Macaca mulatta (Rhesus macaque), M. tonkeana, M. hecki, M. nemestrina, M. maura, M. ochreata, M. nigra, M. nigrescens, Neuroligin 4 Y-linked
Comment
Other strains: Macaca mulatta (Rhesus macaque); M tonkeana (Tonkean macaque); M hecki (Heck's macaque); M nemestrina; M maura (Moor macaque); M ochreata (Booted macaque); M nigra (Celebes black macaque); M nigrescens (Gorontalo macaque) (M nigra nigrescens)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Cercopithecoidea: NE > Cercopithecidae: NE > Cercopithecinae: NE > Macaca: NE > Macaca mulatta: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acid identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Macaca tonkeana: N, E.
Macaca hecki: N, E.
Macaca nemestrina: N, E.
Macaca maura: N, E.
Macaca ochreata: N, E.
Macaca nigra: N, E.
Macaca fascicularis: N, E.
Macaca nigrescens: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSRPRGLLWLPLFFTSVCVMLNSNVIFWITALAIKFTLIDSQAQYPVVNT NYGKIRGLKTPLPSEILGPVEQYLGVPYASPPTGERRFQPPESPSSWTGI RNATQFAAVCPQHLDERFLLHDMLPIWFTLNLDTLMTYVQDQNEDCLYLN IYVPTEDGTIIKRNDDDITSNDRGEDKDIHEQNSKKPVMVYIHGGSYMEG TGNMIDGSILASYGNVIVITINYRLGILGFLSTGDXAAKGNYGLLDQIQA LRWIEENVGAFGGDPKRVTIFGSGAGASCVSLLTLSHYSEGLFQKAIIQS GTALSSWAVNYQPAKYTRILADKVGCNMLDTTDMVECLRNKNYKELIQQT ITPATYHIAFGPVIDGDVIPDDPQILMEQGEFLNYDIMLGVNQGEGLKFV DGIVDNEDGVTPNDFDFSVSNFVDNLYGYPEGKDTLRETIKFMYTDWADK ENPETRRKTLVALFTDHQWVAPAVATADLHAQYGSPTYFYAFYHHCQSEM KPSWADSAHGDEVPYVFGIPMVGPTELFSCNFSKNDVMLSAVVMTYWTNF AKTGDPNQPVPQDTKFIHTKPNRFEEVAWSKYNPKDQLYLHIGLKPRVRD HYRATKVAFWLELVPHLHNLNEIFQYVSTTTKVPPPDMTSFPYGTRRSPA KIWPTTKRPAITPANNPKHSKDPHKTGPEDTTVLIETKRDYSTELSVTIA VGASLLFLNILAFAALYYKKDKRRHETHRRPSPQRNTTNDIAHIQNEEIM SLQMKQLEHDHECESLQAHDTLRLTCPPDYTLTLRRSPDDIPLMTPNTIT MIPNTLTGMQPLHTFNTFSGGQNSTNLPHGHSTTRV
References
Title: Sex-linked inheritance in macaque monkeys: implications for effective population size and dispersal to Sulawesi Evans BJ, Pin L, Melnick DJ, Wright SI Ref: Genetics, 185:923, 2010 : PubMed
Sex-specific differences in dispersal, survival, reproductive success, and natural selection differentially affect the effective population size (N(e)) of genomic regions with different modes of inheritance such as sex chromosomes and mitochondrial DNA. In papionin monkeys (macaques, baboons, geladas, mandrills, drills, and mangabeys), for example, these factors are expected to reduce N(e) of paternally inherited portions of the genome compared to maternally inherited portions. To explore this further, we quantified relative N(e) of autosomal DNA, X and Y chromosomes, and mitochondrial DNA using molecular polymorphism and divergence information from pigtail macaque monkeys (Macaca nemestrina). Consistent with demographic expectations, we found that N(e) of the Y is lower than expected from a Wright-Fisher idealized population with an equal proportion of males and females, whereas N(e) of mitochondrial DNA is higher. However, N(e) of 11 loci on the X chromosome was lower than expected, a finding that could be explained by pervasive hitchhiking effects on this chromosome. We evaluated the fit of these data to various models involving natural selection or sex-biased demography. Significant support was recovered for natural selection acting on the Y chromosome. A demographic model with a skewed sex ratio was more likely than one with sex-biased migration and explained the data about as well as an ideal model without sex-biased demography. We then incorporated these results into an evaluation of macaque divergence and migration on Borneo and Sulawesi islands. One X-linked locus was not monophyletic on Sulawesi, but multilocus data analyzed in a coalescent framework failed to reject a model without migration between these islands after both were colonized.
The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.