Geng C

References (6)

Title : A maize triacylglycerol lipase inhibits sugarcane mosaic virus infection - Xu_2022_Plant.Physiol__
Author(s) : Xu XJ , Geng C , Jiang SY , Zhu Q , Yan ZY , Tian YP , Li XD
Ref : Plant Physiol , : , 2022
Abstract : Triacylglycerol lipase (TGL) plays critical roles in providing energy for seed germination and plant development. However, the role of TGL in regulating plant virus infection is largely unknown. In this study, we adopted affinity purification coupled with mass spectrometry and identified that a maize (Zea mays) pathogenesis-related lipase protein ZmTGL interacted with helper component-proteinase (HC-Pro) of sugarcane mosaic virus (SCMV). Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation assays confirmed that ZmTGL directly interacted with SCMV HC-Pro in vitro and in vivo. The 101 to 460 residues of SCMV HC-Pro were important for its interaction with ZmTGL. ZmTGL and SCMV HC-Pro co-localized at the mitochondria. Silencing of ZmTGL facilitated SCMV infection, and over-expression of ZmTGL reduced the RNA silencing suppression activity, most likely through reducing HC-Pro accumulation. Our results provided evidence that the lipase hydrolase activity of ZmTGL was associated with reducing HC-Pro accumulation, activation of salicylic acid-mediated defense response, and inhibition of SCMV infection. We show that ZmTGL inhibits SCMV infection by reducing HC-Pro accumulation and activating the salicylic acid pathway.
ESTHER : Xu_2022_Plant.Physiol__
PubMedSearch : Xu_2022_Plant.Physiol__
PubMedID: 35294544

Title : Discovery and Characterization of a PKS-NRPS Hybrid in Aspergillus terreus by Genome Mining - Tang_2020_J.Nat.Prod_83_473
Author(s) : Tang S , Zhang W , Li Z , Li H , Geng C , Huang X , Lu X
Ref : Journal of Natural Products , 83 :473 , 2020
Abstract : Fungal polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) hybrids have been characterized to produce polyketide-amino acid compounds with striking structural features and biological activities. In this study, a PKS-NRPS hybrid enzyme was found in Aspergillus terreus by genome mining. By activating the cluster-specific transcriptional regulator, this cryptic PKS-NRPS gene cluster was successfully activated and ten products (1-10) were identified as pyranterreones. Using functional genetics, bioinformatics, and isotope-labeling feeding analysis, the biosynthetic pathway was revealed. This is the second PKS-NRPS hybrid identified in A. terreus.
ESTHER : Tang_2020_J.Nat.Prod_83_473
PubMedSearch : Tang_2020_J.Nat.Prod_83_473
PubMedID: 32077283
Gene_locus related to this paper: asptn-pytb , aspte-pyti

Title : Compartmentalized biosynthesis of mycophenolic acid - Zhang_2019_Proc.Natl.Acad.Sci.U.S.A_116_13305
Author(s) : Zhang W , Du L , Qu Z , Zhang X , Li F , Li Z , Qi F , Wang X , Jiang Y , Men P , Sun J , Cao S , Geng C , Wan X , Liu C , Li S
Ref : Proc Natl Acad Sci U S A , 116 :13305 , 2019
Abstract : Mycophenolic acid (MPA) from filamentous fungi is the first natural product antibiotic to be isolated and crystallized, and a first-line immunosuppressive drug for organ transplantations and autoimmune diseases. However, some key biosynthetic mechanisms of such an old and important molecule have remained unclear. Here, we elucidate the MPA biosynthetic pathway that features both compartmentalized enzymatic steps and unique cooperation between biosynthetic and beta-oxidation catabolism machineries based on targeted gene inactivation, feeding experiments in heterologous expression hosts, enzyme functional characterization and kinetic analysis, and microscopic observation of protein subcellular localization. Besides identification of the oxygenase MpaB' as the long-sought key enzyme responsible for the oxidative cleavage of the farnesyl side chain, we reveal the intriguing pattern of compartmentalization for the MPA biosynthetic enzymes, including the cytosolic polyketide synthase MpaC' and O-methyltransferase MpaG', the Golgi apparatus-associated prenyltransferase MpaA', the endoplasmic reticulum-bound oxygenase MpaB' and P450-hydrolase fusion enzyme MpaDE', and the peroxisomal acyl-coenzyme A (CoA) hydrolase MpaH'. The whole pathway is elegantly comediated by these compartmentalized enzymes, together with the peroxisomal beta-oxidation machinery. Beyond characterizing the remaining outstanding steps of the MPA biosynthetic steps, our study highlights the importance of considering subcellular contexts and the broader cellular metabolism in natural product biosynthesis.
ESTHER : Zhang_2019_Proc.Natl.Acad.Sci.U.S.A_116_13305
PubMedSearch : Zhang_2019_Proc.Natl.Acad.Sci.U.S.A_116_13305
PubMedID: 31209052
Gene_locus related to this paper: penbr-mpaH , penbr-mpac

Title : Tacrine induces apoptosis through lysosome- and mitochondria-dependent pathway in HepG2 cells - Gao_2014_Toxicol.In.Vitro_28_667
Author(s) : Gao C , Ding Y , Zhong L , Jiang L , Geng C , Yao X , Cao J
Ref : Toxicol In Vitro , 28 :667 , 2014
Abstract : Tacrine (THA) is a competitive inhibitor of cholinesterase. Administration of THA for the treatment of Alzheimer's disease results in a reversible hepatotoxicity in 30-50% of patients, as indicated by elevated alanine aminotransferase levels. However, the intracellular mechanisms have not yet been elucidated. In our previous study, we found that THA induced cytotoxicity and mitochondria dysfunction by ROS generation and 8-OHdG formation in mitochondrial DNA in HepG2 cells. In this study, the mechanism underlying was further investigated. Our results demonstrated that THA induced dose-dependent apoptosis with cytochrome c release and activation of caspase-3. THA-induced apoptosis was inhibited by treating cells with a ROS inhibitor, YCG063. In addition, we observed that THA led to an early lysosomal membrane permeabilization and release of cathepsin B. Pretreatment with CA-074Me, a specific cathepsin B inhibitor resulted in a significant but not complete decrease in tacrine-induced apoptosis. These data suggest that tacrine-induced cell apoptosis involves both mitochondrial damage and lysosomal membrane destabilization, and ROS is the critical factor that integrates tacrine-induced mitochondrial and lysosomal death pathways.
ESTHER : Gao_2014_Toxicol.In.Vitro_28_667
PubMedSearch : Gao_2014_Toxicol.In.Vitro_28_667
PubMedID: 24560791

Title : Sulfoxaflor and the sulfoximine insecticides: Chemistry, mode of action and basis for efficacy on resistant insects - Sparks_2013_Pestic.Biochem.Physiol_107_1
Author(s) : Sparks TC , Watson GB , Loso MR , Geng C , Babcock JM , Thomas JD
Ref : Pestic Biochem Physiol , 107 :1 , 2013
Abstract : The sulfoximines, as exemplified by sulfoxaflor ([N-[methyloxido[1-[6-(trifluoromethyl)-3-pyridinyl]ethyl]-lambda4-sulfanylidene] cyanamide] represent a new class of insecticides. Sulfoxaflor exhibits a high degree of efficacy against a wide range of sap-feeding insects, including those resistant to neonicotinoids and other insecticides. Sulfoxaflor is an agonist at insect nicotinic acetylcholine receptors (nAChRs) and functions in a manner distinct from other insecticides acting at nAChRs. The sulfoximines also exhibit structure activity relationships (SAR) that are different from other nAChR agonists such as the neonicotinoids. This review summarizes the sulfoximine SAR, mode of action and the biochemistry underlying the observed efficacy on resistant insect pests, with a particular focus on sulfoxaflor.
ESTHER : Sparks_2013_Pestic.Biochem.Physiol_107_1
PubMedSearch : Sparks_2013_Pestic.Biochem.Physiol_107_1
PubMedID: 25149228

Title : The genome of the mesopolyploid crop species Brassica rapa - Wang_2011_Nat.Genet_43_1035
Author(s) : Wang X , Wang H , Wang J , Sun R , Wu J , Liu S , Bai Y , Mun JH , Bancroft I , Cheng F , Huang S , Li X , Hua W , Freeling M , Pires JC , Paterson AH , Chalhoub B , Wang B , Hayward A , Sharpe AG , Park BS , Weisshaar B , Liu B , Li B , Tong C , Song C , Duran C , Peng C , Geng C , Koh C , Lin C , Edwards D , Mu D , Shen D , Soumpourou E , Li F , Fraser F , Conant G , Lassalle G , King GJ , Bonnema G , Tang H , Belcram H , Zhou H , Hirakawa H , Abe H , Guo H , Jin H , Parkin IA , Batley J , Kim JS , Just J , Li J , Xu J , Deng J , Kim JA , Yu J , Meng J , Min J , Poulain J , Hatakeyama K , Wu K , Wang L , Fang L , Trick M , Links MG , Zhao M , Jin M , Ramchiary N , Drou N , Berkman PJ , Cai Q , Huang Q , Li R , Tabata S , Cheng S , Zhang S , Sato S , Sun S , Kwon SJ , Choi SR , Lee TH , Fan W , Zhao X , Tan X , Xu X , Wang Y , Qiu Y , Yin Y , Li Y , Du Y , Liao Y , Lim Y , Narusaka Y , Wang Z , Li Z , Xiong Z , Zhang Z
Ref : Nat Genet , 43 :1035 , 2011
Abstract : We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.
ESTHER : Wang_2011_Nat.Genet_43_1035
PubMedSearch : Wang_2011_Nat.Genet_43_1035
PubMedID: 21873998
Gene_locus related to this paper: braol-Q8GTM3 , braol-Q8GTM4 , brarp-m4ei94 , brarp-m4c988 , brana-a0a078j4a9 , brana-a0a078e1m0 , brana-a0a078cd75 , brarp-m4dwa6 , brana-a0a078j4f0 , brana-a0a078cus4 , brana-a0a078f8c2 , brana-a0a078jql1 , brana-a0a078dgj3 , brana-a0a078hw50 , brana-a0a078cuu0 , brana-a0a078dfa9 , brana-a0a078ic91 , brarp-m4ctw3 , brana-a0a078ca65 , brana-a0a078ctc8 , brana-a0a078h021 , brana-a0a078jx23 , brarp-m4da84 , brarp-m4dwr7 , brana-a0a078dh94 , brana-a0a078h612 , brana-a0a078j2t3 , braol-a0a0d3dpb2 , braol-a0a0d3dx76 , brana-a0a078jxa8 , brana-a0a078i2k3 , brarp-m4cwq4 , brarp-m4dcj8 , brarp-m4eh17 , brarp-m4eey4 , brarp-m4dnj8 , brarp-m4ey83 , brarp-m4ey84