Collura K

References (4)

Title : Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs - Soderlund_2009_PLoS.Genet_5_e1000740
Author(s) : Soderlund C , Descour A , Kudrna D , Bomhoff M , Boyd L , Currie J , Angelova A , Collura K , Wissotski M , Ashley E , Morrow D , Fernandes J , Walbot V , Yu Y
Ref : PLoS Genet , 5 :e1000740 , 2009
Abstract : Full-length cDNA (FLcDNA) sequencing establishes the precise primary structure of individual gene transcripts. From two libraries representing 27 B73 tissues and abiotic stress treatments, 27,455 high-quality FLcDNAs were sequenced. The average transcript length was 1.44 kb including 218 bases and 321 bases of 5' and 3' UTR, respectively, with 8.6% of the FLcDNAs encoding predicted proteins of fewer than 100 amino acids. Approximately 94% of the FLcDNAs were stringently mapped to the maize genome. Although nearly two-thirds of this genome is composed of transposable elements (TEs), only 5.6% of the FLcDNAs contained TE sequences in coding or UTR regions. Approximately 7.2% of the FLcDNAs are putative transcription factors, suggesting that rare transcripts are well-enriched in our FLcDNA set. Protein similarity searching identified 1,737 maize transcripts not present in rice, sorghum, Arabidopsis, or poplar annotated genes. A strict FLcDNA assembly generated 24,467 non-redundant sequences, of which 88% have non-maize protein matches. The FLcDNAs were also assembled with 41,759 FLcDNAs in GenBank from other projects, where semi-strict parameters were used to identify 13,368 potentially unique non-redundant sequences from this project. The libraries, ESTs, and FLcDNA sequences produced from this project are publicly available. The annotated EST and FLcDNA assemblies are available through the maize FLcDNA web resource (www.maizecdna.org).
ESTHER : Soderlund_2009_PLoS.Genet_5_e1000740
PubMedSearch : Soderlund_2009_PLoS.Genet_5_e1000740
PubMedID: 19936069
Gene_locus related to this paper: maize-b4f9i1 , maize-b4fc42 , maize-b6t9i6 , maize-b6thh6 , maize-b6u7e1 , maize-b8a0f2 , maize-c0hfi7 , maize-c0hhb1 , maize-c0hhp4 , maize-c0pa79 , maize-b4feg9 , maize-c0pfl3 , maize-b4fpr7 , maize-b4f869 , maize-b4fqc9 , maize-b6svg4 , maize-b4fd83 , maize-b4fv80 , maize-b4fpy6 , maize-c4j9a1 , maize-c0hfy3

Title : The B73 maize genome: complexity, diversity, and dynamics - Schnable_2009_Science_326_1112
Author(s) : Schnable PS , Ware D , Fulton RS , Stein JC , Wei F , Pasternak S , Liang C , Zhang J , Fulton L , Graves TA , Minx P , Reily AD , Courtney L , Kruchowski SS , Tomlinson C , Strong C , Delehaunty K , Fronick C , Courtney B , Rock SM , Belter E , Du F , Kim K , Abbott RM , Cotton M , Levy A , Marchetto P , Ochoa K , Jackson SM , Gillam B , Chen W , Yan L , Higginbotham J , Cardenas M , Waligorski J , Applebaum E , Phelps L , Falcone J , Kanchi K , Thane T , Scimone A , Thane N , Henke J , Wang T , Ruppert J , Shah N , Rotter K , Hodges J , Ingenthron E , Cordes M , Kohlberg S , Sgro J , Delgado B , Mead K , Chinwalla A , Leonard S , Crouse K , Collura K , Kudrna D , Currie J , He R , Angelova A , Rajasekar S , Mueller T , Lomeli R , Scara G , Ko A , Delaney K , Wissotski M , Lopez G , Campos D , Braidotti M , Ashley E , Golser W , Kim H , Lee S , Lin J , Dujmic Z , Kim W , Talag J , Zuccolo A , Fan C , Sebastian A , Kramer M , Spiegel L , Nascimento L , Zutavern T , Miller B , Ambroise C , Muller S , Spooner W , Narechania A , Ren L , Wei S , Kumari S , Faga B , Levy MJ , McMahan L , Van Buren P , Vaughn MW , Ying K , Yeh CT , Emrich SJ , Jia Y , Kalyanaraman A , Hsia AP , Barbazuk WB , Baucom RS , Brutnell TP , Carpita NC , Chaparro C , Chia JM , Deragon JM , Estill JC , Fu Y , Jeddeloh JA , Han Y , Lee H , Li P , Lisch DR , Liu S , Liu Z , Nagel DH , McCann MC , SanMiguel P , Myers AM , Nettleton D , Nguyen J , Penning BW , Ponnala L , Schneider KL , Schwartz DC , Sharma A , Soderlund C , Springer NM , Sun Q , Wang H , Waterman M , Westerman R , Wolfgruber TK , Yang L , Yu Y , Zhang L , Zhou S , Zhu Q , Bennetzen JL , Dawe RK , Jiang J , Jiang N , Presting GG , Wessler SR , Aluru S , Martienssen RA , Clifton SW , McCombie WR , Wing RA , Wilson RK
Ref : Science , 326 :1112 , 2009
Abstract : We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.
ESTHER : Schnable_2009_Science_326_1112
PubMedSearch : Schnable_2009_Science_326_1112
PubMedID: 19965430
Gene_locus related to this paper: maize-b4ffc7 , maize-b6u7e1 , maize-c0pcy5 , maize-c0pgf7 , maize-c0pgw1 , maize-c0pfl3 , maize-b4fpr7 , maize-k7vy73 , maize-a0a096swr3 , maize-k7v3i9 , maize-b6u9v9 , maize-a0a3l6e780 , maize-b4fv80 , maize-a0a1d6nse2 , maize-c4j9a1 , maize-k7uba1

Title : Dynamic evolution of oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set - Ammiraju_2008_Plant.Cell_20_3191
Author(s) : Ammiraju JS , Lu F , Sanyal A , Yu Y , Song X , Jiang N , Pontaroli AC , Rambo T , Currie J , Collura K , Talag J , Fan C , Goicoechea JL , Zuccolo A , Chen J , Bennetzen JL , Chen M , Jackson S , Wing RA
Ref : Plant Cell , 20 :3191 , 2008
Abstract : Oryza (23 species; 10 genome types) contains the world's most important food crop - rice. Although the rice genome serves as an essential tool for biological research, little is known about the evolution of the other Oryza genome types. They contain a historical record of genomic changes that led to diversification of this genus around the world as well as an untapped reservoir of agriculturally important traits. To investigate the evolution of the collective Oryza genome, we sequenced and compared nine orthologous genomic regions encompassing the Adh1-Adh2 genes (from six diploid genome types) with the rice reference sequence. Our analysis revealed the architectural complexities and dynamic evolution of this region that have occurred over the past approximately 15 million years. Of the 46 intact genes and four pseudogenes in the japonica genome, 38 (76%) fell into eight multigene families. Analysis of the evolutionary history of each family revealed independent and lineage-specific gain and loss of gene family members as frequent causes of synteny disruption. Transposable elements were shown to mediate massive replacement of intergenic space (>95%), gene disruption, and gene/gene fragment movement. Three cases of long-range structural variation (inversions/deletions) spanning several hundred kilobases were identified that contributed significantly to genome diversification.
ESTHER : Ammiraju_2008_Plant.Cell_20_3191
PubMedSearch : Ammiraju_2008_Plant.Cell_20_3191
PubMedID: 19098269

Title : Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species - Buell_2005_Genome.Res_15_1284
Author(s) : Buell CR , Yuan Q , Ouyang S , Liu J , Zhu W , Wang A , Maiti R , Haas B , Wortman J , Pertea M , Jones KM , Kim M , Overton L , Tsitrin T , Fadrosh D , Bera J , Weaver B , Jin S , Johri S , Reardon M , Webb K , Hill J , Moffat K , Tallon L , Van Aken S , Lewis M , Utterback T , Feldblyum T , Zismann V , Iobst S , Hsiao J , de Vazeille AR , Salzberg SL , White O , Fraser C , Yu Y , Kim H , Rambo T , Currie J , Collura K , Kernodle-Thompson S , Wei F , Kudrna K , Ammiraju JS , Luo M , Goicoechea JL , Wing RA , Henry D , Oates R , Palmer M , Pries G , Saski C , Simmons J , Soderlund C , Nelson W , de la Bastide M , Spiegel L , Nascimento L , Huang E , Preston R , Zutavern T , Palmer LE , O'Shaughnessy A , Dike S , McCombie WR , Minx P , Cordum H , Wilson R , Jin W , Lee HR , Jiang J , Jackson S
Ref : Genome Res , 15 :1284 , 2005
Abstract : Rice (Oryza sativa L.) chromosome 3 is evolutionarily conserved across the cultivated cereals and shares large blocks of synteny with maize and sorghum, which diverged from rice more than 50 million years ago. To begin to completely understand this chromosome, we sequenced, finished, and annotated 36.1 Mb ( approximately 97%) from O. sativa subsp. japonica cv Nipponbare. Annotation features of the chromosome include 5915 genes, of which 913 are related to transposable elements. A putative function could be assigned to 3064 genes, with another 757 genes annotated as expressed, leaving 2094 that encode hypothetical proteins. Similarity searches against the proteome of Arabidopsis thaliana revealed putative homologs for 67% of the chromosome 3 proteins. Further searches of a nonredundant amino acid database, the Pfam domain database, plant Expressed Sequence Tags, and genomic assemblies from sorghum and maize revealed only 853 nontransposable element related proteins from chromosome 3 that lacked similarity to other known sequences. Interestingly, 426 of these have a paralog within the rice genome. A comparative physical map of the wild progenitor species, Oryza nivara, with japonica chromosome 3 revealed a high degree of sequence identity and synteny between these two species, which diverged approximately 10,000 years ago. Although no major rearrangements were detected, the deduced size of the O. nivara chromosome 3 was 21% smaller than that of japonica. Synteny between rice and other cereals using an integrated maize physical map and wheat genetic map was strikingly high, further supporting the use of rice and, in particular, chromosome 3, as a model for comparative studies among the cereals.
ESTHER : Buell_2005_Genome.Res_15_1284
PubMedSearch : Buell_2005_Genome.Res_15_1284
PubMedID: 16109971
Gene_locus related to this paper: orysa-Q852M6 , orysa-Q8S5X5 , orysa-Q84QZ6 , orysa-Q84QY7 , orysa-Q851E3 , orysa-q6ave2 , orysj-cgep , orysj-q0dud7 , orysj-q10j20 , orysj-q10ss2