Fulton LA

References (7)

Title : Evolution of symbiotic bacteria in the distal human intestine - Xu_2007_PLoS.Biol_5_e156
Author(s) : Xu J , Mahowald MA , Ley RE , Lozupone CA , Hamady M , Martens EC , Henrissat B , Coutinho PM , Minx P , Latreille P , Cordum H , Van Brunt A , Kim K , Fulton RS , Fulton LA , Clifton SW , Wilson RK , Knight RD , Gordon JI
Ref : PLoS Biol , 5 :e156 , 2007
Abstract : The adult human intestine contains trillions of bacteria, representing hundreds of species and thousands of subspecies. Little is known about the selective pressures that have shaped and are shaping this community's component species, which are dominated by members of the Bacteroidetes and Firmicutes divisions. To examine how the intestinal environment affects microbial genome evolution, we have sequenced the genomes of two members of the normal distal human gut microbiota, Bacteroides vulgatus and Bacteroides distasonis, and by comparison with the few other sequenced gut and non-gut Bacteroidetes, analyzed their niche and habitat adaptations. The results show that lateral gene transfer, mobile elements, and gene amplification have played important roles in affecting the ability of gut-dwelling Bacteroidetes to vary their cell surface, sense their environment, and harvest nutrient resources present in the distal intestine. Our findings show that these processes have been a driving force in the adaptation of Bacteroidetes to the distal gut environment, and emphasize the importance of considering the evolution of humans from an additional perspective, namely the evolution of our microbiomes.
ESTHER : Xu_2007_PLoS.Biol_5_e156
PubMedSearch : Xu_2007_PLoS.Biol_5_e156
PubMedID: 17579514
Gene_locus related to this paper: 9bace-b6w170 , 9bace-c6z6f2 , 9bace-e1z049 , 9porp-c7xbp3 , 9porp-c7xci2 , 9porp-c7xdx2 , bacv8-a6kwf6 , bacv8-a6kzc1 , bacv8-a6kze8 , bacv8-a6l0d9 , bacv8-a6l1d0 , bacv8-a6l1u9 , bacv8-a6l7p9 , bacv8-a6l7w1 , bacv8-a6l018 , bacv8-a6l378 , bacv8-a6l415 , bacv8-a6l715 , pard8-a6lc23 , pard8-a6lca7 , pard8-a6ld87 , pard8-a6le10 , pard8-a6le63 , pard8-a6lfj2 , pard8-a6lgh2 , pard8-a6lgi6 , pard8-a6lgn7 , pard8-a6lhe1 , pard8-a6li91 , bacv8-a6l3w9

Title : Evolutionary and biomedical insights from the rhesus macaque genome - Gibbs_2007_Science_316_222
Author(s) : Gibbs RA , Rogers J , Katze MG , Bumgarner R , Weinstock GM , Mardis ER , Remington KA , Strausberg RL , Venter JC , Wilson RK , Batzer MA , Bustamante CD , Eichler EE , Hahn MW , Hardison RC , Makova KD , Miller W , Milosavljevic A , Palermo RE , Siepel A , Sikela JM , Attaway T , Bell S , Bernard KE , Buhay CJ , Chandrabose MN , Dao M , Davis C , Delehaunty KD , Ding Y , Dinh HH , Dugan-Rocha S , Fulton LA , Gabisi RA , Garner TT , Godfrey J , Hawes AC , Hernandez J , Hines S , Holder M , Hume J , Jhangiani SN , Joshi V , Khan ZM , Kirkness EF , Cree A , Fowler RG , Lee S , Lewis LR , Li Z , Liu YS , Moore SM , Muzny D , Nazareth LV , Ngo DN , Okwuonu GO , Pai G , Parker D , Paul HA , Pfannkoch C , Pohl CS , Rogers YH , Ruiz SJ , Sabo A , Santibanez J , Schneider BW , Smith SM , Sodergren E , Svatek AF , Utterback TR , Vattathil S , Warren W , White CS , Chinwalla AT , Feng Y , Halpern AL , Hillier LW , Huang X , Minx P , Nelson JO , Pepin KH , Qin X , Sutton GG , Venter E , Walenz BP , Wallis JW , Worley KC , Yang SP , Jones SM , Marra MA , Rocchi M , Schein JE , Baertsch R , Clarke L , Csuros M , Glasscock J , Harris RA , Havlak P , Jackson AR , Jiang H , Liu Y , Messina DN , Shen Y , Song HX , Wylie T , Zhang L , Birney E , Han K , Konkel MK , Lee J , Smit AF , Ullmer B , Wang H , Xing J , Burhans R , Cheng Z , Karro JE , Ma J , Raney B , She X , Cox MJ , Demuth JP , Dumas LJ , Han SG , Hopkins J , Karimpour-Fard A , Kim YH , Pollack JR , Vinar T , Addo-Quaye C , Degenhardt J , Denby A , Hubisz MJ , Indap A , Kosiol C , Lahn BT , Lawson HA , Marklein A , Nielsen R , Vallender EJ , Clark AG , Ferguson B , Hernandez RD , Hirani K , Kehrer-Sawatzki H , Kolb J , Patil S , Pu LL , Ren Y , Smith DG , Wheeler DA , Schenck I , Ball EV , Chen R , Cooper DN , Giardine B , Hsu F , Kent WJ , Lesk A , Nelson DL , O'Brien W E , Prufer K , Stenson PD , Wallace JC , Ke H , Liu XM , Wang P , Xiang AP , Yang F , Barber GP , Haussler D , Karolchik D , Kern AD , Kuhn RM , Smith KE , Zwieg AS
Ref : Science , 316 :222 , 2007
Abstract : The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
ESTHER : Gibbs_2007_Science_316_222
PubMedSearch : Gibbs_2007_Science_316_222
PubMedID: 17431167
Gene_locus related to this paper: macmu-3neur , macmu-ACHE , macmu-BCHE , macmu-f6rul6 , macmu-f6sz31 , macmu-f6the6 , macmu-f6unj2 , macmu-f6wtx1 , macmu-f6zkq5 , macmu-f7aa58 , macmu-f7ai42 , macmu-f7aim4 , macmu-f7buk8 , macmu-f7cfi8 , macmu-f7cnr2 , macmu-f7cu68 , macmu-f7flv1 , macmu-f7ggk1 , macmu-f7hir7 , macmu-g7n054 , macmu-KANSL3 , macmu-TEX30 , macmu-Y4neur , macmu-g7n4x3 , macmu-i2cy02 , macmu-f7ba84 , macmu-CES2 , macmu-h9er02 , macmu-a0a1d5rbr3 , macmu-a0a1d5q4k5 , macmu-g7mxj6 , macmu-f7dn71 , macmu-f7hkw9 , macmu-f7hm08 , macmu-g7mke4 , macmu-a0a1d5rh04 , macmu-h9fud6 , macmu-f6qwx1 , macmu-f7h4t2 , macmu-h9zaw9 , macmu-f7h550 , macmu-a0a1d5q9w1 , macmu-f7gkb9 , macmu-f7hp78 , macmu-a0a1d5qvu5

Title : The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression - Oh_2006_Proc.Natl.Acad.Sci.U.S.A_103_9999
Author(s) : Oh JD , Kling-Backhed H , Giannakis M , Xu J , Fulton RS , Fulton LA , Cordum HS , Wang C , Elliott G , Edwards J , Mardis ER , Engstrand LG , Gordon JI
Ref : Proc Natl Acad Sci U S A , 103 :9999 , 2006
Abstract : Helicobacter pylori produces acute superficial gastritis in nearly all of its human hosts. However, a subset of individuals develops chronic atrophic gastritis (ChAG), a condition characterized in part by diminished numbers of acid-producing parietal cells and increased risk for development of gastric adenocarcinoma. Previously, we used a gnotobiotic transgenic mouse model with an engineered ablation of parietal cells to show that loss of parietal cells provides an opportunity for a H. pylori isolate from a patient with ChAG (HPAG1) to bind to, enter, and persist within gastric stem cells. This finding raises the question of how ChAG influences H. pylori genome evolution, physiology, and tumorigenesis. Here we describe the 1,596,366-bp HPAG1 genome. Custom HPAG1 Affymetrix GeneChips, representing 99.6% of its predicted ORFs, were used for whole-genome genotyping of additional H. pylori ChAG isolates obtained from Swedish patients enrolled in a case-control study of gastric cancer, as well as ChAG- and cancer-associated isolates from an individual who progressed from ChAG to gastric adenocarcinoma. The results reveal a shared gene signature among ChAG strains, as well as genes that may have been lost or gained during progression to adenocarcinoma. Whole-genome transcriptional profiling of HPAG1's response to acid during in vitro growth indicates that genes encoding components of metal uptake and utilization pathways, outer membrane proteins, and virulence factors are among those associated with H. pylori's adaptation to ChAG.
ESTHER : Oh_2006_Proc.Natl.Acad.Sci.U.S.A_103_9999
PubMedSearch : Oh_2006_Proc.Natl.Acad.Sci.U.S.A_103_9999
PubMedID: 16788065
Gene_locus related to this paper: helpy-o25061

Title : Generation and annotation of the DNA sequences of human chromosomes 2 and 4 - Hillier_2005_Nature_434_724
Author(s) : Hillier LW , Graves TA , Fulton RS , Fulton LA , Pepin KH , Minx P , Wagner-McPherson C , Layman D , Wylie K , Sekhon M , Becker MC , Fewell GA , Delehaunty KD , Miner TL , Nash WE , Kremitzki C , Oddy L , Du H , Sun H , Bradshaw-Cordum H , Ali J , Carter J , Cordes M , Harris A , Isak A , Van Brunt A , Nguyen C , Du F , Courtney L , Kalicki J , Ozersky P , Abbott S , Armstrong J , Belter EA , Caruso L , Cedroni M , Cotton M , Davidson T , Desai A , Elliott G , Erb T , Fronick C , Gaige T , Haakenson W , Haglund K , Holmes A , Harkins R , Kim K , Kruchowski SS , Strong CM , Grewal N , Goyea E , Hou S , Levy A , Martinka S , Mead K , McLellan MD , Meyer R , Randall-Maher J , Tomlinson C , Dauphin-Kohlberg S , Kozlowicz-Reilly A , Shah N , Swearengen-Shahid S , Snider J , Strong JT , Thompson J , Yoakum M , Leonard S , Pearman C , Trani L , Radionenko M , Waligorski JE , Wang C , Rock SM , Tin-Wollam AM , Maupin R , Latreille P , Wendl MC , Yang SP , Pohl C , Wallis JW , Spieth J , Bieri TA , Berkowicz N , Nelson JO , Osborne J , Ding L , Sabo A , Shotland Y , Sinha P , Wohldmann PE , Cook LL , Hickenbotham MT , Eldred J , Williams D , Jones TA , She X , Ciccarelli FD , Izaurralde E , Taylor J , Schmutz J , Myers RM , Cox DR , Huang X , McPherson JD , Mardis ER , Clifton SW , Warren WC , Chinwalla AT , Eddy SR , Marra MA , Ovcharenko I , Furey TS , Miller W , Eichler EE , Bork P , Suyama M , Torrents D , Waterston RH , Wilson RK
Ref : Nature , 434 :724 , 2005
Abstract : Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.6% of their euchromatic sequences. Our initial analyses have identified 1,346 protein-coding genes and 1,239 pseudogenes on chromosome 2, and 796 protein-coding genes and 778 pseudogenes on chromosome 4. Extensive analyses confirm the underlying construction of the sequence, and expand our understanding of the structure and evolution of mammalian chromosomes, including gene deserts, segmental duplications and highly variant regions.
ESTHER : Hillier_2005_Nature_434_724
PubMedSearch : Hillier_2005_Nature_434_724
PubMedID: 15815621
Gene_locus related to this paper: human-ABHD1 , human-LDAH , human-ABHD18 , human-KANSL3 , human-PGAP1 , human-PREPL

Title : Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution - Hillier_2004_Nature_432_695
Author(s) : Hillier LW , Miller W , Birney E , Warren W , Hardison RC , Ponting CP , Bork P , Burt DW , Groenen MA , Delany ME , Dodgson JB , Chinwalla AT , Cliften PF , Clifton SW , Delehaunty KD , Fronick C , Fulton RS , Graves TA , Kremitzki C , Layman D , Magrini V , McPherson JD , Miner TL , Minx P , Nash WE , Nhan MN , Nelson JO , Oddy LG , Pohl CS , Randall-Maher J , Smith SM , Wallis JW , Yang SP , Romanov MN , Rondelli CM , Paton B , Smith J , Morrice D , Daniels L , Tempest HG , Robertson L , Masabanda JS , Griffin DK , Vignal A , Fillon V , Jacobbson L , Kerje S , Andersson L , Crooijmans RP , Aerts J , van der Poel JJ , Ellegren H , Caldwell RB , Hubbard SJ , Grafham DV , Kierzek AM , McLaren SR , Overton IM , Arakawa H , Beattie KJ , Bezzubov Y , Boardman PE , Bonfield JK , Croning MD , Davies RM , Francis MD , Humphray SJ , Scott CE , Taylor RG , Tickle C , Brown WR , Rogers J , Buerstedde JM , Wilson SA , Stubbs L , Ovcharenko I , Gordon L , Lucas S , Miller MM , Inoko H , Shiina T , Kaufman J , Salomonsen J , Skjoedt K , Ka-Shu Wong G , Wang J , Liu B , Yu J , Yang H , Nefedov M , Koriabine M , deJong PJ , Goodstadt L , Webber C , Dickens NJ , Letunic I , Suyama M , Torrents D , von Mering C , Zdobnov EM , Makova K , Nekrutenko A , Elnitski L , Eswara P , King DC , Yang S , Tyekucheva S , Radakrishnan A , Harris RS , Chiaromonte F , Taylor J , He J , Rijnkels M , Griffiths-Jones S , Ureta-Vidal A , Hoffman MM , Severin J , Searle SM , Law AS , Speed D , Waddington D , Cheng Z , Tuzun E , Eichler E , Bao Z , Flicek P , Shteynberg DD , Brent MR , Bye JM , Huckle EJ , Chatterji S , Dewey C , Pachter L , Kouranov A , Mourelatos Z , Hatzigeorgiou AG , Paterson AH , Ivarie R , Brandstrom M , Axelsson E , Backstrom N , Berlin S , Webster MT , Pourquie O , Reymond A , Ucla C , Antonarakis SE , Long M , Emerson JJ , Betran E , Dupanloup I , Kaessmann H , Hinrichs AS , Bejerano G , Furey TS , Harte RA , Raney B , Siepel A , Kent WJ , Haussler D , Eyras E , Castelo R , Abril JF , Castellano S , Camara F , Parra G , Guigo R , Bourque G , Tesler G , Pevzner PA , Smit A , Fulton LA , Mardis ER , Wilson RK
Ref : Nature , 432 :695 , 2004
Abstract : We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
ESTHER : Hillier_2004_Nature_432_695
PubMedSearch : Hillier_2004_Nature_432_695
PubMedID: 15592404
Gene_locus related to this paper: chick-a0a1d5pmd9 , chick-b3tzb3 , chick-BCHE , chick-cb043 , chick-d3wgl5 , chick-e1bsm0 , chick-e1bvq6 , chick-e1bwz0 , chick-e1bwz1 , chick-e1byn1 , chick-e1bz81 , chick-e1c0z8 , chick-e1c7p7 , chick-f1nby4 , chick-f1ncz8 , chick-f1ndp3 , chick-f1nep4 , chick-f1nj68 , chick-f1njg6 , chick-f1njk4 , chick-f1njs4 , chick-f1njs5 , chick-f1nk87 , chick-f1nmx9 , chick-f1ntp8 , chick-f1nvg7 , chick-f1nwf2 , chick-f1p1l1 , chick-f1p3j5 , chick-f1p4c6 , chick-f1p508 , chick-fas , chick-h9l0k6 , chick-nlgn1 , chick-NLGN3 , chick-q5f3h8 , chick-q5zhm0 , chick-q5zi81 , chick-q5zij5 , chick-q5zin0 , chick-thyro , chick-f1nrq2 , chick-e1byd4 , chick-e1c2h6 , chick-a0a1d5pk92 , chick-a0a1d5pzg7 , chick-f1nbc2 , chick-f1nf25 , chick-f1nly5 , chick-f1p4h5 , chick-f1nzi7 , chick-f1p5k3 , chick-f1nm35 , chick-a0a1d5pl11 , chick-a0a1d5pj73 , chick-f1nxu6 , chick-a0a1d5nwc0 , chick-e1bxs8 , chick-f1p2g7 , chick-f1nd96

Title : The DNA sequence of human chromosome 7 - Hillier_2003_Nature_424_157
Author(s) : Hillier LW , Fulton RS , Fulton LA , Graves TA , Pepin KH , Wagner-McPherson C , Layman D , Maas J , Jaeger S , Walker R , Wylie K , Sekhon M , Becker MC , O'Laughlin MD , Schaller ME , Fewell GA , Delehaunty KD , Miner TL , Nash WE , Cordes M , Du H , Sun H , Edwards J , Bradshaw-Cordum H , Ali J , Andrews S , Isak A , Vanbrunt A , Nguyen C , Du F , Lamar B , Courtney L , Kalicki J , Ozersky P , Bielicki L , Scott K , Holmes A , Harkins R , Harris A , Strong CM , Hou S , Tomlinson C , Dauphin-Kohlberg S , Kozlowicz-Reilly A , Leonard S , Rohlfing T , Rock SM , Tin-Wollam AM , Abbott A , Minx P , Maupin R , Strowmatt C , Latreille P , Miller N , Johnson D , Murray J , Woessner JP , Wendl MC , Yang SP , Schultz BR , Wallis JW , Spieth J , Bieri TA , Nelson JO , Berkowicz N , Wohldmann PE , Cook LL , Hickenbotham MT , Eldred J , Williams D , Bedell JA , Mardis ER , Clifton SW , Chissoe SL , Marra MA , Raymond C , Haugen E , Gillett W , Zhou Y , James R , Phelps K , Iadanoto S , Bubb K , Simms E , Levy R , Clendenning J , Kaul R , Kent WJ , Furey TS , Baertsch RA , Brent MR , Keibler E , Flicek P , Bork P , Suyama M , Bailey JA , Portnoy ME , Torrents D , Chinwalla AT , Gish WR , Eddy SR , McPherson JD , Olson MV , Eichler EE , Green ED , Waterston RH , Wilson RK
Ref : Nature , 424 :157 , 2003
Abstract : Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame.
ESTHER : Hillier_2003_Nature_424_157
PubMedSearch : Hillier_2003_Nature_424_157
PubMedID: 12853948
Gene_locus related to this paper: human-ABHD11 , human-ACHE , human-CPVL , human-DPP6 , human-MEST

Title : The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics - Stein_2003_PLoS.Biol_1_E45
Author(s) : Stein LD , Bao Z , Blasiar D , Blumenthal T , Brent MR , Chen N , Chinwalla A , Clarke L , Clee C , Coghlan A , Coulson A , D'Eustachio P , Fitch DH , Fulton LA , Fulton RE , Griffiths-Jones S , Harris TW , Hillier LW , Kamath R , Kuwabara PE , Mardis ER , Marra MA , Miner TL , Minx P , Mullikin JC , Plumb RW , Rogers J , Schein JE , Sohrmann M , Spieth J , Stajich JE , Wei C , Willey D , Wilson RK , Durbin R , Waterston RH
Ref : PLoS Biol , 1 :E45 , 2003
Abstract : The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.
ESTHER : Stein_2003_PLoS.Biol_1_E45
PubMedSearch : Stein_2003_PLoS.Biol_1_E45
PubMedID: 14624247
Gene_locus related to this paper: caebr-a8wl70 , caebr-a8wm66 , caebr-a8wny7 , caebr-a8wpj6 , caebr-a8wpy7.1 , caebr-a8wq91 , caebr-a8wr10 , caebr-A8WSQ5 , caebr-a8wta1 , caebr-A8WTU9 , caebr-a8wux6 , caebr-A8WX49 , caebr-a8wxx0 , caebr-a8wyd4 , caebr-a8wye8 , caebr-a8wz10 , caebr-a8wz31.1 , caebr-a8wz31.2 , caebr-a8wz31.4 , caebr-a8wzp9 , caebr-a8wzr9.1 , caebr-a8wzr9.2 , caebr-a8wzs0 , caebr-a8wzs1 , caebr-a8x0r9 , caebr-a8x0z5 , caebr-a8x1l6 , caebr-a8x1r6 , caebr-a8x3t6 , caebr-a8x4h0 , caebr-a8x4u8 , caebr-a8x4w8 , caebr-a8x5l4 , caebr-a8x5l5 , caebr-a8x5r5 , caebr-a8x5s6 , caebr-a8x5t4 , caebr-a8x6s0 , caebr-a8x6s1 , caebr-a8x7d1 , caebr-a8x7h0 , caebr-a8x7v6 , caebr-A8X8P2 , caebr-a8x8q5 , caebr-a8x8y6 , caebr-a8x9s4 , caebr-a8x324.1 , caebr-a8x324.2 , caebr-a8x622 , caebr-a8xac7 , caebr-a8xag5 , caebr-a8xb07 , caebr-a8xb88 , caebr-a8xby0 , caebr-a8xdz0 , caebr-a8xf42 , caebr-a8xfd1 , caebr-a8xfe6 , caebr-a8xgi0 , caebr-a8xgz4 , caebr-a8xgz5 , caebr-a8xh38 , caebr-a8xhp8 , caebr-a8xhx9 , caebr-a8xjw4 , caebr-a8xk02 , caebr-a8xk46 , caebr-a8xk76 , caebr-a8xke1 , caebr-A8XLQ2 , caebr-a8xns2.1 , caebr-a8xns2.2 , caebr-a8xq21 , caebr-a8xub3 , caebr-a8xuc2 , caebr-a8xuc8 , caebr-a8xug3 , caebr-a8xuh6 , caebr-a8xui4 , caebr-a8xui5 , caebr-a8xui6 , caebr-a8xui7 , caebr-a8xum8 , caebr-a8y0h0.1 , caebr-a8y0h0.2 , caebr-a8y0h1.1 , caebr-a8y0h1.2 , caebr-a8y1b5 , caebr-a8y1r7 , caebr-a8y2v4 , caebr-a8y3e3 , caebr-a8y3i5 , caebr-a8y3j9 , caebr-a8y4p9 , caebr-a8y100 , caebr-a8y101 , caebr-ACHE1 , caebr-ACHE2 , caebr-ACHE3 , caebr-ACHE4 , caebr-b6ii84 , caebr-G01D9.5 , caebr-ges1e , caebr-a8y4l4 , caebr-A8Y1T9 , caebr-A8Y168 , caebr-A8Y0Z5 , caebr-A8XYQ5 , caebr-A8XXK4 , caebr-A8XWZ8 , caebr-A8XUF0 , caebr-A8XUB6 , caebr-A8XSV2 , caebr-A8XJ37 , caebr-A8XG15 , caebr-A8XFE8 , caebr-A8XEY7 , caebr-A8XEU8 , caebr-A8XDT6 , caebr-A8XDV3 , caebr-A8XDQ3 , caebr-A8XDK8 , caebr-A8XBW4 , caebr-A8XAG3 , caebr-A8X8H5 , caebr-A8X6Z9 , caebr-A8X6H9 , caebr-A8X629 , caebr-A8X438 , caebr-A8X4G2 , caebr-A8X4H8 , caebr-A8X4W2 , caebr-A8X3P4 , caebr-A8X3R1 , caebr-A8X2Z4 , caebr-A8X0N2 , caebr-A8X0B3 , caebr-A8WW80 , caebr-U483 , caebr-A8XPH6 , caebr-A8XNJ0 , caebr-A8XNA2 , caebr-A8XLP0 , caebr-A8XK33 , caebr-A8WTK6 , caebr-A8WU44 , caebr-A8WPJ2 , caebr-A8WNE5 , caebr-A8WMB3 , caebr-a8x1r2