White S

References (6)

Title : The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan - Wang_2013_Nat.Genet_45_701
Author(s) : Wang Z , Pascual-Anaya J , Zadissa A , Li W , Niimura Y , Huang Z , Li C , White S , Xiong Z , Fang D , Wang B , Ming Y , Chen Y , Zheng Y , Kuraku S , Pignatelli M , Herrero J , Beal K , Nozawa M , Li Q , Wang J , Zhang H , Yu L , Shigenobu S , Liu J , Flicek P , Searle S , Kuratani S , Yin Y , Aken B , Zhang G , Irie N
Ref : Nat Genet , 45 :701 , 2013
Abstract : The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split approximately 267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.
ESTHER : Wang_2013_Nat.Genet_45_701
PubMedSearch : Wang_2013_Nat.Genet_45_701
PubMedID: 23624526
Gene_locus related to this paper: chemy-m7c042 , chemy-m7bp40 , chemy-m7cgq9 , chemy-m7bs15 , chemy-m7c0b2 , chemy-m7bkv2 , chemy-m7bnk5 , chemy-m7bzy6

Title : The zebrafish reference genome sequence and its relationship to the human genome - Howe_2013_Nature_496_498
Author(s) : Howe K , Clark MD , Torroja CF , Torrance J , Berthelot C , Muffato M , Collins JE , Humphray S , McLaren K , Matthews L , Mclaren S , Sealy I , Caccamo M , Churcher C , Scott C , Barrett JC , Koch R , Rauch GJ , White S , Chow W , Kilian B , Quintais LT , Guerra-Assuncao JA , Zhou Y , Gu Y , Yen J , Vogel JH , Eyre T , Redmond S , Banerjee R , Chi J , Fu B , Langley E , Maguire SF , Laird GK , Lloyd D , Kenyon E , Donaldson S , Sehra H , Almeida-King J , Loveland J , Trevanion S , Jones M , Quail M , Willey D , Hunt A , Burton J , Sims S , McLay K , Plumb B , Davis J , Clee C , Oliver K , Clark R , Riddle C , Elliot D , Threadgold G , Harden G , Ware D , Begum S , Mortimore B , Kerry G , Heath P , Phillimore B , Tracey A , Corby N , Dunn M , Johnson C , Wood J , Clark S , Pelan S , Griffiths G , Smith M , Glithero R , Howden P , Barker N , Lloyd C , Stevens C , Harley J , Holt K , Panagiotidis G , Lovell J , Beasley H , Henderson C , Gordon D , Auger K , Wright D , Collins J , Raisen C , Dyer L , Leung K , Robertson L , Ambridge K , Leongamornlert D , McGuire S , Gilderthorp R , Griffiths C , Manthravadi D , Nichol S , Barker G , Whitehead S , Kay M , Brown J , Murnane C , Gray E , Humphries M , Sycamore N , Barker D , Saunders D , Wallis J , Babbage A , Hammond S , Mashreghi-Mohammadi M , Barr L , Martin S , Wray P , Ellington A , Matthews N , Ellwood M , Woodmansey R , Clark G , Cooper J , Tromans A , Grafham D , Skuce C , Pandian R , Andrews R , Harrison E , Kimberley A , Garnett J , Fosker N , Hall R , Garner P , Kelly D , Bird C , Palmer S , Gehring I , Berger A , Dooley CM , Ersan-Urun Z , Eser C , Geiger H , Geisler M , Karotki L , Kirn A , Konantz J , Konantz M , Oberlander M , Rudolph-Geiger S , Teucke M , Lanz C , Raddatz G , Osoegawa K , Zhu B , Rapp A , Widaa S , Langford C , Yang F , Schuster SC , Carter NP , Harrow J , Ning Z , Herrero J , Searle SM , Enright A , Geisler R , Plasterk RH , Lee C , Westerfield M , de Jong PJ , Zon LI , Postlethwait JH , Nusslein-Volhard C , Hubbard TJ , Roest Crollius H , Rogers J , Stemple DL
Ref : Nature , 496 :498 , 2013
Abstract : Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.
ESTHER : Howe_2013_Nature_496_498
PubMedSearch : Howe_2013_Nature_496_498
PubMedID: 23594743
Gene_locus related to this paper: danre-1neur , danre-ABHD10b , danre-a9jrf7 , danre-d2x2g3 , danre-e7ezq9 , danre-e7ff77 , danre-ndr3 , danre-nlgn4a , danre-q1mti5 , danre-q6nyz4 , danre-q6p2u2 , danre-q7t359 , danre-q08c93 , danre-A2BGU9 , danre-f1q676 , danre-e7f0z8 , danre-e7ez27 , danre-e7f2w1 , danre-f1qid7 , danre-a0a0g2kru2 , danre-f1qla7 , danre-a9jr90 , danre-e7f070 , danre-f172a , danre-e7fb35 , danre-a7mbu9 , danre-f1qtr2

Title : The genome of a songbird - Warren_2010_Nature_464_757
Author(s) : Warren WC , Clayton DF , Ellegren H , Arnold AP , Hillier LW , Kunstner A , Searle S , White S , Vilella AJ , Fairley S , Heger A , Kong L , Ponting CP , Jarvis ED , Mello CV , Minx P , Lovell P , Velho TA , Ferris M , Balakrishnan CN , Sinha S , Blatti C , London SE , Li Y , Lin YC , George J , Sweedler J , Southey B , Gunaratne P , Watson M , Nam K , Backstrom N , Smeds L , Nabholz B , Itoh Y , Whitney O , Pfenning AR , Howard J , Volker M , Skinner BM , Griffin DK , Ye L , McLaren WM , Flicek P , Quesada V , Velasco G , Lopez-Otin C , Puente XS , Olender T , Lancet D , Smit AF , Hubley R , Konkel MK , Walker JA , Batzer MA , Gu W , Pollock DD , Chen L , Cheng Z , Eichler EE , Stapley J , Slate J , Ekblom R , Birkhead T , Burke T , Burt D , Scharff C , Adam I , Richard H , Sultan M , Soldatov A , Lehrach H , Edwards SV , Yang SP , Li X , Graves T , Fulton L , Nelson J , Chinwalla A , Hou S , Mardis ER , Wilson RK
Ref : Nature , 464 :757 , 2010
Abstract : The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
ESTHER : Warren_2010_Nature_464_757
PubMedSearch : Warren_2010_Nature_464_757
PubMedID: 20360741
Gene_locus related to this paper: taegu-b5fyu7 , taegu-BCHE , taegu-h0z4h9 , taegu-h0z9w8 , taegu-h0zat6 , taegu-h0ze48 , taegu-h0zha8 , taegu-h0zkr8 , taegu-h0zqp3 , taegu-h0zz82 , taegu-h0zqs1 , taegu-h0yy64 , taegu-h0yv40 , taegu-h0yyt1 , taegu-h0zcc8 , taegu-h0z3k5 , taegu-h0yw95 , taegu-h0zkm7 , taegu-h1a198 , taegu-h0z6w2 , taegu-h0zl93 , taegu-h0zt33 , taegu-h0yp71 , taegu-h0ypu5 , taegu-h1a048 , taegu-h0ztq1 , fical-u3kau2 , 9pass-a0a093qu66 , taegu-h0z7g0 , fical-u3jnn0 , taegu-h0zb80 , taegu-h0zb89 , taegu-h0z994 , taegu-h0ztj6

Title : The DNA sequence and biological annotation of human chromosome 1 - Gregory_2006_Nature_441_315
Author(s) : Gregory SG , Barlow KF , McLay KE , Kaul R , Swarbreck D , Dunham A , Scott CE , Howe KL , Woodfine K , Spencer CC , Jones MC , Gillson C , Searle S , Zhou Y , Kokocinski F , McDonald L , Evans R , Phillips K , Atkinson A , Cooper R , Jones C , Hall RE , Andrews TD , Lloyd C , Ainscough R , Almeida JP , Ambrose KD , Anderson F , Andrew RW , Ashwell RI , Aubin K , Babbage AK , Bagguley CL , Bailey J , Beasley H , Bethel G , Bird CP , Bray-Allen S , Brown JY , Brown AJ , Buckley D , Burton J , Bye J , Carder C , Chapman JC , Clark SY , Clarke G , Clee C , Cobley V , Collier RE , Corby N , Coville GJ , Davies J , Deadman R , Dunn M , Earthrowl M , Ellington AG , Errington H , Frankish A , Frankland J , French L , Garner P , Garnett J , Gay L , Ghori MR , Gibson R , Gilby LM , Gillett W , Glithero RJ , Grafham DV , Griffiths C , Griffiths-Jones S , Grocock R , Hammond S , Harrison ES , Hart E , Haugen E , Heath PD , Holmes S , Holt K , Howden PJ , Hunt AR , Hunt SE , Hunter G , Isherwood J , James R , Johnson C , Johnson D , Joy A , Kay M , Kershaw JK , Kibukawa M , Kimberley AM , King A , Knights AJ , Lad H , Laird G , Lawlor S , Leongamornlert DA , Lloyd DM , Loveland J , Lovell J , Lush MJ , Lyne R , Martin S , Mashreghi-Mohammadi M , Matthews L , Matthews NS , Mclaren S , Milne S , Mistry S , Moore MJ , Nickerson T , O'Dell CN , Oliver K , Palmeiri A , Palmer SA , Parker A , Patel D , Pearce AV , Peck AI , Pelan S , Phelps K , Phillimore BJ , Plumb R , Rajan J , Raymond C , Rouse G , Saenphimmachak C , Sehra HK , Sheridan E , Shownkeen R , Sims S , Skuce CD , Smith M , Steward C , Subramanian S , Sycamore N , Tracey A , Tromans A , Van Helmond Z , Wall M , Wallis JM , White S , Whitehead SL , Wilkinson JE , Willey DL , Williams H , Wilming L , Wray PW , Wu Z , Coulson A , Vaudin M , Sulston JE , Durbin R , Hubbard T , Wooster R , Dunham I , Carter NP , McVean G , Ross MT , Harrow J , Olson MV , Beck S , Rogers J , Bentley DR , Banerjee R , Bryant SP , Burford DC , Burrill WD , Clegg SM , Dhami P , Dovey O , Faulkner LM , Gribble SM , Langford CF , Pandian RD , Porter KM , Prigmore E
Ref : Nature , 441 :315 , 2006
Abstract : The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.
ESTHER : Gregory_2006_Nature_441_315
PubMedSearch : Gregory_2006_Nature_441_315
PubMedID: 16710414
Gene_locus related to this paper: human-LYPLAL1 , human-PPT1 , human-TMCO4 , human-TMEM53

Title : Possible chemical causes of skeletal deformities in grey heron nestlings (Ardea cinerea) in North Nottinghamshire, UK - Thompson_2006_Chemosphere_65_400
Author(s) : Thompson HM , Fernandes A , Rose M , White S , Blackburn A
Ref : Chemosphere , 65 :400 , 2006
Abstract : Dead and deformed grey heron (Ardea cinerea) chicks were reported at a large heronry in North Nottinghamshire, UK between 1996 (when systematic visits to the heronry started) and 2002. Many of the birds died for no obvious reason but deformities in others included multiple fractures of the tarsus and tibia and metacarpal bones (angel wings). This study aimed to investigate possible chemical causes of these deformities. Analysis of eggs and nestling tissue for a range of metals showed no levels of concern and no significant differences between unaffected and deformed birds. However, the levels of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) detected in affected heron nestlings in 2002 and in eggs taken from nests in 2003 were sufficiently high to suggest that this may be the underlying cause of the deformities, possibly due to effects on deposition of calcium in bone. Further work is underway to identify where the parent birds of the affected nestlings are feeding and identify the possible source of the pollution.
ESTHER : Thompson_2006_Chemosphere_65_400
PubMedSearch : Thompson_2006_Chemosphere_65_400
PubMedID: 16545424

Title : Enzymes of drug metabolism during delirium - White_2005_Age.Ageing_34_603
Author(s) : White S , Calver BL , Newsway V , Wade R , Patel S , Bayer A , O'Mahony MS
Ref : Age Ageing , 34 :603 , 2005
Abstract : BACKGROUND: Delirium is common in ill medical patients. Several drugs and polypharmacy are recognised risk factors, yet little is known about drug metabolism in people with delirium. OBJECTIVE: The aim of this study was to investigate the activities of plasma esterases (drug metabolising enzymes) in delirium. DESIGN: This was a prospective study of delirium present at time of hospital admission (community acquired) or developing later (hospital acquired) in patients admitted as a medical emergency and aged 75 years or over.
METHODS: Following informed consent or assent cognitive screening was completed on all patients on admission and every 48 hours subsequently. Delirium was diagnosed by Confusion Assessment Method and DSM IV criteria. Blood samples were taken on admission and at onset of delirium if this was later. Four plasma esterase assays were performed spectrophotometrically: acetylcholinesterase, aspirin esterase, benzoylcholinesterase, butyrylcholinesterase.
RESULTS: 283 patients (71% of eligible) were recruited, with mean age 82.4 years and 59% female. 27% had community acquired delirium, 10% developed hospital acquired delirium, 63% never developed delirium. On admission the mean activities of all four esterase assays were statistically significantly lower in delirious than non delirious patients. There were no significant differences on admission in any plasma esterase activity between patients with hospital and community acquired delirium. In-hospital mortality was associated with low plasma esterase activities on admission. CONCLUSION: Plasma esterase activities are suppressed during delirium. These data reinforce the need for extreme caution with drugs in this vulnerable population.
ESTHER : White_2005_Age.Ageing_34_603
PubMedSearch : White_2005_Age.Ageing_34_603
PubMedID: 16267186