Nelson W

References (7)

Title : Genome sequence of the palaeopolyploid soybean - Schmutz_2010_Nature_463_178
Author(s) : Schmutz J , Cannon SB , Schlueter J , Ma J , Mitros T , Nelson W , Hyten DL , Song Q , Thelen JJ , Cheng J , Xu D , Hellsten U , May GD , Yu Y , Sakurai T , Umezawa T , Bhattacharyya MK , Sandhu D , Valliyodan B , Lindquist E , Peto M , Grant D , Shu S , Goodstein D , Barry K , Futrell-Griggs M , Abernathy B , Du J , Tian Z , Zhu L , Gill N , Joshi T , Libault M , Sethuraman A , Zhang XC , Shinozaki K , Nguyen HT , Wing RA , Cregan P , Specht J , Grimwood J , Rokhsar D , Stacey G , Shoemaker RC , Jackson SA
Ref : Nature , 463 :178 , 2010
Abstract : Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.
ESTHER : Schmutz_2010_Nature_463_178
PubMedSearch : Schmutz_2010_Nature_463_178
PubMedID: 20075913
Gene_locus related to this paper: soybn-c6t4m5 , soybn-c6t4p4 , soybn-c6tav4 , soybn-c6tdf9 , soybn-c6tiz7 , soybn-c6tmg3 , soybn-i1jgq5 , soybn-i1kpj2 , soybn-i1kwe7 , soybn-i1l7e3 , soybn-i1l497 , soybn-i1ll09 , soybn-i1lpi4 , soybn-i1jcw2 , soybn-i1jcw3 , soybn-i1jcw4 , soybn-i1jcw7 , soybn-i1k217 , soybn-i1kfz3 , soybn-i1lhi0 , soybn-k7k6s4 , soybn-i1jtw1 , soybn-c6tas4 , soybn-i1m910 , soybn-c6t7k8 , soybn-i1k636 , soybn-i1kju7 , soybn-i1j4c6 , soybn-i1lbk2 , soybn-i1jqy5 , soybn-i1nbj8 , soybn-i1j855 , soybn-i1l5a3 , soybn-k7mt28 , soybn-i1lau7 , soybn-i1lay0 , soybn-i1net3 , soybn-i1jr09 , soybn-i1ms08 , soybn-i1mmh5 , soybn-i1mly5 , soybn-i1mmh3 , soybn-i1mmh4 , soybn-i1ngu7 , soybn-k7ll20 , soybn-i1mly4 , soybn-a0a0r0i9y7 , soybn-a0a0r0j241 , soybn-i1les8 , soybn-k7n313 , soybn-i1kfj1 , soybn-a0a0r0k7x4 , soybn-i1ly30 , soybn-i1mwr8 , soybn-i1kfg5 , soybn-i1kly2 , soybn-a0a0r0ixi2 , soybn-i1jew0 , glyso-a0a445l5n1 , soybn-i1kfz9 , soybn-i1jqs1 , soybn-i1nbc7 , soybn-k7mm57 , soybn-a0a0r0fec7 , soybn-a0a0r0hcn9 , soybn-i1jx17 , soybn-k7kvv2 , soybn-i1kcl6 , soybn-i1kcl7 , soybn-i1jrc3 , soybn-i1nbz1 , soybn-a0a0r0euk2 , soybn-a0a0r0fx16 , soybn-a0a0r0k3t3 , soybn-i1kuc7 , soybn-i1lvy4

Title : Comparative genomics of emerging human ehrlichiosis agents - Dunning Hotopp_2006_PLoS.Genet_2_e21
Author(s) : Dunning Hotopp JC , Lin M , Madupu R , Crabtree J , Angiuoli SV , Eisen JA , Seshadri R , Ren Q , Wu M , Utterback TR , Smith S , Lewis M , Khouri H , Zhang C , Niu H , Lin Q , Ohashi N , Zhi N , Nelson W , Brinkac LM , Dodson RJ , Rosovitz MJ , Sundaram J , Daugherty SC , Davidsen T , Durkin AS , Gwinn M , Haft DH , Selengut JD , Sullivan SA , Zafar N , Zhou L , Benahmed F , Forberger H , Halpin R , Mulligan S , Robinson J , White O , Rikihisa Y , Tettelin H
Ref : PLoS Genet , 2 :e21 , 2006
Abstract : Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.
ESTHER : Dunning Hotopp_2006_PLoS.Genet_2_e21
PubMedSearch : Dunning Hotopp_2006_PLoS.Genet_2_e21
PubMedID: 16482227
Gene_locus related to this paper: anapz-q2gj80 , anapz-q2gle9 , anapz-q2glf0 , anapz-q2gln7 , ehrch-q40iu0 , ehrch-q40jj7 , ehrcr-q2gfq9 , neosm-q2gcq8 , neosm-q2gdf2 , neosm-q2gcn8 , anapz-q2gk48 , ehrcr-q2ggj6

Title : Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species - Buell_2005_Genome.Res_15_1284
Author(s) : Buell CR , Yuan Q , Ouyang S , Liu J , Zhu W , Wang A , Maiti R , Haas B , Wortman J , Pertea M , Jones KM , Kim M , Overton L , Tsitrin T , Fadrosh D , Bera J , Weaver B , Jin S , Johri S , Reardon M , Webb K , Hill J , Moffat K , Tallon L , Van Aken S , Lewis M , Utterback T , Feldblyum T , Zismann V , Iobst S , Hsiao J , de Vazeille AR , Salzberg SL , White O , Fraser C , Yu Y , Kim H , Rambo T , Currie J , Collura K , Kernodle-Thompson S , Wei F , Kudrna K , Ammiraju JS , Luo M , Goicoechea JL , Wing RA , Henry D , Oates R , Palmer M , Pries G , Saski C , Simmons J , Soderlund C , Nelson W , de la Bastide M , Spiegel L , Nascimento L , Huang E , Preston R , Zutavern T , Palmer LE , O'Shaughnessy A , Dike S , McCombie WR , Minx P , Cordum H , Wilson R , Jin W , Lee HR , Jiang J , Jackson S
Ref : Genome Res , 15 :1284 , 2005
Abstract : Rice (Oryza sativa L.) chromosome 3 is evolutionarily conserved across the cultivated cereals and shares large blocks of synteny with maize and sorghum, which diverged from rice more than 50 million years ago. To begin to completely understand this chromosome, we sequenced, finished, and annotated 36.1 Mb ( approximately 97%) from O. sativa subsp. japonica cv Nipponbare. Annotation features of the chromosome include 5915 genes, of which 913 are related to transposable elements. A putative function could be assigned to 3064 genes, with another 757 genes annotated as expressed, leaving 2094 that encode hypothetical proteins. Similarity searches against the proteome of Arabidopsis thaliana revealed putative homologs for 67% of the chromosome 3 proteins. Further searches of a nonredundant amino acid database, the Pfam domain database, plant Expressed Sequence Tags, and genomic assemblies from sorghum and maize revealed only 853 nontransposable element related proteins from chromosome 3 that lacked similarity to other known sequences. Interestingly, 426 of these have a paralog within the rice genome. A comparative physical map of the wild progenitor species, Oryza nivara, with japonica chromosome 3 revealed a high degree of sequence identity and synteny between these two species, which diverged approximately 10,000 years ago. Although no major rearrangements were detected, the deduced size of the O. nivara chromosome 3 was 21% smaller than that of japonica. Synteny between rice and other cereals using an integrated maize physical map and wheat genetic map was strikingly high, further supporting the use of rice and, in particular, chromosome 3, as a model for comparative studies among the cereals.
ESTHER : Buell_2005_Genome.Res_15_1284
PubMedSearch : Buell_2005_Genome.Res_15_1284
PubMedID: 16109971
Gene_locus related to this paper: orysa-Q852M6 , orysa-Q8S5X5 , orysa-Q84QZ6 , orysa-Q84QY7 , orysa-Q851E3 , orysa-q6ave2 , orysj-cgep , orysj-q0dud7 , orysj-q10j20 , orysj-q10ss2

Title : Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis - Paulsen_2003_Science_299_2071
Author(s) : Paulsen IT , Banerjei L , Myers GS , Nelson KE , Seshadri R , Read TD , Fouts DE , Eisen JA , Gill SR , Heidelberg JF , Tettelin H , Dodson RJ , Umayam L , Brinkac L , Beanan M , Daugherty S , DeBoy RT , Durkin S , Kolonay J , Madupu R , Nelson W , Vamathevan J , Tran B , Upton J , Hansen T , Shetty J , Khouri H , Utterback T , Radune D , Ketchum KA , Dougherty BA , Fraser CM
Ref : Science , 299 :2071 , 2003
Abstract : The complete genome sequence of Enterococcus faecalis V583, a vancomycin-resistant clinical isolate, revealed that more than a quarter of the genome consists of probable mobile or foreign DNA. One of the predicted mobile elements is a previously unknown vanB vancomycin-resistance conjugative transposon. Three plasmids were identified, including two pheromone-sensing conjugative plasmids, one encoding a previously undescribed pheromone inhibitor. The apparent propensity for the incorporation of mobile elements probably contributed to the rapid acquisition and dissemination of drug resistance in the enterococci.
ESTHER : Paulsen_2003_Science_299_2071
PubMedSearch : Paulsen_2003_Science_299_2071
PubMedID: 12663927
Gene_locus related to this paper: entfa-EF0101 , entfa-EF0274 , entfa-EF0381 , entfa-EF0449 , entfa-EF0667 , entfa-EF0786 , entfa-EF1028 , entfa-EF1236 , entfa-EF1505 , entfa-EF1536 , entfa-EF1670 , entfa-EF2618 , entfa-EF2728 , entfa-EF2792 , entfa-EF2963 , entfa-EF3191

Title : Genome of Geobacter sulfurreducens: metal reduction in subsurface environments - Methe_2003_Science_302_1967
Author(s) : Methe BA , Nelson KE , Eisen JA , Paulsen IT , Nelson W , Heidelberg JF , Wu D , Wu M , Ward N , Beanan MJ , Dodson RJ , Madupu R , Brinkac LM , Daugherty SC , DeBoy RT , Durkin AS , Gwinn M , Kolonay JF , Sullivan SA , Haft DH , Selengut J , Davidsen TM , Zafar N , White O , Tran B , Romero C , Forberger HA , Weidman J , Khouri H , Feldblyum TV , Utterback TR , Van Aken SE , Lovley DR , Fraser CM
Ref : Science , 302 :1967 , 2003
Abstract : The complete genome sequence of Geobacter sulfurreducens, a delta-proteobacterium, reveals unsuspected capabilities, including evidence of aerobic metabolism, one-carbon and complex carbon metabolism, motility, and chemotactic behavior. These characteristics, coupled with the possession of many two-component sensors and many c-type cytochromes, reveal an ability to create alternative, redundant, electron transport networks and offer insights into the process of metal ion reduction in subsurface environments. As well as playing roles in the global cycling of metals and carbon, this organism clearly has the potential for use in bioremediation of radioactive metals and in the generation of electricity.
ESTHER : Methe_2003_Science_302_1967
PubMedSearch : Methe_2003_Science_302_1967
PubMedID: 14671304
Gene_locus related to this paper: geosl-q74a54 , geosl-q74ac8 , geosl-q74eb1 , geosl-q747u4 , geosl-q747v8 , geosl-q749w4

Title : Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440 - Nelson_2002_Environ.Microbiol_4_799
Author(s) : Nelson KE , Weinel C , Paulsen IT , Dodson RJ , Hilbert H , Martins dos Santos VA , Fouts DE , Gill SR , Pop M , Holmes M , Brinkac L , Beanan M , DeBoy RT , Daugherty S , Kolonay J , Madupu R , Nelson W , White O , Peterson J , Khouri H , Hance I , Chris Lee P , Holtzapple E , Scanlan D , Tran K , Moazzez A , Utterback T , Rizzo M , Lee K , Kosack D , Moestl D , Wedler H , Lauber J , Stjepandic D , Hoheisel J , Straetz M , Heim S , Kiewitz C , Eisen JA , Timmis KN , Dusterhoft A , Tummler B , Fraser CM
Ref : Environ Microbiol , 4 :799 , 2002
Abstract : Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.
ESTHER : Nelson_2002_Environ.Microbiol_4_799
PubMedSearch : Nelson_2002_Environ.Microbiol_4_799
PubMedID: 12534463
Gene_locus related to this paper: psep1-a5wa77 , psep1-a5wax1 , psepk-q88nk6 , psepk-q88qt0 , psepu-acoc , psepu-BIOH , psepu-bpest , psepu-ESTB , psepu-LIP , psepu-METX , psepu-PHAC1 , psepu-PHAC2 , psepu-PHAG , psepu-PHAZ , psepu-PIP , psepu-PP0375 , psepu-PP0498 , psepu-PP0532 , psepu-PP1064 , psepu-PP1184 , psepu-PP1310 , psepu-PP1500 , psepu-PP1617 , psepu-PP1829 , psepu-PP1979 , psepu-PP2083 , psepu-PP2201 , psepu-PP2236 , psepu-PP2567 , psepu-PP2804 , psepu-PP2934 , psepu-PP3195 , psepu-PP3367 , psepu-PP3404 , psepu-PP3645 , psepu-PP3807 , psepu-PP3812 , psepu-PP3943 , psepu-PP4164 , psepu-PP4165 , psepu-PP4178 , psepu-PP4249 , psepu-PP4540 , psepu-PP4551 , psepu-PP4583 , psepu-PP4624 , psepu-PP4634 , psepu-PP4916 , psepu-PP5117 , psepu-PP5161 , psepu-PP5167 , psepu-PPSD , psepu-Q8KQK1 , psepu-q9wwz4

Title : Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39 - Read_2000_Nucleic.Acids.Res_28_1397
Author(s) : Read TD , Brunham RC , Shen C , Gill SR , Heidelberg JF , White O , Hickey EK , Peterson J , Utterback T , Berry K , Bass S , Linher K , Weidman J , Khouri H , Craven B , Bowman C , Dodson R , Gwinn M , Nelson W , Deboy R , Kolonay J , McClarty G , Salzberg SL , Eisen J , Fraser CM
Ref : Nucleic Acids Research , 28 :1397 , 2000
Abstract : The genome sequences of Chlamydia trachomatis mouse pneumonitis (MoPn) strain Nigg (1 069 412 nt) and Chlamydia pneumoniae strain AR39 (1 229 853 nt) were determined using a random shotgun strategy. The MoPn genome exhibited a general conservation of gene order and content with the previously sequenced C.trachomatis serovar D. Differences between C.trachomatis strains were focused on an approximately 50 kb 'plasticity zone' near the termination origins. In this region MoPn contained three copies of a novel gene encoding a >3000 amino acid toxin homologous to a predicted toxin from Escherichia coli O157:H7 but had apparently lost the tryptophan biosyntheis genes found in serovar D in this region. The C. pneumoniae AR39 chromosome was >99.9% identical to the previously sequenced C.pneumoniae CWL029 genome, however, comparative analysis identified an invertible DNA segment upstream of the uridine kinase gene which was in different orientations in the two genomes. AR39 also contained a novel 4524 nt circular single-stranded (ss)DNA bacteriophage, the first time a virus has been reported infecting C. pneumoniae. Although the chlamydial genomes were highly conserved, there were intriguing differences in key nucleotide salvage pathways: C.pneumoniae has a uridine kinase gene for dUTP production, MoPn has a uracil phosphororibosyl transferase, while C.trachomatis serovar D contains neither gene. Chromosomal comparison revealed that there had been multiple large inversion events since the species divergence of C.trachomatis and C.pneumoniae, apparently oriented around the axis of the origin of replication and the termination region. The striking synteny of the Chlamydia genomes and prevalence of tandemly duplicated genes are evidence of minimal chromosome rearrangement and foreign gene uptake, presumably owing to the ecological isolation of the obligate intracellular parasites. In the absence of genetic analysis, comparative genomics will continue to provide insight into the virulence mechanisms of these important human pathogens.
ESTHER : Read_2000_Nucleic.Acids.Res_28_1397
PubMedSearch : Read_2000_Nucleic.Acids.Res_28_1397
PubMedID: 10684935
Gene_locus related to this paper: chlmu-TC0345 , chlmu-TC0413 , chlmu-TC0426 , chlmu-TC0478 , chlpn-CPJ0152 , chlpn-CPJ0342 , chlpn-CPN0161 , chlpn-CPN0271 , chlpn-q9jrv1 , chlpn-q9js10 , chlpn-q9k1u7 , chlpn-q9z6x9