Lopez-Otin C

References (7)

Title : The genome of a songbird - Warren_2010_Nature_464_757
Author(s) : Warren WC , Clayton DF , Ellegren H , Arnold AP , Hillier LW , Kunstner A , Searle S , White S , Vilella AJ , Fairley S , Heger A , Kong L , Ponting CP , Jarvis ED , Mello CV , Minx P , Lovell P , Velho TA , Ferris M , Balakrishnan CN , Sinha S , Blatti C , London SE , Li Y , Lin YC , George J , Sweedler J , Southey B , Gunaratne P , Watson M , Nam K , Backstrom N , Smeds L , Nabholz B , Itoh Y , Whitney O , Pfenning AR , Howard J , Volker M , Skinner BM , Griffin DK , Ye L , McLaren WM , Flicek P , Quesada V , Velasco G , Lopez-Otin C , Puente XS , Olender T , Lancet D , Smit AF , Hubley R , Konkel MK , Walker JA , Batzer MA , Gu W , Pollock DD , Chen L , Cheng Z , Eichler EE , Stapley J , Slate J , Ekblom R , Birkhead T , Burke T , Burt D , Scharff C , Adam I , Richard H , Sultan M , Soldatov A , Lehrach H , Edwards SV , Yang SP , Li X , Graves T , Fulton L , Nelson J , Chinwalla A , Hou S , Mardis ER , Wilson RK
Ref : Nature , 464 :757 , 2010
Abstract : The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
ESTHER : Warren_2010_Nature_464_757
PubMedSearch : Warren_2010_Nature_464_757
PubMedID: 20360741
Gene_locus related to this paper: taegu-b5fyu7 , taegu-BCHE , taegu-h0z4h9 , taegu-h0z9w8 , taegu-h0zat6 , taegu-h0ze48 , taegu-h0zha8 , taegu-h0zkr8 , taegu-h0zqp3 , taegu-h0zz82 , taegu-h0zqs1 , taegu-h0yy64 , taegu-h0yv40 , taegu-h0yyt1 , taegu-h0zcc8 , taegu-h0z3k5 , taegu-h0yw95 , taegu-h0zkm7 , taegu-h1a198 , taegu-h0z6w2 , taegu-h0zl93 , taegu-h0zt33 , taegu-h0yp71 , taegu-h0ypu5 , taegu-h1a048 , taegu-h0ztq1 , fical-u3kau2 , 9pass-a0a093qu66 , taegu-h0z7g0 , fical-u3jnn0 , taegu-h0zb80 , taegu-h0zb89 , taegu-h0z994 , taegu-h0ztj6

Title : Genome analysis of the platypus reveals unique signatures of evolution - Warren_2008_Nature_453_175
Author(s) : Warren WC , Hillier LW , Marshall Graves JA , Birney E , Ponting CP , Grutzner F , Belov K , Miller W , Clarke L , Chinwalla AT , Yang SP , Heger A , Locke DP , Miethke P , Waters PD , Veyrunes F , Fulton L , Fulton B , Graves T , Wallis J , Puente XS , Lopez-Otin C , Ordonez GR , Eichler EE , Chen L , Cheng Z , Deakin JE , Alsop A , Thompson K , Kirby P , Papenfuss AT , Wakefield MJ , Olender T , Lancet D , Huttley GA , Smit AF , Pask A , Temple-Smith P , Batzer MA , Walker JA , Konkel MK , Harris RS , Whittington CM , Wong ES , Gemmell NJ , Buschiazzo E , Vargas Jentzsch IM , Merkel A , Schmitz J , Zemann A , Churakov G , Kriegs JO , Brosius J , Murchison EP , Sachidanandam R , Smith C , Hannon GJ , Tsend-Ayush E , McMillan D , Attenborough R , Rens W , Ferguson-Smith M , Lefevre CM , Sharp JA , Nicholas KR , Ray DA , Kube M , Reinhardt R , Pringle TH , Taylor J , Jones RC , Nixon B , Dacheux JL , Niwa H , Sekita Y , Huang X , Stark A , Kheradpour P , Kellis M , Flicek P , Chen Y , Webber C , Hardison R , Nelson J , Hallsworth-Pepin K , Delehaunty K , Markovic C , Minx P , Feng Y , Kremitzki C , Mitreva M , Glasscock J , Wylie T , Wohldmann P , Thiru P , Nhan MN , Pohl CS , Smith SM , Hou S , Nefedov M , de Jong PJ , Renfree MB , Mardis ER , Wilson RK
Ref : Nature , 453 :175 , 2008
Abstract : We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.
ESTHER : Warren_2008_Nature_453_175
PubMedSearch : Warren_2008_Nature_453_175
PubMedID: 18464734
Gene_locus related to this paper: ornan-f6s0q0 , ornan-f6ty74 , ornan-f6u2k2 , ornan-f6uve1 , ornan-f6vpb6 , ornan-f6ybp3 , ornan-f7bgu8 , ornan-f7ct41 , ornan-f7cza1 , ornan-f7ejp8 , ornan-f7exu1 , ornan-f7f392 , ornan-f7f9y6 , ornan-f6ve87 , ornan-f7f1d9 , ornan-f6z3l1 , ornan-f6r3f9 , ornan-f6r3g8 , ornan-f6vs71 , ornan-f7g4v8

Title : Genome sequence of the Brown Norway rat yields insights into mammalian evolution - Gibbs_2004_Nature_428_493
Author(s) : Gibbs RA , Weinstock GM , Metzker ML , Muzny DM , Sodergren EJ , Scherer S , Scott G , Steffen D , Worley KC , Burch PE , Okwuonu G , Hines S , Lewis L , DeRamo C , Delgado O , Dugan-Rocha S , Miner G , Morgan M , Hawes A , Gill R , Celera , Holt RA , Adams MD , Amanatides PG , Baden-Tillson H , Barnstead M , Chin S , Evans CA , Ferriera S , Fosler C , Glodek A , Gu Z , Jennings D , Kraft CL , Nguyen T , Pfannkoch CM , Sitter C , Sutton GG , Venter JC , Woodage T , Smith D , Lee HM , Gustafson E , Cahill P , Kana A , Doucette-Stamm L , Weinstock K , Fechtel K , Weiss RB , Dunn DM , Green ED , Blakesley RW , Bouffard GG , de Jong PJ , Osoegawa K , Zhu B , Marra M , Schein J , Bosdet I , Fjell C , Jones S , Krzywinski M , Mathewson C , Siddiqui A , Wye N , McPherson J , Zhao S , Fraser CM , Shetty J , Shatsman S , Geer K , Chen Y , Abramzon S , Nierman WC , Havlak PH , Chen R , Durbin KJ , Egan A , Ren Y , Song XZ , Li B , Liu Y , Qin X , Cawley S , Cooney AJ , D'Souza LM , Martin K , Wu JQ , Gonzalez-Garay ML , Jackson AR , Kalafus KJ , McLeod MP , Milosavljevic A , Virk D , Volkov A , Wheeler DA , Zhang Z , Bailey JA , Eichler EE , Tuzun E , Birney E , Mongin E , Ureta-Vidal A , Woodwark C , Zdobnov E , Bork P , Suyama M , Torrents D , Alexandersson M , Trask BJ , Young JM , Huang H , Wang H , Xing H , Daniels S , Gietzen D , Schmidt J , Stevens K , Vitt U , Wingrove J , Camara F , Mar Alba M , Abril JF , Guigo R , Smit A , Dubchak I , Rubin EM , Couronne O , Poliakov A , Hubner N , Ganten D , Goesele C , Hummel O , Kreitler T , Lee YA , Monti J , Schulz H , Zimdahl H , Himmelbauer H , Lehrach H , Jacob HJ , Bromberg S , Gullings-Handley J , Jensen-Seaman MI , Kwitek AE , Lazar J , Pasko D , Tonellato PJ , Twigger S , Ponting CP , Duarte JM , Rice S , Goodstadt L , Beatson SA , Emes RD , Winter EE , Webber C , Brandt P , Nyakatura G , Adetobi M , Chiaromonte F , Elnitski L , Eswara P , Hardison RC , Hou M , Kolbe D , Makova K , Miller W , Nekrutenko A , Riemer C , Schwartz S , Taylor J , Yang S , Zhang Y , Lindpaintner K , Andrews TD , Caccamo M , Clamp M , Clarke L , Curwen V , Durbin R , Eyras E , Searle SM , Cooper GM , Batzoglou S , Brudno M , Sidow A , Stone EA , Payseur BA , Bourque G , Lopez-Otin C , Puente XS , Chakrabarti K , Chatterji S , Dewey C , Pachter L , Bray N , Yap VB , Caspi A , Tesler G , Pevzner PA , Haussler D , Roskin KM , Baertsch R , Clawson H , Furey TS , Hinrichs AS , Karolchik D , Kent WJ , Rosenbloom KR , Trumbower H , Weirauch M , Cooper DN , Stenson PD , Ma B , Brent M , Arumugam M , Shteynberg D , Copley RR , Taylor MS , Riethman H , Mudunuri U , Peterson J , Guyer M , Felsenfeld A , Old S , Mockrin S , Collins F
Ref : Nature , 428 :493 , 2004
Abstract : The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.
ESTHER : Gibbs_2004_Nature_428_493
PubMedSearch : Gibbs_2004_Nature_428_493
PubMedID: 15057822
Gene_locus related to this paper: rat-abhea , rat-abheb , rat-cd029 , rat-d3zaw4 , rat-dpp9 , rat-d3zhq1 , rat-d3zkp8 , rat-d3zuq1 , rat-d3zxw8 , rat-d4a4w4 , rat-d4a7w1 , rat-d4a9l7 , rat-d4a071 , rat-d4aa31 , rat-d4aa33 , rat-d4aa61 , rat-dglb , rat-f1lz91 , rat-Kansl3 , rat-nceh1 , rat-Tex30 , ratno-1hlip , ratno-1neur , ratno-1plip , ratno-2neur , ratno-3neur , ratno-3plip , ratno-ABH15 , ratno-ACHE , ratno-balip , ratno-BCHE , ratno-cauxin , ratno-Ces1d , ratno-Ces1e , ratno-Ces2f , ratno-d3ze31 , ratno-d3zp14 , ratno-d3zxi3 , ratno-d3zxq0 , ratno-d3zxq1 , ratno-d4a3d4 , ratno-d4aa05 , ratno-dpp4 , ratno-dpp6 , ratno-est8 , ratno-FAP , ratno-hyep , ratno-hyes , ratno-kmcxe , ratno-lmcxe , ratno-LOC246252 , ratno-MGLL , ratno-pbcxe , ratno-phebest , ratno-Ppgb , ratno-q4qr68 , ratno-q6ayr2 , ratno-q6q629 , ratno-SPG21 , ratno-thyro , rat-m0rc77 , rat-a0a0g2k9y7 , rat-a0a0g2kb83 , rat-d3zba8 , rat-d3zbj1 , rat-d3zcr8 , rat-d3zxw5 , rat-d4a340 , rat-f1lvg7 , rat-m0r509 , rat-m0r5d4 , rat-b5den3 , rat-d3zxk4 , rat-d4a1b6 , rat-d3zmg4 , rat-ab17c

Title : A genomic analysis of rat proteases and protease inhibitors - Puente_2004_Genome.Res_14_609
Author(s) : Puente XS , Lopez-Otin C
Ref : Genome Res , 14 :609 , 2004
Abstract : Proteases perform important roles in multiple biological and pathological processes. The availability of the rat genome sequence has facilitated the analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. This distribution is similar to that of the mouse degradome but is more complex than that of the human degradome composed of 561 proteases and homologs. This increased complexity of rat proteases mainly derives from the expansion of several families, including placental cathepsins, testases, kallikreins, and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in rat and mouse and may contribute to explain some functional differences between these closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with mouse protease inhibitors and the expansion of families of cysteine and serine protease inhibitors in rodents with respect to human. These comparative analyses may provide new views on the functional diversity of proteases and inhibitors and contribute to the development of innovative strategies for treating proteolysis diseases.
ESTHER : Puente_2004_Genome.Res_14_609
PubMedSearch : Puente_2004_Genome.Res_14_609
PubMedID: 15060002
Gene_locus related to this paper: mouse-ephx4

Title : Human and mouse proteases: a comparative genomic approach - Puente_2003_Nat.Rev.Genet_4_544
Author(s) : Puente XS , Sanchez LM , Overall CM , Lopez-Otin C
Ref : Nat Rev Genet , 4 :544 , 2003
Abstract : The availability of the human and mouse genome sequences has allowed the identification and comparison of their respective degradomes--the complete repertoire of proteases that are produced by these organisms. Because of the essential roles of proteolytic enzymes in the control of cell behaviour, survival and death, degradome analysis provides a useful framework for the global exploration of these protease-mediated functions in normal and pathological conditions.
ESTHER : Puente_2003_Nat.Rev.Genet_4_544
PubMedSearch : Puente_2003_Nat.Rev.Genet_4_544
PubMedID: 12838346
Gene_locus related to this paper: mouse-q7m759

Title : Structural characterization and chromosomal localization of the gene encoding human biphenyl hydrolase-related protein (BPHL) - Puente_1998_Genomics_51_459
Author(s) : Puente XS , Pendas AM , Lopez-Otin C
Ref : Genomics , 51 :459 , 1998
Abstract : The gene encoding human biphenyl hydrolase-related protein (Bph-rp), a serine hydrolase with sequence similarity to prokaryotic enzymes involved in the degradation of polychlorinated biphenyls, has been cloned and its overall organization established. The gene, whose HGM-approved nomenclature is BPHL, spans more than 30 kb and is composed of eight exons and seven introns. The number and distribution of exons and introns differ from those reported for the genes encoding other serine hydrolases with sequence similarity to Bph-rp, indicating that these genes are distantly related. Nucleotide sequence analysis of the 5'-flanking region of BPHL revealed a high GC content, a ratio CpG/GpC close to unity, and the absence of consensus transcriptional sequences such as a TATA box or a CCAAT box. Chromosomal localization of BPHL revealed that it maps to chromosome 6p25, a unique location for all serine hydrolases mapped to date.
ESTHER : Puente_1998_Genomics_51_459
PubMedSearch : Puente_1998_Genomics_51_459
PubMedID: 9721218
Gene_locus related to this paper: human-BPHL

Title : Cloning and expression analysis of a novel human serine hydrolase with sequence similarity to prokaryotic enzymes involved in the degradation of aromatic compounds - Puente_1995_J.Biol.Chem_270_12926
Author(s) : Puente XS , Lopez-Otin C
Ref : Journal of Biological Chemistry , 270 :12926 , 1995
Abstract : A full-length cDNA coding for a novel human serine hydrolase has been cloned from a breast carcinoma cDNA library. Nucleotide sequence analysis has shown that the isolated cDNA contains an open reading frame coding for a polypeptide of 274 amino acids and a complete Alu repetitive sequence within its 3'-untranslated region. The predicted amino acid sequence contains the Gly-X-Ser-X-Gly motif characteristic of serine hydrolases and displays extensive similarity to several prokaryotic hydrolases involved in the degradation of aromatic compounds. The highest degree of identities was detected with four serine hydrolases encoded by the bphD genes of different strains of Pseudomonas with the ability to degrade biphenyl derivatives. On the basis of these sequence similarities, this novel human enzyme has been tentatively called Biphenyl hydrolase-related protein (Bph-rp). The Bph-rp cDNA was expressed in Escherichia coli, and after purification, the recombinant protein was able to degrade p-nitrophenylbutyrate, a water-soluble substrate commonly used for assaying serine hydrolases. This hydrolytic activity was abolished by diisopropyl fluorophosphate, a covalent inhibitor of serine hydrolases, providing additional evidence that the isolated cDNA encodes a member of this protein superfamily. Northern blot analysis of poly(A)+ RNAs isolated from a variety of human tissues revealed that Bph-rp is mainly expressed in liver and kidney, which was also confirmed at the protein level by Western blot analysis with antibodies raised against purified recombinant Bph-rp. According to structural characteristics, hydrolytic activity and tissue distribution of Bph-rp, a potential role of this enzyme in detoxification processes is proposed.
ESTHER : Puente_1995_J.Biol.Chem_270_12926
PubMedSearch : Puente_1995_J.Biol.Chem_270_12926
PubMedID: 7759552
Gene_locus related to this paper: human-BPHL