Lim Y

References (5)

Title : Molecular and kinetic properties of three acetylcholinesterases in the Varroa mite, Varroa destructor - Kim_2022_Pestic.Biochem.Physiol_188_105277
Author(s) : Kim S , Yoon KA , Cho S , Lee J , Lim Y , Lee SH
Ref : Pestic Biochem Physiol , 188 :105277 , 2022
Abstract : The Varroa mite, Varroa destructor, poses one of the most serious threats to honey bees worldwide. Although coumaphos, an anticholinesterase pesticide, is widely used for varroa mite control, little information is available on the properties of Varroa mite acetylcholinesterases (VdAChEs). In this study, three putative VdAChEs were annotated and named VdAChE1, VdAChE2, and VdAChE3. All VdAChEs possessed most of the functionally important signature domains, suggesting that they are catalytically active. Phylogenetic analysis revealed that VdAChE1 was clustered into a clade containing most arthropod AChE1s, whereas VdAChE2 and VdAChE3 formed a unique clade with other arachnid AChEs. VdAChE1 was determined to be membrane-anchored, but both VdAChE2 and VdAChE3 are soluble, as judged by electrophoresis in conjunction with western blotting. Tissue-specific transcription profiling revealed that VdAChE1 was most predominantly expressed in the synganglion. In contrast, VdAChE2 was most predominantly expressed in the legs and cuticle. VdAChE3 showed negligible expression levels in all the tissues examined. In a kinetic analysis using recombinant VdAChEs, VdAChE1 exhibited the highest catalytic efficiency, followed by VdAChE2 and VdAChE3. Inhibition experiments revealed that VdAChE1 was most sensitive to all tested inhibitors. Taken together, VdAChE1 appears to be the major synaptic enzyme with a more toxicological relevance, whereas VdAChE2 is involved in other noncatalytic functions, including chemical defense against xenobiotics. Current findings contribute to a more detailed understanding of the evolutionary and functional traits of VdAChEs and to the design of novel anticholinesterase varroacides.
ESTHER : Kim_2022_Pestic.Biochem.Physiol_188_105277
PubMedSearch : Kim_2022_Pestic.Biochem.Physiol_188_105277
PubMedID: 36464382
Gene_locus related to this paper: varde-VdAChE1 , varde-VdAChE2 , varde-VdAChE3

Title : Effects of extracellular vesicles derived from oral bacteria on osteoclast differentiation and activation - Kim_2022_Sci.Rep_12_14239
Author(s) : Kim HY , Song MK , Lim Y , Jang JS , An SJ , Kim HH , Choi BK
Ref : Sci Rep , 12 :14239 , 2022
Abstract : Dysbiosis of the oral microbiota plays an important role in the progression of periodontitis, which is characterized by chronic inflammation and alveolar bone loss, and associated with systemic diseases. Bacterial extracellular vesicles (EVs) contain various bioactive molecules and show diverse effects on host environments depending on the bacterial species. Recently, we reported that EVs derived from Filifactor alocis, a Gram-positive periodontal pathogen, had osteoclastogenic activity. In the present study, we analysed the osteoclastogenic potency and immunostimulatory activity of EVs derived from the Gram-negative periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia, the oral commensal bacterium Streptococcus oralis, and the gut probiotic strain Lactobacillus reuteri. Bacterial EVs were purified by density gradient ultracentrifugation using OptiPrep (iodixanol) reagent. EVs from P. gingivalis, T. forsythia, and S. oralis increased osteoclast differentiation and osteoclstogenic cytokine expression in osteoclast precursors, whereas EVs from L. reuteri did not. EVs from P. gingivalis, T. forsythia, and S. oralis preferentially activated Toll-like receptor 2 (TLR2) rather than TLR4 or TLR9, and induced osteoclastogenesis mainly through TLR2. The osteoclastogenic effects of EVs from P. gingivalis and T. forsythia were reduced by both lipoprotein lipase and polymyxin B, an inhibitor of lipopolysaccharide (LPS), while the osteoclastogenic effects of EVs from S. oralis were reduced by lipoprotein lipase alone. These results demonstrate that EVs from periodontal pathogens and oral commensal have osteoclastogenic activity through TLR2 activation by lipoproteins and/or LPS.
ESTHER : Kim_2022_Sci.Rep_12_14239
PubMedSearch : Kim_2022_Sci.Rep_12_14239
PubMedID: 35987920

Title : Flavanones inhibit the clonogenicity of HCT116 cololectal cancer cells - Woo_2012_Int.J.Mol.Med_29_403
Author(s) : Woo Y , Shin SY , Hyun J , Lee SD , Lee YH , Lim Y
Ref : Int J Mol Med , 29 :403 , 2012
Abstract : Naringenin has been shown to display various biological effects such as antioxidant, anticancer, anti-inflammatory, and antiviral activities. Taxifolin inhibits the production of lipopolysaccharide-induced prostaglandin E, and fustin suppresses the activity of acetylcholinesterase. They all belong to flavanone which is a class of flavonoids with a C6-C3-C6 skeleton. Since the anticancer activities of flavanone derivatives have rarely been reported, we examined the effects of 26 flavanone derivatives on HCT116 colorectal cancer cells. Our results suggest that flavanone derivatives control the expression of cell cycle regulatory proteins, which blocks G1 cell cycle progression and inhibits the clonogenicity of HCT116 cells. In addition, in order to design flavanone derivatives that show better anticancer activity, structure-activity relationships were examined.
ESTHER : Woo_2012_Int.J.Mol.Med_29_403
PubMedSearch : Woo_2012_Int.J.Mol.Med_29_403
PubMedID: 22160193

Title : The genome of the mesopolyploid crop species Brassica rapa - Wang_2011_Nat.Genet_43_1035
Author(s) : Wang X , Wang H , Wang J , Sun R , Wu J , Liu S , Bai Y , Mun JH , Bancroft I , Cheng F , Huang S , Li X , Hua W , Freeling M , Pires JC , Paterson AH , Chalhoub B , Wang B , Hayward A , Sharpe AG , Park BS , Weisshaar B , Liu B , Li B , Tong C , Song C , Duran C , Peng C , Geng C , Koh C , Lin C , Edwards D , Mu D , Shen D , Soumpourou E , Li F , Fraser F , Conant G , Lassalle G , King GJ , Bonnema G , Tang H , Belcram H , Zhou H , Hirakawa H , Abe H , Guo H , Jin H , Parkin IA , Batley J , Kim JS , Just J , Li J , Xu J , Deng J , Kim JA , Yu J , Meng J , Min J , Poulain J , Hatakeyama K , Wu K , Wang L , Fang L , Trick M , Links MG , Zhao M , Jin M , Ramchiary N , Drou N , Berkman PJ , Cai Q , Huang Q , Li R , Tabata S , Cheng S , Zhang S , Sato S , Sun S , Kwon SJ , Choi SR , Lee TH , Fan W , Zhao X , Tan X , Xu X , Wang Y , Qiu Y , Yin Y , Li Y , Du Y , Liao Y , Lim Y , Narusaka Y , Wang Z , Li Z , Xiong Z , Zhang Z
Ref : Nat Genet , 43 :1035 , 2011
Abstract : We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.
ESTHER : Wang_2011_Nat.Genet_43_1035
PubMedSearch : Wang_2011_Nat.Genet_43_1035
PubMedID: 21873998
Gene_locus related to this paper: braol-Q8GTM3 , braol-Q8GTM4 , brarp-m4ei94 , brarp-m4c988 , brana-a0a078j4a9 , brana-a0a078e1m0 , brana-a0a078cd75 , brarp-m4dwa6 , brana-a0a078j4f0 , brana-a0a078cus4 , brana-a0a078f8c2 , brana-a0a078jql1 , brana-a0a078dgj3 , brana-a0a078hw50 , brana-a0a078cuu0 , brana-a0a078dfa9 , brana-a0a078ic91 , brarp-m4ctw3 , brana-a0a078ca65 , brana-a0a078ctc8 , brana-a0a078h021 , brana-a0a078jx23 , brarp-m4da84 , brarp-m4dwr7 , brana-a0a078dh94 , brana-a0a078h612 , brana-a0a078j2t3 , braol-a0a0d3dpb2 , braol-a0a0d3dx76 , brana-a0a078jxa8 , brana-a0a078i2k3 , brarp-m4cwq4 , brarp-m4dcj8 , brarp-m4eh17 , brarp-m4eey4 , brarp-m4dnj8 , brarp-m4ey83 , brarp-m4ey84

Title : Inhibitory effect of ursolic acid purified from Origanum majorana L on the acetylcholinesterase - Chung_2001_Mol.Cells_11_137
Author(s) : Chung YK , Heo HJ , Kim EK , Kim HK , Huh TL , Lim Y , Kim SK , Shin DH
Ref : Mol Cells , 11 :137 , 2001
Abstract : We screened 139 herbal spices in search of the acetylcholinesterase (AChE) inhibitor from natural resources. AChE inhibitors, which enhance cholinergic transmission by reducing the enzymatic degradation of acetylcholine, are the only source of compound currently approved for the treatment of Alzheimer's Disease (AD). Among these herbs, edible plants and spices, the ethanol extract from Origanum majorana L. showed the highest inhibitory effect on AChE in vitro. By sequential fractionation of Origanum majorana L. the active component was finally identified as ursolic acid (3 beta-Hydroxyurs-12-en-28-oic acid). The ursolic acid of Origanum majorana L. inhibited AChE activity in a dose-dependent and competitive/non-competitive type. The Ki value (representing the affinity of the enzyme and inhibitor) of Origanum majorana L. ursolic acid was 6 pM, and that of tacrine was 0.4 nM. The concentration required for 50% enzyme inhibition of the active component (IC50 value) was 7.5 nM, and that of tacrine was 1 nM. This study demonstrated that the ursolic acid of Origanum majorana L. appeared to be a potent AChE inhibitor in Alzheimer's Disease.
ESTHER : Chung_2001_Mol.Cells_11_137
PubMedSearch : Chung_2001_Mol.Cells_11_137
PubMedID: 11355692