibm7-w7mum7 , fusox-w9iyc7 , gibm7-w7maw6 , gibm7-w7msi0 , gibm7-w7luf0 , gibm7-w7msa3 , gibm7-w7mna8 , gibm7-w7n8b7 , gibm7-w7n564 , fusox-w9jpi0 , gibm7-w7ngc3 , gibm7-w7m4v6 , gibm7-w7m4v2 , gibm7-w7lt61 , gibm7-w7mly6 , gibm7-w7ncn3 , fusox-w9ibd7 , fusof-f9fnm6 , gibm7-w7n526 , gibza-a0a016pda4 , gibza-a0a016pl96 , gibm7-w7muq1 , fusof-f9gfd3 , gibm7-w7mt52 , gibze-i1rjb5 , gibf5-s0ehu3 , fusox-w9hvf0 , gibze-i1rkc4 , gibm7-w7mv30 , gibze-a0a1c3ylb1 , fuso4-a0a0c4diy4 , gibm7-w7n4n0 , gibze-gra11 , gibze-fsl2 , gibf5-fub4 , gibf5-fub5 , gibf5-fus5 , gibm7-dlh1