Narechania A

References (5)

Title : Evolution of hypervirulence by a MRSA clone through acquisition of a transposable element - Benson_2014_Mol.Microbiol_93_664
Author(s) : Benson MA , Ohneck EA , Ryan C , Alonzo F, 3rd , Smith H , Narechania A , Kolokotronis SO , Satola SW , Uhlemann AC , Sebra R , Deikus G , Shopsin B , Planet PJ , Torres VJ
Ref : Molecular Microbiology , 93 :664 , 2014
Abstract : Staphylococcus aureus has evolved as a pathogen that causes a range of diseases in humans. There are two dominant modes of evolution thought to explain most of the virulence differences between strains. First, virulence genes may be acquired from other organisms. Second, mutations may cause changes in the regulation and expression of genes. Here we describe an evolutionary event in which transposition of an IS element has a direct impact on virulence gene regulation resulting in hypervirulence. Whole-genome analysis of a methicillin-resistant S. aureus (MRSA) strain USA500 revealed acquisition of a transposable element (IS256) that is absent from close relatives of this strain. Of the multiple copies of IS256 found in the USA500 genome, one was inserted in the promoter sequence of repressor of toxins (Rot), a master transcriptional regulator responsible for the expression of virulence factors in S. aureus. We show that insertion into the rot promoter by IS256 results in the derepression of cytotoxin expression and increased virulence. Taken together, this work provides new insight into evolutionary strategies by which S. aureus is able to modify its virulence properties and demonstrates a novel mechanism by which horizontal gene transfer directly impacts virulence through altering toxin regulation.
ESTHER : Benson_2014_Mol.Microbiol_93_664
PubMedSearch : Benson_2014_Mol.Microbiol_93_664
PubMedID: 24962815

Title : Genome Sequence of Bacterial Interference Strain Staphylococcus aureus 502A - Parker_2014_Genome.Announc_2_e00284
Author(s) : Parker D , Narechania A , Sebra R , Deikus G , Larussa S , Ryan C , Smith H , Prince A , Mathema B , Ratner AJ , Kreiswirth B , Planet PJ
Ref : Genome Announc , 2 : , 2014
Abstract : Staphylococcus aureus 502A was a strain used in bacterial interference programs during the 1960s and early 1970s. Infants were deliberately colonized with 502A with the goal of preventing colonization with more invasive strains. We present the completed genome sequence of this organism.
ESTHER : Parker_2014_Genome.Announc_2_e00284
PubMedSearch : Parker_2014_Genome.Announc_2_e00284
PubMedID: 24723721

Title : The Sorghum bicolor genome and the diversification of grasses - Paterson_2009_Nature_457_551
Author(s) : Paterson AH , Bowers JE , Bruggmann R , Dubchak I , Grimwood J , Gundlach H , Haberer G , Hellsten U , Mitros T , Poliakov A , Schmutz J , Spannagl M , Tang H , Wang X , Wicker T , Bharti AK , Chapman J , Feltus FA , Gowik U , Grigoriev IV , Lyons E , Maher CA , Martis M , Narechania A , Otillar RP , Penning BW , Salamov AA , Wang Y , Zhang L , Carpita NC , Freeling M , Gingle AR , Hash CT , Keller B , Klein P , Kresovich S , McCann MC , Ming R , Peterson DG , Mehboob ur R , Ware D , Westhoff P , Mayer KF , Messing J , Rokhsar DS
Ref : Nature , 457 :551 , 2009
Abstract : Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.
ESTHER : Paterson_2009_Nature_457_551
PubMedSearch : Paterson_2009_Nature_457_551
PubMedID: 19189423
Gene_locus related to this paper: sorbi-b3vtb2 , sorbi-c5wp75 , sorbi-c5wts6 , sorbi-c5wu07 , sorbi-c5wvl7 , sorbi-c5ww85 , sorbi-c5ww86 , sorbi-c5wxa4 , sorbi-c5x1f6 , sorbi-c5x2x9 , sorbi-c5x5z9 , sorbi-c5x6q0 , sorbi-c5x230 , sorbi-c5x290 , sorbi-c5x345 , sorbi-c5x399 , sorbi-c5x610 , sorbi-c5xbm4 , sorbi-c5xct0 , sorbi-c5xdv0 , sorbi-c5xe87 , sorbi-c5xf40 , sorbi-c5xfu9 , sorbi-c5xh40 , sorbi-c5xh41 , sorbi-c5xh42 , sorbi-c5xh43 , sorbi-c5xh44 , sorbi-c5xh46 , sorbi-c5xhr2 , sorbi-c5xiw7 , sorbi-c5xjf0 , sorbi-c5xky2 , sorbi-c5xm54 , sorbi-c5xmb9 , sorbi-c5xmz5 , sorbi-c5xp10 , sorbi-c5xpm6 , sorbi-c5xr91 , sorbi-c5xr92 , sorbi-c5xs33 , sorbi-c5xtz0 , sorbi-c5xwd3 , sorbi-c5y0d2 , sorbi-c5y0h4 , sorbi-c5y3i5 , sorbi-c5y7x0 , sorbi-c5y517 , sorbi-c5y545 , sorbi-c5ydr3 , sorbi-c5yec0 , sorbi-c5yf71 , sorbi-c5yi32 , sorbi-c5yih2 , sorbi-c5ylw6 , sorbi-c5yn66 , sorbi-c5ynp8 , sorbi-c5yt11 , sorbi-c5yur5 , sorbi-c5ywz3 , sorbi-c5ywz4 , sorbi-c5yx73 , sorbi-c5yyn0 , sorbi-c5z2m6 , sorbi-c5z6a9 , sorbi-c5z6j1 , sorbi-c5z6s5 , sorbi-c5z177 , sorbi-Q9XE80 , sorbi-c5xyg4 , sorbi-c5z4q0 , sorbi-c5xly4 , sorbi-c5z4u8 , sorbi-c5xxg5 , sorbi-c5z9b9 , sorbi-a0a1z5r970 , sorbi-c5xhf9 , sorbi-c5yxt7 , sorbi-c5yxt6 , sorbi-c5y1m2 , sorbi-c5xdy6 , sorbi-a0a194ysf6 , sorbi-a0a1b6pnr2 , sorbi-a0a1b6qcb9 , sorbi-c5xx30 , sorbi-a0a1b6psg4 , sorbi-a0a1z5rj80 , sorbi-a0a1b6qfm2 , sorbi-a0a1b6qmu5 , sorbi-c6jru0

Title : The B73 maize genome: complexity, diversity, and dynamics - Schnable_2009_Science_326_1112
Author(s) : Schnable PS , Ware D , Fulton RS , Stein JC , Wei F , Pasternak S , Liang C , Zhang J , Fulton L , Graves TA , Minx P , Reily AD , Courtney L , Kruchowski SS , Tomlinson C , Strong C , Delehaunty K , Fronick C , Courtney B , Rock SM , Belter E , Du F , Kim K , Abbott RM , Cotton M , Levy A , Marchetto P , Ochoa K , Jackson SM , Gillam B , Chen W , Yan L , Higginbotham J , Cardenas M , Waligorski J , Applebaum E , Phelps L , Falcone J , Kanchi K , Thane T , Scimone A , Thane N , Henke J , Wang T , Ruppert J , Shah N , Rotter K , Hodges J , Ingenthron E , Cordes M , Kohlberg S , Sgro J , Delgado B , Mead K , Chinwalla A , Leonard S , Crouse K , Collura K , Kudrna D , Currie J , He R , Angelova A , Rajasekar S , Mueller T , Lomeli R , Scara G , Ko A , Delaney K , Wissotski M , Lopez G , Campos D , Braidotti M , Ashley E , Golser W , Kim H , Lee S , Lin J , Dujmic Z , Kim W , Talag J , Zuccolo A , Fan C , Sebastian A , Kramer M , Spiegel L , Nascimento L , Zutavern T , Miller B , Ambroise C , Muller S , Spooner W , Narechania A , Ren L , Wei S , Kumari S , Faga B , Levy MJ , McMahan L , Van Buren P , Vaughn MW , Ying K , Yeh CT , Emrich SJ , Jia Y , Kalyanaraman A , Hsia AP , Barbazuk WB , Baucom RS , Brutnell TP , Carpita NC , Chaparro C , Chia JM , Deragon JM , Estill JC , Fu Y , Jeddeloh JA , Han Y , Lee H , Li P , Lisch DR , Liu S , Liu Z , Nagel DH , McCann MC , SanMiguel P , Myers AM , Nettleton D , Nguyen J , Penning BW , Ponnala L , Schneider KL , Schwartz DC , Sharma A , Soderlund C , Springer NM , Sun Q , Wang H , Waterman M , Westerman R , Wolfgruber TK , Yang L , Yu Y , Zhang L , Zhou S , Zhu Q , Bennetzen JL , Dawe RK , Jiang J , Jiang N , Presting GG , Wessler SR , Aluru S , Martienssen RA , Clifton SW , McCombie WR , Wing RA , Wilson RK
Ref : Science , 326 :1112 , 2009
Abstract : We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.
ESTHER : Schnable_2009_Science_326_1112
PubMedSearch : Schnable_2009_Science_326_1112
PubMedID: 19965430
Gene_locus related to this paper: maize-b4ffc7 , maize-b6u7e1 , maize-c0pcy5 , maize-c0pgf7 , maize-c0pgw1 , maize-c0pfl3 , maize-b4fpr7 , maize-k7vy73 , maize-a0a096swr3 , maize-k7v3i9 , maize-b6u9v9 , maize-a0a3l6e780 , maize-b4fv80 , maize-a0a1d6nse2 , maize-c4j9a1 , maize-k7uba1

Title : The sequence of the human genome - Venter_2001_Science_291_1304
Author(s) : Venter JC , Adams MD , Myers EW , Li PW , Mural RJ , Sutton GG , Smith HO , Yandell M , Evans CA , Holt RA , Gocayne JD , Amanatides P , Ballew RM , Huson DH , Wortman JR , Zhang Q , Kodira CD , Zheng XH , Chen L , Skupski M , Subramanian G , Thomas PD , Zhang J , Gabor Miklos GL , Nelson C , Broder S , Clark AG , Nadeau J , McKusick VA , Zinder N , Levine AJ , Roberts RJ , Simon M , Slayman C , Hunkapiller M , Bolanos R , Delcher A , Dew I , Fasulo D , Flanigan M , Florea L , Halpern A , Hannenhalli S , Kravitz S , Levy S , Mobarry C , Reinert K , Remington K , Abu-Threideh J , Beasley E , Biddick K , Bonazzi V , Brandon R , Cargill M , Chandramouliswaran I , Charlab R , Chaturvedi K , Deng Z , Di Francesco V , Dunn P , Eilbeck K , Evangelista C , Gabrielian AE , Gan W , Ge W , Gong F , Gu Z , Guan P , Heiman TJ , Higgins ME , Ji RR , Ke Z , Ketchum KA , Lai Z , Lei Y , Li Z , Li J , Liang Y , Lin X , Lu F , Merkulov GV , Milshina N , Moore HM , Naik AK , Narayan VA , Neelam B , Nusskern D , Rusch DB , Salzberg S , Shao W , Shue B , Sun J , Wang Z , Wang A , Wang X , Wang J , Wei M , Wides R , Xiao C , Yan C , Yao A , Ye J , Zhan M , Zhang W , Zhang H , Zhao Q , Zheng L , Zhong F , Zhong W , Zhu S , Zhao S , Gilbert D , Baumhueter S , Spier G , Carter C , Cravchik A , Woodage T , Ali F , An H , Awe A , Baldwin D , Baden H , Barnstead M , Barrow I , Beeson K , Busam D , Carver A , Center A , Cheng ML , Curry L , Danaher S , Davenport L , Desilets R , Dietz S , Dodson K , Doup L , Ferriera S , Garg N , Gluecksmann A , Hart B , Haynes J , Haynes C , Heiner C , Hladun S , Hostin D , Houck J , Howland T , Ibegwam C , Johnson J , Kalush F , Kline L , Koduru S , Love A , Mann F , May D , McCawley S , McIntosh T , McMullen I , Moy M , Moy L , Murphy B , Nelson K , Pfannkoch C , Pratts E , Puri V , Qureshi H , Reardon M , Rodriguez R , Rogers YH , Romblad D , Ruhfel B , Scott R , Sitter C , Smallwood M , Stewart E , Strong R , Suh E , Thomas R , Tint NN , Tse S , Vech C , Wang G , Wetter J , Williams S , Williams M , Windsor S , Winn-Deen E , Wolfe K , Zaveri J , Zaveri K , Abril JF , Guigo R , Campbell MJ , Sjolander KV , Karlak B , Kejariwal A , Mi H , Lazareva B , Hatton T , Narechania A , Diemer K , Muruganujan A , Guo N , Sato S , Bafna V , Istrail S , Lippert R , Schwartz R , Walenz B , Yooseph S , Allen D , Basu A , Baxendale J , Blick L , Caminha M , Carnes-Stine J , Caulk P , Chiang YH , Coyne M , Dahlke C , Mays A , Dombroski M , Donnelly M , Ely D , Esparham S , Fosler C , Gire H , Glanowski S , Glasser K , Glodek A , Gorokhov M , Graham K , Gropman B , Harris M , Heil J , Henderson S , Hoover J , Jennings D , Jordan C , Jordan J , Kasha J , Kagan L , Kraft C , Levitsky A , Lewis M , Liu X , Lopez J , Ma D , Majoros W , McDaniel J , Murphy S , Newman M , Nguyen T , Nguyen N , Nodell M , Pan S , Peck J , Peterson M , Rowe W , Sanders R , Scott J , Simpson M , Smith T , Sprague A , Stockwell T , Turner R , Venter E , Wang M , Wen M , Wu D , Wu M , Xia A , Zandieh A , Zhu X
Ref : Science , 291 :1304 , 2001
Abstract : A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
ESTHER : Venter_2001_Science_291_1304
PubMedSearch : Venter_2001_Science_291_1304
PubMedID: 11181995
Gene_locus related to this paper: human-AADAC , human-ABHD1 , human-ABHD10 , human-ABHD11 , human-ACHE , human-BCHE , human-LDAH , human-ABHD18 , human-CMBL , human-ABHD17A , human-KANSL3 , human-LIPA , human-LYPLAL1 , human-NDRG2 , human-NLGN3 , human-NLGN4X , human-NLGN4Y , human-PAFAH2 , human-PREPL , human-RBBP9 , human-SPG21