Birney E

References (13)

Title : Highly accurate protein structure prediction for the human proteome - Tunyasuvunakool_2021_Nature_596_590
Author(s) : Tunyasuvunakool K , Adler J , Wu Z , Green T , Zielinski M , idek A , Bridgland A , Cowie A , Meyer C , Laydon A , Velankar S , Kleywegt GJ , Bateman A , Evans R , Pritzel A , Figurnov M , Ronneberger O , Bates R , Kohl SAA , Potapenko A , Ballard AJ , Romera-Paredes B , Nikolov S , Jain R , Clancy E , Reiman D , Petersen S , Senior AW , Kavukcuoglu K , Birney E , Kohli P , Jumper J , Hassabis D
Ref : Nature , 596 :590 , 2021
Abstract : Protein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of effort, 17% of the total residues in human protein sequences are covered by an experimentally determined structure(1). Here we markedly expand the structural coverage of the proteome by applying the state-of-the-art machine learning method, AlphaFold(2), at a scale that covers almost the entire human proteome (98.5% of human proteins). The resulting dataset covers 58% of residues with a confident prediction, of which a subset (36% of all residues) have very high confidence. We introduce several metrics developed by building on the AlphaFold model and use them to interpret the dataset, identifying strong multi-domain predictions as well as regions that are likely to be disordered. Finally, we provide some case studies to illustrate how high-quality predictions could be used to generate biological hypotheses. We are making our predictions freely available to the community and anticipate that routine large-scale and high-accuracy structure prediction will become an important tool that will allow new questions to be addressed from a structural perspective.
ESTHER : Tunyasuvunakool_2021_Nature_596_590
PubMedSearch : Tunyasuvunakool_2021_Nature_596_590
PubMedID: 34293799

Title : A high-resolution map of human evolutionary constraint using 29 mammals - Lindblad-Toh_2011_Nature_478_476
Author(s) : Lindblad-Toh K , Garber M , Zuk O , Lin MF , Parker BJ , Washietl S , Kheradpour P , Ernst J , Jordan G , Mauceli E , Ward LD , Lowe CB , Holloway AK , Clamp M , Gnerre S , Alfoldi J , Beal K , Chang J , Clawson H , Cuff J , Di Palma F , Fitzgerald S , Flicek P , Guttman M , Hubisz MJ , Jaffe DB , Jungreis I , Kent WJ , Kostka D , Lara M , Martins AL , Massingham T , Moltke I , Raney BJ , Rasmussen MD , Robinson J , Stark A , Vilella AJ , Wen J , Xie X , Zody MC , Baldwin J , Bloom T , Chin CW , Heiman D , Nicol R , Nusbaum C , Young S , Wilkinson J , Worley KC , Kovar CL , Muzny DM , Gibbs RA , Cree A , Dihn HH , Fowler G , Jhangiani S , Joshi V , Lee S , Lewis LR , Nazareth LV , Okwuonu G , Santibanez J , Warren WC , Mardis ER , Weinstock GM , Wilson RK , Delehaunty K , Dooling D , Fronik C , Fulton L , Fulton B , Graves T , Minx P , Sodergren E , Birney E , Margulies EH , Herrero J , Green ED , Haussler D , Siepel A , Goldman N , Pollard KS , Pedersen JS , Lander ES , Kellis M
Ref : Nature , 478 :476 , 2011
Abstract : The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering approximately 4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for approximately 60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.
ESTHER : Lindblad-Toh_2011_Nature_478_476
PubMedSearch : Lindblad-Toh_2011_Nature_478_476
PubMedID: 21993624
Gene_locus related to this paper: cavpo-1plip , cavpo-2plrp , cavpo-h0v1b7 , cavpo-h0v5v8 , cavpo-h0vj36 , cavpo-lipli , rabit-1hlip , rabit-1plip , rabit-g1t6x7 , rabit-LIPH , myolu-l7n1c2 , myolu-g1pqd9 , cavpo-h0uyz6 , cavpo-h0vi56 , rabit-g1tbj4 , myolu-g1p5c0 , rabit-g1sds3 , rabit-g1sye0 , cavpo-h0v0r2 , cavpo-h0v7s5 , rabit-g1sp43 , myolu-g1p4p3 , cavpo-h0vw09 , rabit-g1ssu3 , myolu-g1pds0 , rabit-g1sic4 , cavpo-h0v2c4 , myolu-g1pg61 , myolu-g1pnb1 , myolu-g1pu06 , myolu-g1qa15 , myolu-g1qfu0 , rabit-g1sn99 , rabit-g1snq9 , rabit-g1sns7 , rabit-g1tuu8 , rabit-g1tzq7 , cavpo-h0v2i2 , cavpo-h0v2j0 , cavpo-h0vsf5 , cavpo-a0a286x8d3 , cavpo-a0a286xbr3 , cavpo-a0a286y0i8 , cavpo-a0a286y4p3 , myolu-g1q2n9 , cavpo-h0v1p4 , myolu-g1pan8 , myolu-g1paq0 , myolu-g1par4 , myolu-g1prn3 , myolu-g1q3i0 , myolu-g1q463 , myolu-g1pat6 , myolu-g1q859 , rabit-g1sul9 , rabit-g1sun0 , rabit-g1sup0 , myolu-l7n125 , myolu-g1pan2 , rabit-g1sxd0 , cavpo-h0v8j4 , rabit-d5fit0 , rabit-g1tkr5 , myolu-g1nty6 , myolu-g1p1p3 , cavpo-h0vdd5 , myolu-g1pdp2 , rabit-g1tmm5 , cavpo-h0vhq3 , myolu-g1nth4 , cavpo-h0vqx6 , rabit-g1tqr7 , myolu-g1p1e9 , cavpo-h0v8y6 , rabit-g1skt3 , myolu-g1nzg3 , cavpo-h0v5z0 , rabit-g1sgz5 , myolu-g1pkg5 , rabit-g1tmw5 , rabit-g1t134 , cavpo-a0a286x9v5 , myolu-g1qc57 , myolu-g1q061 , rabit-g1tnp4 , rabit-g1tyf7 , cavpo-h0w2w1 , rabit-g1ta36 , cavpo-h0w342 , myolu-g1q4e3 , rabit-g1sqa1 , cavpo-h0uxk7 , myolu-g1p353 , cavpo-h0vpm0 , rabit-a0a5f9cru6 , cavpo-a0a286xtc0

Title : Genome analysis of the platypus reveals unique signatures of evolution - Warren_2008_Nature_453_175
Author(s) : Warren WC , Hillier LW , Marshall Graves JA , Birney E , Ponting CP , Grutzner F , Belov K , Miller W , Clarke L , Chinwalla AT , Yang SP , Heger A , Locke DP , Miethke P , Waters PD , Veyrunes F , Fulton L , Fulton B , Graves T , Wallis J , Puente XS , Lopez-Otin C , Ordonez GR , Eichler EE , Chen L , Cheng Z , Deakin JE , Alsop A , Thompson K , Kirby P , Papenfuss AT , Wakefield MJ , Olender T , Lancet D , Huttley GA , Smit AF , Pask A , Temple-Smith P , Batzer MA , Walker JA , Konkel MK , Harris RS , Whittington CM , Wong ES , Gemmell NJ , Buschiazzo E , Vargas Jentzsch IM , Merkel A , Schmitz J , Zemann A , Churakov G , Kriegs JO , Brosius J , Murchison EP , Sachidanandam R , Smith C , Hannon GJ , Tsend-Ayush E , McMillan D , Attenborough R , Rens W , Ferguson-Smith M , Lefevre CM , Sharp JA , Nicholas KR , Ray DA , Kube M , Reinhardt R , Pringle TH , Taylor J , Jones RC , Nixon B , Dacheux JL , Niwa H , Sekita Y , Huang X , Stark A , Kheradpour P , Kellis M , Flicek P , Chen Y , Webber C , Hardison R , Nelson J , Hallsworth-Pepin K , Delehaunty K , Markovic C , Minx P , Feng Y , Kremitzki C , Mitreva M , Glasscock J , Wylie T , Wohldmann P , Thiru P , Nhan MN , Pohl CS , Smith SM , Hou S , Nefedov M , de Jong PJ , Renfree MB , Mardis ER , Wilson RK
Ref : Nature , 453 :175 , 2008
Abstract : We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.
ESTHER : Warren_2008_Nature_453_175
PubMedSearch : Warren_2008_Nature_453_175
PubMedID: 18464734
Gene_locus related to this paper: ornan-f6s0q0 , ornan-f6ty74 , ornan-f6u2k2 , ornan-f6uve1 , ornan-f6vpb6 , ornan-f6ybp3 , ornan-f7bgu8 , ornan-f7ct41 , ornan-f7cza1 , ornan-f7ejp8 , ornan-f7exu1 , ornan-f7f392 , ornan-f7f9y6 , ornan-f6ve87 , ornan-f7f1d9 , ornan-f6z3l1 , ornan-f6r3f9 , ornan-f6r3g8 , ornan-f6vs71 , ornan-f7g4v8

Title : Update of the Anopheles gambiae PEST genome assembly - Sharakhova_2007_Genome.Biol_8_R5
Author(s) : Sharakhova MV , Hammond MP , Lobo NF , Krzywinski J , Unger MF , Hillenmeyer ME , Bruggner RV , Birney E , Collins FH
Ref : Genome Biol , 8 :R5 , 2007
Abstract : BACKGROUND: The genome of Anopheles gambiae, the major vector of malaria, was sequenced and assembled in 2002. This initial genome assembly and analysis made available to the scientific community was complicated by the presence of assembly issues, such as scaffolds with no chromosomal location, no sequence data for the Y chromosome, haplotype polymorphisms resulting in two different genome assemblies in limited regions and contaminating bacterial DNA. RESULTS: Polytene chromosome in situ hybridization with cDNA clones was used to place 15 unmapped scaffolds (sizes totaling 5.34 Mbp) in the pericentromeric regions of the chromosomes and oriented a further 9 scaffolds. Additional analysis by in situ hybridization of bacterial artificial chromosome (BAC) clones placed 1.32 Mbp (5 scaffolds) in the physical gaps between scaffolds on euchromatic parts of the chromosomes. The Y chromosome sequence information (0.18 Mbp) remains highly incomplete and fragmented among 55 short scaffolds. Analysis of BAC end sequences showed that 22 inter-scaffold gaps were spanned by BAC clones. Unmapped scaffolds were also aligned to the chromosome assemblies in silico, identifying regions totaling 8.18 Mbp (144 scaffolds) that are probably represented in the genome project by two alternative assemblies. An additional 3.53 Mbp of alternative assembly was identified within mapped scaffolds. Scaffolds comprising 1.97 Mbp (679 small scaffolds) were identified as probably derived from contaminating bacterial DNA. In total, about 33% of previously unmapped sequences were placed on the chromosomes. CONCLUSION: This study has used new approaches to improve the physical map and assembly of the A. gambiae genome.
ESTHER : Sharakhova_2007_Genome.Biol_8_R5
PubMedSearch : Sharakhova_2007_Genome.Biol_8_R5
PubMedID: 17210077
Gene_locus related to this paper: anoga-q7q887

Title : Genome sequence of Aedes aegypti, a major arbovirus vector - Nene_2007_Science_316_1718
Author(s) : Nene V , Wortman JR , Lawson D , Haas B , Kodira C , Tu ZJ , Loftus B , Xi Z , Megy K , Grabherr M , Ren Q , Zdobnov EM , Lobo NF , Campbell KS , Brown SE , Bonaldo MF , Zhu J , Sinkins SP , Hogenkamp DG , Amedeo P , Arensburger P , Atkinson PW , Bidwell S , Biedler J , Birney E , Bruggner RV , Costas J , Coy MR , Crabtree J , Crawford M , Debruyn B , Decaprio D , Eiglmeier K , Eisenstadt E , El-Dorry H , Gelbart WM , Gomes SL , Hammond M , Hannick LI , Hogan JR , Holmes MH , Jaffe D , Johnston JS , Kennedy RC , Koo H , Kravitz S , Kriventseva EV , Kulp D , LaButti K , Lee E , Li S , Lovin DD , Mao C , Mauceli E , Menck CF , Miller JR , Montgomery P , Mori A , Nascimento AL , Naveira HF , Nusbaum C , O'Leary S , Orvis J , Pertea M , Quesneville H , Reidenbach KR , Rogers YH , Roth CW , Schneider JR , Schatz M , Shumway M , Stanke M , Stinson EO , Tubio JM , Vanzee JP , Verjovski-Almeida S , Werner D , White O , Wyder S , Zeng Q , Zhao Q , Zhao Y , Hill CA , Raikhel AS , Soares MB , Knudson DL , Lee NH , Galagan J , Salzberg SL , Paulsen IT , Dimopoulos G , Collins FH , Birren B , Fraser-Liggett CM , Severson DW
Ref : Science , 316 :1718 , 2007
Abstract : We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
ESTHER : Nene_2007_Science_316_1718
PubMedSearch : Nene_2007_Science_316_1718
PubMedID: 17510324
Gene_locus related to this paper: aedae-ACHE , aedae-ACHE1 , aedae-glita , aedae-q0iea6 , aedae-q0iev6 , aedae-q0ifn6 , aedae-q0ifn8 , aedae-q0ifn9 , aedae-q0ifp0 , aedae-q0ig41 , aedae-q1dgl0 , aedae-q1dh03 , aedae-q1dh19 , aedae-q1hqe6 , aedae-Q8ITU8 , aedae-Q8MMJ6 , aedae-Q8T9V6 , aedae-q16e91 , aedae-q16f04 , aedae-q16f25 , aedae-q16f26 , aedae-q16f28 , aedae-q16f29 , aedae-q16f30 , aedae-q16gq5 , aedae-q16iq5 , aedae-q16je0 , aedae-q16je1 , aedae-q16je2 , aedae-q16ks8 , aedae-q16lf2 , aedae-q16lv6 , aedae-q16m61 , aedae-q16mc1 , aedae-q16mc6 , aedae-q16mc7 , aedae-q16md1 , aedae-q16ms7 , aedae-q16nk5 , aedae-q16rl5 , aedae-q16rz9 , aedae-q16si8 , aedae-q16t49 , aedae-q16wf1 , aedae-q16x18 , aedae-q16xp8 , aedae-q16xu6 , aedae-q16xw5 , aedae-q16xw6 , aedae-q16y04 , aedae-q16y05 , aedae-q16y06 , aedae-q16y07 , aedae-q16y39 , aedae-q16y40 , aedae-q16yg4 , aedae-q16z03 , aedae-q17aa7 , aedae-q17av1 , aedae-q17av2 , aedae-q17av3 , aedae-q17av4 , aedae-q17b28 , aedae-q17b29 , aedae-q17b30 , aedae-q17b31 , aedae-q17b32 , aedae-q17bm3 , aedae-q17bm4 , aedae-q17bv7 , aedae-q17c44 , aedae-q17cz1 , aedae-q17d32 , aedae-q17g39 , aedae-q17g40 , aedae-q17g41 , aedae-q17g42 , aedae-q17g43 , aedae-q17g44 , aedae-q17gb8 , aedae-q17gr3 , aedae-q17if7 , aedae-q17if9 , aedae-q17ig1 , aedae-q17ig2 , aedae-q17is4 , aedae-q17l09 , aedae-q17m26 , aedae-q17mg9 , aedae-q17mv4 , aedae-q17mv5 , aedae-q17mv6 , aedae-q17mv7 , aedae-q17mw8 , aedae-q17mw9 , aedae-q17nw5 , aedae-q17nx5 , aedae-q17pa4 , aedae-q17q69 , aedae-q170k7 , aedae-q171y4 , aedae-q172e0 , aedae-q176i8 , aedae-q176j0 , aedae-q177k1 , aedae-q177k2 , aedae-q177l9 , aedae-j9hic3 , aedae-q179r9 , aedae-u483 , aedae-j9hj23 , aedae-q17d68 , aedae-q177c7 , aedae-q0ifp1 , aedae-a0a1s4fx83 , aedae-a0a1s4g2m0 , aedae-q1hr49

Title : Evolutionary and biomedical insights from the rhesus macaque genome - Gibbs_2007_Science_316_222
Author(s) : Gibbs RA , Rogers J , Katze MG , Bumgarner R , Weinstock GM , Mardis ER , Remington KA , Strausberg RL , Venter JC , Wilson RK , Batzer MA , Bustamante CD , Eichler EE , Hahn MW , Hardison RC , Makova KD , Miller W , Milosavljevic A , Palermo RE , Siepel A , Sikela JM , Attaway T , Bell S , Bernard KE , Buhay CJ , Chandrabose MN , Dao M , Davis C , Delehaunty KD , Ding Y , Dinh HH , Dugan-Rocha S , Fulton LA , Gabisi RA , Garner TT , Godfrey J , Hawes AC , Hernandez J , Hines S , Holder M , Hume J , Jhangiani SN , Joshi V , Khan ZM , Kirkness EF , Cree A , Fowler RG , Lee S , Lewis LR , Li Z , Liu YS , Moore SM , Muzny D , Nazareth LV , Ngo DN , Okwuonu GO , Pai G , Parker D , Paul HA , Pfannkoch C , Pohl CS , Rogers YH , Ruiz SJ , Sabo A , Santibanez J , Schneider BW , Smith SM , Sodergren E , Svatek AF , Utterback TR , Vattathil S , Warren W , White CS , Chinwalla AT , Feng Y , Halpern AL , Hillier LW , Huang X , Minx P , Nelson JO , Pepin KH , Qin X , Sutton GG , Venter E , Walenz BP , Wallis JW , Worley KC , Yang SP , Jones SM , Marra MA , Rocchi M , Schein JE , Baertsch R , Clarke L , Csuros M , Glasscock J , Harris RA , Havlak P , Jackson AR , Jiang H , Liu Y , Messina DN , Shen Y , Song HX , Wylie T , Zhang L , Birney E , Han K , Konkel MK , Lee J , Smit AF , Ullmer B , Wang H , Xing J , Burhans R , Cheng Z , Karro JE , Ma J , Raney B , She X , Cox MJ , Demuth JP , Dumas LJ , Han SG , Hopkins J , Karimpour-Fard A , Kim YH , Pollack JR , Vinar T , Addo-Quaye C , Degenhardt J , Denby A , Hubisz MJ , Indap A , Kosiol C , Lahn BT , Lawson HA , Marklein A , Nielsen R , Vallender EJ , Clark AG , Ferguson B , Hernandez RD , Hirani K , Kehrer-Sawatzki H , Kolb J , Patil S , Pu LL , Ren Y , Smith DG , Wheeler DA , Schenck I , Ball EV , Chen R , Cooper DN , Giardine B , Hsu F , Kent WJ , Lesk A , Nelson DL , O'Brien W E , Prufer K , Stenson PD , Wallace JC , Ke H , Liu XM , Wang P , Xiang AP , Yang F , Barber GP , Haussler D , Karolchik D , Kern AD , Kuhn RM , Smith KE , Zwieg AS
Ref : Science , 316 :222 , 2007
Abstract : The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
ESTHER : Gibbs_2007_Science_316_222
PubMedSearch : Gibbs_2007_Science_316_222
PubMedID: 17431167
Gene_locus related to this paper: macmu-3neur , macmu-ACHE , macmu-BCHE , macmu-f6rul6 , macmu-f6sz31 , macmu-f6the6 , macmu-f6unj2 , macmu-f6wtx1 , macmu-f6zkq5 , macmu-f7aa58 , macmu-f7ai42 , macmu-f7aim4 , macmu-f7buk8 , macmu-f7cfi8 , macmu-f7cnr2 , macmu-f7cu68 , macmu-f7flv1 , macmu-f7ggk1 , macmu-f7hir7 , macmu-g7n054 , macmu-KANSL3 , macmu-TEX30 , macmu-Y4neur , macmu-g7n4x3 , macmu-i2cy02 , macmu-f7ba84 , macmu-CES2 , macmu-h9er02 , macmu-a0a1d5rbr3 , macmu-a0a1d5q4k5 , macmu-g7mxj6 , macmu-f7dn71 , macmu-f7hkw9 , macmu-f7hm08 , macmu-g7mke4 , macmu-a0a1d5rh04 , macmu-h9fud6 , macmu-f6qwx1 , macmu-f7h4t2 , macmu-h9zaw9 , macmu-f7h550 , macmu-a0a1d5q9w1 , macmu-f7gkb9 , macmu-f7hp78 , macmu-a0a1d5qvu5

Title : The Anopheles gambiae genome: an update - Mongin_2004_Trends.Parasitol_20_49
Author(s) : Mongin E , Louis C , Holt RA , Birney E , Collins FH
Ref : Trends Parasitol , 20 :49 , 2004
Abstract : As a result of an international collaborative effort, the first draft of the Anopheles gambiae genome sequence and its preliminary annotation were published in October 2002. Since then, the assembly, annotation and means of accession of the An. gambiae genome have been under continuous development. This article reviews progress and considers limitations in the current sequence assembly and gene annotation, as well as approaches to address these problems and outstanding issues that users of the data must bear in mind.
ESTHER : Mongin_2004_Trends.Parasitol_20_49
PubMedSearch : Mongin_2004_Trends.Parasitol_20_49
PubMedID: 14747013
Gene_locus related to this paper: anoga-q7q887

Title : Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution - Hillier_2004_Nature_432_695
Author(s) : Hillier LW , Miller W , Birney E , Warren W , Hardison RC , Ponting CP , Bork P , Burt DW , Groenen MA , Delany ME , Dodgson JB , Chinwalla AT , Cliften PF , Clifton SW , Delehaunty KD , Fronick C , Fulton RS , Graves TA , Kremitzki C , Layman D , Magrini V , McPherson JD , Miner TL , Minx P , Nash WE , Nhan MN , Nelson JO , Oddy LG , Pohl CS , Randall-Maher J , Smith SM , Wallis JW , Yang SP , Romanov MN , Rondelli CM , Paton B , Smith J , Morrice D , Daniels L , Tempest HG , Robertson L , Masabanda JS , Griffin DK , Vignal A , Fillon V , Jacobbson L , Kerje S , Andersson L , Crooijmans RP , Aerts J , van der Poel JJ , Ellegren H , Caldwell RB , Hubbard SJ , Grafham DV , Kierzek AM , McLaren SR , Overton IM , Arakawa H , Beattie KJ , Bezzubov Y , Boardman PE , Bonfield JK , Croning MD , Davies RM , Francis MD , Humphray SJ , Scott CE , Taylor RG , Tickle C , Brown WR , Rogers J , Buerstedde JM , Wilson SA , Stubbs L , Ovcharenko I , Gordon L , Lucas S , Miller MM , Inoko H , Shiina T , Kaufman J , Salomonsen J , Skjoedt K , Ka-Shu Wong G , Wang J , Liu B , Yu J , Yang H , Nefedov M , Koriabine M , deJong PJ , Goodstadt L , Webber C , Dickens NJ , Letunic I , Suyama M , Torrents D , von Mering C , Zdobnov EM , Makova K , Nekrutenko A , Elnitski L , Eswara P , King DC , Yang S , Tyekucheva S , Radakrishnan A , Harris RS , Chiaromonte F , Taylor J , He J , Rijnkels M , Griffiths-Jones S , Ureta-Vidal A , Hoffman MM , Severin J , Searle SM , Law AS , Speed D , Waddington D , Cheng Z , Tuzun E , Eichler E , Bao Z , Flicek P , Shteynberg DD , Brent MR , Bye JM , Huckle EJ , Chatterji S , Dewey C , Pachter L , Kouranov A , Mourelatos Z , Hatzigeorgiou AG , Paterson AH , Ivarie R , Brandstrom M , Axelsson E , Backstrom N , Berlin S , Webster MT , Pourquie O , Reymond A , Ucla C , Antonarakis SE , Long M , Emerson JJ , Betran E , Dupanloup I , Kaessmann H , Hinrichs AS , Bejerano G , Furey TS , Harte RA , Raney B , Siepel A , Kent WJ , Haussler D , Eyras E , Castelo R , Abril JF , Castellano S , Camara F , Parra G , Guigo R , Bourque G , Tesler G , Pevzner PA , Smit A , Fulton LA , Mardis ER , Wilson RK
Ref : Nature , 432 :695 , 2004
Abstract : We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
ESTHER : Hillier_2004_Nature_432_695
PubMedSearch : Hillier_2004_Nature_432_695
PubMedID: 15592404
Gene_locus related to this paper: chick-a0a1d5pmd9 , chick-b3tzb3 , chick-BCHE , chick-cb043 , chick-d3wgl5 , chick-e1bsm0 , chick-e1bvq6 , chick-e1bwz0 , chick-e1bwz1 , chick-e1byn1 , chick-e1bz81 , chick-e1c0z8 , chick-e1c7p7 , chick-f1nby4 , chick-f1ncz8 , chick-f1ndp3 , chick-f1nep4 , chick-f1nj68 , chick-f1njg6 , chick-f1njk4 , chick-f1njs4 , chick-f1njs5 , chick-f1nk87 , chick-f1nmx9 , chick-f1ntp8 , chick-f1nvg7 , chick-f1nwf2 , chick-f1p1l1 , chick-f1p3j5 , chick-f1p4c6 , chick-f1p508 , chick-fas , chick-h9l0k6 , chick-nlgn1 , chick-NLGN3 , chick-q5f3h8 , chick-q5zhm0 , chick-q5zi81 , chick-q5zij5 , chick-q5zin0 , chick-thyro , chick-f1nrq2 , chick-e1byd4 , chick-e1c2h6 , chick-a0a1d5pk92 , chick-a0a1d5pzg7 , chick-f1nbc2 , chick-f1nf25 , chick-f1nly5 , chick-f1p4h5 , chick-f1nzi7 , chick-f1p5k3 , chick-f1nm35 , chick-a0a1d5pl11 , chick-a0a1d5pj73 , chick-f1nxu6 , chick-a0a1d5nwc0 , chick-e1bxs8 , chick-f1p2g7 , chick-f1nd96

Title : Genome sequence of the Brown Norway rat yields insights into mammalian evolution - Gibbs_2004_Nature_428_493
Author(s) : Gibbs RA , Weinstock GM , Metzker ML , Muzny DM , Sodergren EJ , Scherer S , Scott G , Steffen D , Worley KC , Burch PE , Okwuonu G , Hines S , Lewis L , DeRamo C , Delgado O , Dugan-Rocha S , Miner G , Morgan M , Hawes A , Gill R , Celera , Holt RA , Adams MD , Amanatides PG , Baden-Tillson H , Barnstead M , Chin S , Evans CA , Ferriera S , Fosler C , Glodek A , Gu Z , Jennings D , Kraft CL , Nguyen T , Pfannkoch CM , Sitter C , Sutton GG , Venter JC , Woodage T , Smith D , Lee HM , Gustafson E , Cahill P , Kana A , Doucette-Stamm L , Weinstock K , Fechtel K , Weiss RB , Dunn DM , Green ED , Blakesley RW , Bouffard GG , de Jong PJ , Osoegawa K , Zhu B , Marra M , Schein J , Bosdet I , Fjell C , Jones S , Krzywinski M , Mathewson C , Siddiqui A , Wye N , McPherson J , Zhao S , Fraser CM , Shetty J , Shatsman S , Geer K , Chen Y , Abramzon S , Nierman WC , Havlak PH , Chen R , Durbin KJ , Egan A , Ren Y , Song XZ , Li B , Liu Y , Qin X , Cawley S , Cooney AJ , D'Souza LM , Martin K , Wu JQ , Gonzalez-Garay ML , Jackson AR , Kalafus KJ , McLeod MP , Milosavljevic A , Virk D , Volkov A , Wheeler DA , Zhang Z , Bailey JA , Eichler EE , Tuzun E , Birney E , Mongin E , Ureta-Vidal A , Woodwark C , Zdobnov E , Bork P , Suyama M , Torrents D , Alexandersson M , Trask BJ , Young JM , Huang H , Wang H , Xing H , Daniels S , Gietzen D , Schmidt J , Stevens K , Vitt U , Wingrove J , Camara F , Mar Alba M , Abril JF , Guigo R , Smit A , Dubchak I , Rubin EM , Couronne O , Poliakov A , Hubner N , Ganten D , Goesele C , Hummel O , Kreitler T , Lee YA , Monti J , Schulz H , Zimdahl H , Himmelbauer H , Lehrach H , Jacob HJ , Bromberg S , Gullings-Handley J , Jensen-Seaman MI , Kwitek AE , Lazar J , Pasko D , Tonellato PJ , Twigger S , Ponting CP , Duarte JM , Rice S , Goodstadt L , Beatson SA , Emes RD , Winter EE , Webber C , Brandt P , Nyakatura G , Adetobi M , Chiaromonte F , Elnitski L , Eswara P , Hardison RC , Hou M , Kolbe D , Makova K , Miller W , Nekrutenko A , Riemer C , Schwartz S , Taylor J , Yang S , Zhang Y , Lindpaintner K , Andrews TD , Caccamo M , Clamp M , Clarke L , Curwen V , Durbin R , Eyras E , Searle SM , Cooper GM , Batzoglou S , Brudno M , Sidow A , Stone EA , Payseur BA , Bourque G , Lopez-Otin C , Puente XS , Chakrabarti K , Chatterji S , Dewey C , Pachter L , Bray N , Yap VB , Caspi A , Tesler G , Pevzner PA , Haussler D , Roskin KM , Baertsch R , Clawson H , Furey TS , Hinrichs AS , Karolchik D , Kent WJ , Rosenbloom KR , Trumbower H , Weirauch M , Cooper DN , Stenson PD , Ma B , Brent M , Arumugam M , Shteynberg D , Copley RR , Taylor MS , Riethman H , Mudunuri U , Peterson J , Guyer M , Felsenfeld A , Old S , Mockrin S , Collins F
Ref : Nature , 428 :493 , 2004
Abstract : The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.
ESTHER : Gibbs_2004_Nature_428_493
PubMedSearch : Gibbs_2004_Nature_428_493
PubMedID: 15057822
Gene_locus related to this paper: rat-abhea , rat-abheb , rat-cd029 , rat-d3zaw4 , rat-dpp9 , rat-d3zhq1 , rat-d3zkp8 , rat-d3zuq1 , rat-d3zxw8 , rat-d4a4w4 , rat-d4a7w1 , rat-d4a9l7 , rat-d4a071 , rat-d4aa31 , rat-d4aa33 , rat-d4aa61 , rat-dglb , rat-f1lz91 , rat-Kansl3 , rat-nceh1 , rat-Tex30 , ratno-1hlip , ratno-1neur , ratno-1plip , ratno-2neur , ratno-3neur , ratno-3plip , ratno-ABH15 , ratno-ACHE , ratno-balip , ratno-BCHE , ratno-cauxin , ratno-Ces1d , ratno-Ces1e , ratno-Ces2f , ratno-d3ze31 , ratno-d3zp14 , ratno-d3zxi3 , ratno-d3zxq0 , ratno-d3zxq1 , ratno-d4a3d4 , ratno-d4aa05 , ratno-dpp4 , ratno-dpp6 , ratno-est8 , ratno-FAP , ratno-hyep , ratno-hyes , ratno-kmcxe , ratno-lmcxe , ratno-LOC246252 , ratno-MGLL , ratno-pbcxe , ratno-phebest , ratno-Ppgb , ratno-q4qr68 , ratno-q6ayr2 , ratno-q6q629 , ratno-SPG21 , ratno-thyro , rat-m0rc77 , rat-a0a0g2k9y7 , rat-a0a0g2kb83 , rat-d3zba8 , rat-d3zbj1 , rat-d3zcr8 , rat-d3zxw5 , rat-d4a340 , rat-f1lvg7 , rat-m0r509 , rat-m0r5d4 , rat-b5den3 , rat-d3zxk4 , rat-d4a1b6 , rat-d3zmg4 , rat-ab17c

Title : The genome sequence of the malaria mosquito Anopheles gambiae - Holt_2002_Science_298_129
Author(s) : Holt RA , Subramanian GM , Halpern A , Sutton GG , Charlab R , Nusskern DR , Wincker P , Clark AG , Ribeiro JM , Wides R , Salzberg SL , Loftus B , Yandell M , Majoros WH , Rusch DB , Lai Z , Kraft CL , Abril JF , Anthouard V , Arensburger P , Atkinson PW , Baden H , de Berardinis V , Baldwin D , Benes V , Biedler J , Blass C , Bolanos R , Boscus D , Barnstead M , Cai S , Center A , Chaturverdi K , Christophides GK , Chrystal MA , Clamp M , Cravchik A , Curwen V , Dana A , Delcher A , Dew I , Evans CA , Flanigan M , Grundschober-Freimoser A , Friedli L , Gu Z , Guan P , Guigo R , Hillenmeyer ME , Hladun SL , Hogan JR , Hong YS , Hoover J , Jaillon O , Ke Z , Kodira C , Kokoza E , Koutsos A , Letunic I , Levitsky A , Liang Y , Lin JJ , Lobo NF , Lopez JR , Malek JA , McIntosh TC , Meister S , Miller J , Mobarry C , Mongin E , Murphy SD , O'Brochta DA , Pfannkoch C , Qi R , Regier MA , Remington K , Shao H , Sharakhova MV , Sitter CD , Shetty J , Smith TJ , Strong R , Sun J , Thomasova D , Ton LQ , Topalis P , Tu Z , Unger MF , Walenz B , Wang A , Wang J , Wang M , Wang X , Woodford KJ , Wortman JR , Wu M , Yao A , Zdobnov EM , Zhang H , Zhao Q , Zhao S , Zhu SC , Zhimulev I , Coluzzi M , della Torre A , Roth CW , Louis C , Kalush F , Mural RJ , Myers EW , Adams MD , Smith HO , Broder S , Gardner MJ , Fraser CM , Birney E , Bork P , Brey PT , Venter JC , Weissenbach J , Kafatos FC , Collins FH , Hoffman SL
Ref : Science , 298 :129 , 2002
Abstract : Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
ESTHER : Holt_2002_Science_298_129
PubMedSearch : Holt_2002_Science_298_129
PubMedID: 12364791
Gene_locus related to this paper: anoga-a0nb77 , anoga-a0nbp6 , anoga-a0neb7 , anoga-a0nei9 , anoga-a0nej0 , anoga-a0ngj1 , anoga-a7ut12 , anoga-a7uuz9 , anoga-ACHE1 , anoga-ACHE2 , anoga-agCG44620 , anoga-agCG44666 , anoga-agCG45273 , anoga-agCG45279 , anoga-agCG45511 , anoga-agCG46741 , anoga-agCG47651 , anoga-agCG47655 , anoga-agCG47661 , anoga-agCG47690 , anoga-agCG48797 , anoga-AGCG49362 , anoga-agCG49462 , anoga-agCG49870 , anoga-agCG49872 , anoga-agCG49876 , anoga-agCG50851 , anoga-agCG51879 , anoga-agCG52383 , anoga-agCG54954 , anoga-AGCG55021 , anoga-agCG55401 , anoga-agCG55408 , anoga-agCG56978 , anoga-ebiG239 , anoga-ebiG2660 , anoga-ebiG5718 , anoga-ebiG5974 , anoga-ebiG8504 , anoga-ebiG8742 , anoga-glita , anoga-nrtac , anoga-q5tpv0 , anoga-Q5TVS6 , anoga-q7pm39 , anoga-q7ppw9 , anoga-q7pq17 , anoga-Q7PQT0 , anoga-q7q8m4 , anoga-q7q626 , anoga-q7qa14 , anoga-q7qa52 , anoga-q7qal7 , anoga-q7qbj0 , anoga-f5hl20 , anoga-q7qkh2 , anoga-a0a1s4h1y7 , anoga-q7q887

Title : Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster - Zdobnov_2002_Science_298_149
Author(s) : Zdobnov EM , von Mering C , Letunic I , Torrents D , Suyama M , Copley RR , Christophides GK , Thomasova D , Holt RA , Subramanian GM , Mueller HM , Dimopoulos G , Law JH , Wells MA , Birney E , Charlab R , Halpern AL , Kokoza E , Kraft CL , Lai Z , Lewis S , Louis C , Barillas-Mury C , Nusskern D , Rubin GM , Salzberg SL , Sutton GG , Topalis P , Wides R , Wincker P , Yandell M , Collins FH , Ribeiro J , Gelbart WM , Kafatos FC , Bork P
Ref : Science , 298 :149 , 2002
Abstract : Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small "microsyntenic" clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.
ESTHER : Zdobnov_2002_Science_298_149
PubMedSearch : Zdobnov_2002_Science_298_149
PubMedID: 12364792

Title : Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs - Okazaki_2002_Nature_420_563
Author(s) : Okazaki Y , Furuno M , Kasukawa T , Adachi J , Bono H , Kondo S , Nikaido I , Osato N , Saito R , Suzuki H , Yamanaka I , Kiyosawa H , Yagi K , Tomaru Y , Hasegawa Y , Nogami A , Schonbach C , Gojobori T , Baldarelli R , Hill DP , Bult C , Hume DA , Quackenbush J , Schriml LM , Kanapin A , Matsuda H , Batalov S , Beisel KW , Blake JA , Bradt D , Brusic V , Chothia C , Corbani LE , Cousins S , Dalla E , Dragani TA , Fletcher CF , Forrest A , Frazer KS , Gaasterland T , Gariboldi M , Gissi C , Godzik A , Gough J , Grimmond S , Gustincich S , Hirokawa N , Jackson IJ , Jarvis ED , Kanai A , Kawaji H , Kawasawa Y , Kedzierski RM , King BL , Konagaya A , Kurochkin IV , Lee Y , Lenhard B , Lyons PA , Maglott DR , Maltais L , Marchionni L , McKenzie L , Miki H , Nagashima T , Numata K , Okido T , Pavan WJ , Pertea G , Pesole G , Petrovsky N , Pillai R , Pontius JU , Qi D , Ramachandran S , Ravasi T , Reed JC , Reed DJ , Reid J , Ring BZ , Ringwald M , Sandelin A , Schneider C , Semple CA , Setou M , Shimada K , Sultana R , Takenaka Y , Taylor MS , Teasdale RD , Tomita M , Verardo R , Wagner L , Wahlestedt C , Wang Y , Watanabe Y , Wells C , Wilming LG , Wynshaw-Boris A , Yanagisawa M , Yang I , Yang L , Yuan Z , Zavolan M , Zhu Y , Zimmer A , Carninci P , Hayatsu N , Hirozane-Kishikawa T , Konno H , Nakamura M , Sakazume N , Sato K , Shiraki T , Waki K , Kawai J , Aizawa K , Arakawa T , Fukuda S , Hara A , Hashizume W , Imotani K , Ishii Y , Itoh M , Kagawa I , Miyazaki A , Sakai K , Sasaki D , Shibata K , Shinagawa A , Yasunishi A , Yoshino M , Waterston R , Lander ES , Rogers J , Birney E , Hayashizaki Y
Ref : Nature , 420 :563 , 2002
Abstract : Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
ESTHER : Okazaki_2002_Nature_420_563
PubMedSearch : Okazaki_2002_Nature_420_563
PubMedID: 12466851
Gene_locus related to this paper: mouse-1lipg , mouse-1llip , mouse-1plrp , mouse-3neur , mouse-ABH15 , mouse-abhd4 , mouse-abhd5 , mouse-Abhd8 , mouse-Abhd11 , mouse-abhda , mouse-acot4 , mouse-adcl4 , mouse-AI607300 , mouse-BAAT , mouse-bphl , mouse-C87498 , mouse-Ldah , mouse-Ces1d , mouse-Ces2e , mouse-CMBL , mouse-DGLB , mouse-dpp9 , mouse-ES10 , mouse-F135A , mouse-FASN , mouse-hslip , mouse-hyes , mouse-Kansl3 , mouse-LIPH , mouse-LIPK , mouse-lipli , mouse-LIPM , mouse-lypla1 , mouse-lypla2 , mouse-MEST , mouse-MGLL , mouse-ndr4 , mouse-OVCA2 , mouse-pafa , mouse-pcp , mouse-ppce , mouse-Ppgb , mouse-PPME1 , mouse-q3uuq7 , mouse-Q8BLF1 , mouse-ACOT6 , mouse-Q8C1A9 , mouse-Q9DAI6 , mouse-Q80UX8 , mouse-Q8BGG9 , mouse-Q8C167 , mouse-rbbp9 , mouse-SERHL , mouse-tssp

Title : The InterPro database, an integrated documentation resource for protein families, domains and functional sites - Apweiler_2001_Nucleic.Acids.Res_29_37
Author(s) : Apweiler R , Attwood TK , Bairoch A , Bateman A , Birney E , Biswas M , Bucher P , Cerutti L , Corpet F , Croning MD , Durbin R , Falquet L , Fleischmann W , Gouzy J , Hermjakob H , Hulo N , Jonassen I , Kahn D , Kanapin A , Karavidopoulou Y , Lopez R , Marx B , Mulder NJ , Oinn TM , Pagni M , Servant F , Sigrist CJ , Zdobnov EM
Ref : Nucleic Acids Research , 29 :37 , 2001
Abstract : Signature databases are vital tools for identifying distant relationships in novel sequences and hence for inferring protein function. InterPro is an integrated documentation resource for protein families, domains and functional sites, which amalgamates the efforts of the PROSITE, PRINTS, Pfam and ProDom database projects. Each InterPro entry includes a functional description, annotation, literature references and links back to the relevant member database(s). Release 2.0 of InterPro (October 2000) contains over 3000 entries, representing families, domains, repeats and sites of post-translational modification encoded by a total of 6804 different regular expressions, profiles, fingerprints and Hidden Markov Models. Each InterPro entry lists all the matches against SWISS-PROT and TrEMBL (more than 1,000,000 hits from 462,500 proteins in SWISS-PROT and TrEMBL). The database is accessible for text- and sequence-based searches at http:\/\/www.ebi.ac.uk/interpro/. Questions can be emailed to interhelp@ebi.ac.uk.
ESTHER : Apweiler_2001_Nucleic.Acids.Res_29_37
PubMedSearch : Apweiler_2001_Nucleic.Acids.Res_29_37
PubMedID: 11125043