Cai X

References (27)

Title : Ganodermanontriol Suppresses the Progression of Lung Adenocarcinoma by Activating CES2 to Enhance the Metabolism of Mycophenolate Mofetil - Xie_2024_J.Microbiol.Biotechnol_34_249
Author(s) : Xie Q , Cao Z , You W , Cai X , Shen M , Yin Z , Jiang Y , Wang X , Ye S
Ref : J Microbiol Biotechnol , 34 :249 , 2024
Abstract : New anti-lung cancer therapies are urgently required to improve clinical outcomes. Since ganodermanontriol (GDNT) has been identified as a potential antineoplastic agent, its role in lung adenocarcinoma (LUAD) is investigated in this study. Concretely, lung cancer cells were treated with GDNT and/or mycophenolate mofetil (MMF), after which MTT assay, flow cytometry and Western blot were conducted. Following bioinformatics analysis, carboxylesterase 2 (CES2) was knocked down and rescue assays were carried out in vitro. Xenograft experiment was performed on mice, followed by drug administration, measurement of tumor growth and determination of CES2, IMPDH1 and IMPDH2 expressions. As a result, the viability of lung cancer cells was reduced by GDNT or MMF. GDNT enhanced the effects of MMF on suppressing viability, promoting apoptosis and inducing cell cycle arrest in lung cancer cells. GDNT up-regulated CES2 level, and strengthened the effects of MMF on down-regulating IMPDH1 and IMPDH2 levels in the cells. IMPDH1 and IMPDH2 were highly expressed in LUAD samples. CES2 was a potential target for GDNT. CES2 knockdown reversed the synergistic effect of GDNT and MMF against lung cancer in vitro. GDNT potentiated the role of MMF in inhibiting tumor growth and expressions of CES2 and IMPDH1/2 in lung cancer in vivo. Collectively, GDNT suppresses the progression of LUAD by activating CES2 to enhance the metabolism of MMF.
ESTHER : Xie_2024_J.Microbiol.Biotechnol_34_249
PubMedSearch : Xie_2024_J.Microbiol.Biotechnol_34_249
PubMedID: 38419324

Title : Clinical and genetic characteristics of CEL-MODY (MODY8): a literature review and screening in Chinese individuals diagnosed with early-onset type 2 diabetes - Sun_2023_Endocrine__
Author(s) : Sun S , Gong S , Li M , Wang X , Wang F , Cai X , Liu W , Luo Y , Zhang S , Zhang R , Zhou L , Zhu Y , Ma Y , Ren Q , Zhang X , Chen J , Chen L , Wu J , Gao L , Zhou X , Li Y , Zhong L , Han X , Ji L
Ref : Endocrine , : , 2023
Abstract : OBJECTIVE: CEL-related maturity-onset diabetes of the young (CEL-MODY, MODY8) is a special type of monogenetic diabetes caused by mutations in the carboxyl-ester lipase (CEL) gene. This study aimed to summarize the genetic and clinical characteristics of CEL-MODY patients and to determine the prevalence of the disease among Chinese patients with early-onset type 2 diabetes (EOD). METHODS: We systematically reviewed the literature associated with CEL-MODY in PubMed, Embase, Web of Science, China National Knowledge Infrastructure and Wanfang Data to analyze the features of patients with CEL-MODY. We screened and evaluated rare variants of the CEL gene in a cohort of 679 Chinese patients with EOD to estimate the prevalence of CEL-MODY in China. RESULTS: In total, 21 individuals reported in previous studies were diagnosed with CEL-MODY based on the combination of diabetes and pancreatic exocrine dysfunction as well as frameshift mutations in exon 11 of the CEL gene. CEL-MODY patients were nonobese and presented with exocrine pancreatic affection (e.g., chronic pancreatitis, low fecal elastase levels, pancreas atrophy and lipomatosis) followed by insulin-dependent diabetes. No carriers of CEL missense mutations were reported with exocrine pancreatic dysfunction. Sequencing of CEL in Chinese EOD patients led to the identification of the variant p.Val736Cysfs*22 in two patients. However, these patients could not be diagnosed with CEL-MODY because there were no signs that the exocrine pancreas was afflicted. CONCLUSION: CEL-MODY is a very rare disease caused by frameshift mutations affecting the proximal VNTR segments of the CEL gene. Signs of exocrine pancreatic dysfunction provide diagnostic clues for CEL-MODY, and genetic testing is vital for proper diagnosis. Further research in larger cohorts is needed to investigate the characteristics and prevalence of CEL-MODY in the Chinese population.
ESTHER : Sun_2023_Endocrine__
PubMedSearch : Sun_2023_Endocrine__
PubMedID: 37726640

Title : Didepside Formation by the Nonreducing Polyketide Synthase Preu6 of Preussia isomera Requires Interaction of Starter Acyl Transferase and Thioesterase Domains - Liu_2023_Angew.Chem.Int.Ed.Engl_62_e202214379
Author(s) : Liu Q , Zhang D , Gao S , Cai X , Yao M , Xu Y , Gong Y , Zheng K , Mao Y , Yang L , Yang D , Molnar I , Yang X
Ref : Angew Chem Int Ed Engl , 62 :e202214379 , 2023
Abstract : Orsellinic acid (OA) derivatives are produced by filamentous fungi using nonreducing polyketide synthases (nrPKSs). The chain-releasing thioesterase (TE) domains of such nrPKSs were proposed to also catalyze dimerization to yield didepsides, such as lecanoric acid. Here, we use combinatorial domain exchanges, domain dissections and reconstitutions to reveal that the TE domain of the lecanoric acid synthase Preu6 of Preussia isomera must collaborate with the starter acyl transferase (SAT) domain from the same nrPKS. We show that artificial SAT-TE fusion proteins are highly effective catalysts and reprogram the ketide homologation chassis to form didepsides. We also demonstrate that dissected SAT and TE domains of Preu6 physically interact, and SAT and TE domains of OA-synthesizing nrPKSs may co-evolve. Our work highlights an unexpected domain-domain interaction in nrPKSs that must be considered for the combinatorial biosynthesis of unnatural didepsides, depsidones, and diphenyl ethers.
ESTHER : Liu_2023_Angew.Chem.Int.Ed.Engl_62_e202214379
PubMedSearch : Liu_2023_Angew.Chem.Int.Ed.Engl_62_e202214379
PubMedID: 36484777
Gene_locus related to this paper: preis-preu6

Title : The effects of carvacrol on development and gene expression profiles in Spodoptera frugiperda - Liu_2023_Pestic.Biochem.Physiol_195_105539
Author(s) : Liu J , Lin Y , Huang Y , Liu L , Cai X , Lin J , Shu B
Ref : Pestic Biochem Physiol , 195 :105539 , 2023
Abstract : The fall armyworm, Spodoptera frugiperda, is a highly polyphagous agricultural pest that is widely distributed around the world and causes severe crop yield loss. Carvacrol showed adverse effects on many pests, such as larval death and growth inhibition. While the effects of carvacrol on S. frugiperda larvae are not yet known. In this study, the effects of carvacrol on S. frugiperda, including larval growth inhibition and mortality induction, were observed. The detoxification and digestive enzyme activities of larvae with 1.0 and 2.0 g/kg carvacrol treatments were analyzed. Carvacrol boosted the enzyme activities of carboxylesterase (CarE) and glutathione S-transferase (GST) while decreasing the activities of alpha-amylase (AMS), lipase (LIP), and trypsin. A total of 3422 differentially expressed genes were identified in the larvae treated with 2.0 g/kg carvacrol, of which the DEGs involved in xenobiotic detoxification, food digestion, and insecticidal targets were further examined. These results suggest that carvacrol could regulate growth and development by affecting the process of food digestion, and exert its toxicity on the larvae through interaction with a variety of insecticidal targets. While the altered expressions of detoxification enzymes might be related to the detoxification and metabolism of carvacrol. Our findings offer a theoretical foundation for the use of carvacrol for S. frugiperda control in the field.
ESTHER : Liu_2023_Pestic.Biochem.Physiol_195_105539
PubMedSearch : Liu_2023_Pestic.Biochem.Physiol_195_105539
PubMedID: 37666589

Title : Genome wide identification of GDSL gene family explores a novel GhirGDSL26 gene enhancing drought stress tolerance in cotton - Liu_2023_BMC.Plant.Biol_23_14
Author(s) : Liu J , Wang H , Khan A , Xu Y , Hou Y , Wang Y , Zhou Z , Zheng J , Liu F , Cai X
Ref : BMC Plant Biol , 23 :14 , 2023
Abstract : BACKGROUND: Current climate change scenarios are posing greater threats to the growth and development of plants. Thus, significant efforts are required that can mitigate the negative effects of drought on the cotton plant. GDSL esterase/lipases can offer an imperative role in plant development and stress tolerance. However, thesystematic and functional roles of the GDSL gene family, particularly in cotton under water deficit conditions have not yet been explored. RESULTS: In this study, 103, 103, 99, 198, 203, 239, 249, and 215 GDSL proteins were identified in eight cotton genomes i.e., Gossypium herbaceum (A1), Gossypium arboretum (A2), Gossypium raimondii (D5), Gossypium hirsutum (AD1), Gossypium barbadense (AD2), Gossypium tomentosum (AD3), Gossypium mustelinum (AD4), Gossypium darwinii (AD5), respectively. A total of 198 GDSL genes of Gossypium hirsutum were divided into eleven clades using phylogenetic analysis, and the number of GhirGDSL varied among different clades. The cis-elements analysis showed that GhirGDSL gene expression was mainly related to light, plant hormones, and variable tense environments. Combining the results of transcriptome and RT-qPCR, GhirGDSL26 (Gh_A01G1774), a highly up-regulated gene, was selected for further elucidating its tole in drought stress tolerance via estimating physiological and biochemical parameters. Heterologous expression of the GhirGDSL26 gene in Arabidopsis thaliana resulted in a higher germination and survival rates, longer root lengths, lower ion leakage and induced stress-responsive genes expression under drought stress. This further highlighted that overexpressed plants had a better drought tolerance as compared to the wildtype plants. Moreover, 3, 3'-diaminobenzidine (DAB) and Trypan staining results indicated reduced oxidative damage, less cell membrane damage, and lower ion leakage in overexpressed plants as compared to wild type. Silencing of GhirGDSL26 in cotton via VIGS resulting in a susceptible phenotype, higher MDA and H(2)O(2) contents, lower SOD activity, and proline content. CONCLUSION: Our results demonstrated that GhirGDSL26 plays a critical role in cotton drought stress tolerance. Current findings enrich our knowledge of GDSL genes in cotton and provide theoretical guidance and excellent gene resources for improving drought tolerance in cotton.
ESTHER : Liu_2023_BMC.Plant.Biol_23_14
PubMedSearch : Liu_2023_BMC.Plant.Biol_23_14
PubMedID: 36609252

Title : GehB Inactivates Lipoproteins to Delay the Healing of Acute Wounds Infected with Staphylococcus aureus - Wang_2023_Curr.Microbiol_81_36
Author(s) : Wang K , Cai X , Rao Y , Liu L , Hu Z , Peng H , Wang Y , Yang Y , Rao X , Nie K , Shang W
Ref : Curr Microbiol , 81 :36 , 2023
Abstract : Staphylococcus aureus is one of the most prevalent bacteria found in acute wounds. S. aureus produces many virulence factors and extracellular enzymes that contribute to bacterial survival, dissemination, and pathogenicity. Lipase GehB is a glycerol ester hydrolase that hydrolyzes triglycerides to facilitate the evasion of S. aureus from host immune recognition. However, the role and mechanism of lipase GehB in skin acute wound healing after S. aureus infection remain unclear. In this study, we found that the gehB gene deletion mutant (USA300deltagehB) stimulated significantly higher levels of pro-inflammatory cytokines in RAW264.7 and Toll-like receptor 2 (TLR2)-transfected HEK293 cells than the wild-type USA300 strain did. Recombinant GehB-His treated lipoprotein (Lpp) reduced stimulation of TLR2-dependent TNF-alpha production by RAW264.7 macrophages. GehB delayed the skin acute wound healing in BALB/c mice infected with S. aureus, while wound healing was similar in C57BL/6 TLR2(-/-) mice infected with either wild-type USA300 or USA300deltagehB. In BALB/c mice, we also observed more bacterial survival, less leukocyte recruitment, lower IL-8 production, and adipocyte differentiation in USA300-infected skin acute wound tissues than those in USA300deltagehB-challenged ones. Our data indicated that GehB inactivates lipoproteins to shield S. aureus from innate immune killing, resulting in delayed the healing of skin acute wounds infected with S. aureus.
ESTHER : Wang_2023_Curr.Microbiol_81_36
PubMedSearch : Wang_2023_Curr.Microbiol_81_36
PubMedID: 38063939

Title : Biomimetic single Al-OH site with high acetylcholinesterase-like activity and self-defense ability for neuroprotection - Xu_2023_Nat.Commun_14_6064
Author(s) : Xu W , Cai X , Wu Y , Wen Y , Su R , Zhang Y , Huang Y , Zheng Q , Hu L , Cui X , Zheng L , Zhang S , Gu W , Song W , Guo S , Zhu C
Ref : Nat Commun , 14 :6064 , 2023
Abstract : Neurotoxicity of organophosphate compounds (OPs) can catastrophically cause nervous system injury by inhibiting acetylcholinesterase (AChE) expression. Although artificial systems have been developed for indirect neuroprotection, they are limited to dissociating P-O bonds for eliminating OPs. However, these systems have failed to overcome the deactivation of AChE. Herein, we report our finding that Al(3+) is engineered onto the nodes of metal-organic framework to synthesize MOF-808-Al with enhanced Lewis acidity. The resultant MOF-808-Al efficiently mimics the catalytic behavior of AChE and has a self-defense ability to break the activity inhibition by OPs. Mechanism investigations elucidate that Al(3+) Lewis acid sites with a strong polarization effect unite the highly electronegative -OH groups to form the enzyme-like catalytic center, resulting in superior substrate activation and nucleophilic attack ability with a 2.7-fold activity improvement. The multifunctional MOF-808-Al, which has satisfactory biosafety, is efficient in reducing neurotoxic effects and preventing neuronal tissue damage.
ESTHER : Xu_2023_Nat.Commun_14_6064
PubMedSearch : Xu_2023_Nat.Commun_14_6064
PubMedID: 37770453

Title : Analysis of the Structure and Activity of Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Oligopeptides from Sorghum Kafirin - Dai_2022_J.Agric.Food.Chem__
Author(s) : Dai L , Kong L , Cai X , Jiang P , Liu N , Zhang D , Li Z
Ref : Journal of Agricultural and Food Chemistry , : , 2022
Abstract : Potential dipeptidyl peptidase IV (DPP-IV) inhibitory oligopeptides from sorghum kafirin were developed using in silico and in vitro methodologies for the management of diabetes. Twenty-eight peptides with 5-10 residues were identified from the papain hydrolysates of sorghum kafirin. Sixteen nontoxic DPP-IV inhibitory peptides were screened with a computer method based on molecular docking. Molecular docking revealed that LPFYPQ (LP6), GPVTPPILG (GP9), and LPFYPQGV (LP8) effectively inactivated DPP-IV by binding to its active sites with a low interaction energy. An in silico analysis of these three inhibitory oligopeptides indicated that they were all bound to the S1 and S2 active pockets of DPP-IV through hydrogen bonds and hydrophobic interactions. The in vitro inhibitory activity was also verified. The DPP-IV inhibitory activities of LP6 and LP8 decreased after gastric digestion and remained stable after intestinal digestion, and the GP9 inhibitory activity remained stable after gastrointestinal digestion. Experimental results from Caco-2 cells showed further inhibitory effects of oligopeptides on DPP-IV. The results are relevant to the exploration of biofunctional DPP-IV inhibitory peptides from sorghum as a treatment for patients with diabetes or in medical research.
ESTHER : Dai_2022_J.Agric.Food.Chem__
PubMedSearch : Dai_2022_J.Agric.Food.Chem__
PubMedID: 35130437

Title : Cloning and Functional Characterization of the Polyketide Synthases Based on Genome Mining of Preussia isomera XL-1326 - Liu_2022_Front.Microbiol_13_819086
Author(s) : Liu Q , Zhang D , Xu Y , Gao S , Gong Y , Cai X , Yao M , Yang X
Ref : Front Microbiol , 13 :819086 , 2022
Abstract : Fungal polyketides (PKs) are one of the largest families of structurally diverse bioactive natural products biosynthesized by multidomain megasynthases, in which thioesterase (TE) domains act as nonequivalent decision gates determining both the shape and the yield of the polyketide intermediate. The endophytic fungus Preussia isomera XL-1326 was discovered to have an excellent capacity for secreting diverse bioactive PKs, i.e., the hot enantiomers (+/-)-preuisolactone A with antibacterial activity, the single-spiro minimoidione B with alpha-glucosidase inhibition activity, and the uncommon heptaketide setosol with antifungal activity, which drive us to illustrate how the unique PKs are biosynthesized. In this study, we first reported the genome sequence information of P. isomera. Based on genome mining, we discovered nine transcriptionally active genes encoding polyketide synthases (PKSs), Preu1-Preu9, of which those of Preu3, Preu4, and Preu6 were cloned and functionally characterized due to possessing complete sets of synthetic and release domains. Through heterologous expression in Saccharomyces cerevisiae, Preu3 and Preu6 could release high yields of orsellinic acid (OA) derivatives [3-methylorsellinic acid (3-MOA) and lecanoric acid, respectively]. Correspondingly, we found that Preu3 and Preu6 were clustered into OA derivative synthase groups by phylogenetic analysis. Next, with TE domain swapping, we constructed a novel "non-native" PKS, Preu6-TE(Preu3), which shared a very low identity with OA synthase, OrsA, from Aspergillus nidulans but could produce a large amount of OA. In addition, with the use of Preu6-TE(Preu3), we synthesized methyl 3-methylorsellinate (synthetic oak moss of great economic value) from 3-MOA as the substrate, and interestingly, 3-MOA exhibited remarkable antibacterial activities, while methyl 3-methylorsellinate displayed broad-spectrum antifungal activity. Taken together, we identified two novel PKSs to biosynthesize 3-MOA and lecanoric acid, respectively, with information on such kinds of PKSs rarely reported, and constructed one novel "non-native" PKS to largely biosynthesize OA. This work is our first step to explore the biosynthesis of the PKs in P. isomera, and it also provides a new platform for high-level environment-friendly production of OA derivatives and the development of new antimicrobial agents.
ESTHER : Liu_2022_Front.Microbiol_13_819086
PubMedSearch : Liu_2022_Front.Microbiol_13_819086
PubMedID: 35602042
Gene_locus related to this paper: preis-preu6

Title : Screening Potential Diagnostic Biomarkers for Age-Related Sarcopenia in the Elderly Population by WGCNA and LASSO - Lin_2022_Biomed.Res.Int_2022_7483911
Author(s) : Lin S , Ling M , Chen C , Cai X , Yang F , Fan Y
Ref : Biomed Res Int , 2022 :7483911 , 2022
Abstract : BACKGROUND: Sarcopenia is a common chronic disease characterized by age-related decline in skeletal muscle mass and function, and the lack of diagnostic biomarkers makes community-based screening problematic. METHODS: Three gene expression profiles related with sarcopenia were downloaded and merged by searching the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and eigengenes of a module in the merged dataset were identified by differential expression analysis and weighted gene coexpression network analysis (WGCNA), and common genes (CGs) were defined as the intersection of DEGs and eigengenes of a module. CGs were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Subsequently, the least absolute shrinkage and selection operator (LASSO) analysis was performed to screen the CGs for identifying the diagnostic biomarkers of sarcopenia. Based on the diagnostic biomarkers, we established a novel nomogram model of sarcopenia. At last, we validated the diagnostic biomarkers and evaluated the diagnostic performance of the nomogram model by the area under curve (AUC) value. RESULTS: We screened out 107 DEGs and 788 eigengenes in the turquoise module, and 72 genes were selected as CGs of sarcopenia by intersection. GO analysis showed that CGs were mainly involved in metal ion detoxification and mitochondrial structure, and KEGG analysis revealed that CGs were mainly enriched in the mineral absorption, glucagon signaling pathway, FoxO signaling pathway, insulin signaling pathway, AMPK signaling pathway, and estrogen signaling pathway. Then, six diagnostic biomarkers (ARHGAP36, FAM171A1, GPCPD1, MT1X, ZNF415, and RXRG) were identified by LASSO analysis. Finally, the validation AUC values indicated that the six diagnostic biomarkers had high diagnostic accuracy for sarcopenia. CONCLUSION: We identified six diagnostic biomarkers with high diagnostic performance, providing new insights into the incidence and progression of sarcopenia in future research.
ESTHER : Lin_2022_Biomed.Res.Int_2022_7483911
PubMedSearch : Lin_2022_Biomed.Res.Int_2022_7483911
PubMedID: 36147639

Title : (-)-Grandiflorimine, a new dibenzopyrrocoline alkaloid with cholinesterase inhibitory activity from Illigera grandiflora - Li_2021_Nat.Prod.Res_35_763
Author(s) : Li X , Dong J , Gan D , Zhou D , Cai X , Cai L , Ding Z
Ref : Nat Prod Res , 35 :763 , 2021
Abstract : A new dibenzopyrrocoline alkaloid, (-)-grandifloramine (1), together with five known ones, actinodaphnine (2), N-methyllaurotetanine (3), boldine (4), lindcarpine (5), and (+)-norboldine (6), were isolated from Illigera grandiflora W. W. Sm. et J. F. Jeff. The structure of 1 was identified by HRESIMS, 1D/2D NMR, and electronic circular dichroism (ECD) spectra. Compound 1 and 2 exhibited the moderate inhibitory activity against acetylcholinesterase and 3 showed moderate butyrylcholinesterase inhibitory activity. This is the first report of the chemical constituents of I. grandiflora.
ESTHER : Li_2021_Nat.Prod.Res_35_763
PubMedSearch : Li_2021_Nat.Prod.Res_35_763
PubMedID: 31079474

Title : Combining fermentation to produce O-succinyl-l-homoserine and enzyme catalysis for the synthesis of l-methionine in one pot - Zhu_2021_J.Biosci.Bioeng__
Author(s) : Zhu WY , Niu K , Liu P , Cai X , Liu ZQ , Zheng YG
Ref : J Biosci Bioeng , : , 2021
Abstract : The biosynthetic pathway of l-methionine in microorganisms was complex and regulated at multiple levels. In this study, a two-step method for l-methionine production combined fermentation and biocatalysis was realized in one pot. The O-succinyl-l-homoserine (OSH) producing strain Escherichia coli W3110(DE3) deltaIJBTrcmetL/pTrc-metA(fbr)-Trc-thrA(fbr)-yjeH (deltaIJB) was constructed initially. OSH in the fermentation supernatant was then converted to l-methionine in the presence of O-succinyl-l-homoserine sulfhydrylase (OSHS) and sodium methanethiol. The titer of l-methionine could reach 21.1 g/L after 88 h (84 h fermentation and 4 h catalysis) in a two-step method (process 1). In a one-pot two-strain system (process 2), two strains deltaIJB and E. coli BL21(DE3)/pET28b-OSHS-cutinase were co-cultured, and 8.24 g/L l-methionine was obtained. In another one-pot one-strain system (process 3), strain E. coli deltaIJB/pET28b-OSHS-cutinase could co-express OSHS and cutinase during deltaIJB fermentation at the same time, obtaining 13.6 g/L l-methionine in a 5 L fermentor after 84 h. By comparing the three processes for l-methionine production based on the process 1, the simplified process in process 3 provided in this study showed potent in the large-scale production of l-methionine with convenient handling and production efficiency, but further works still need to be carried out to improve the l-methionine production.
ESTHER : Zhu_2021_J.Biosci.Bioeng__
PubMedSearch : Zhu_2021_J.Biosci.Bioeng__
PubMedID: 34420895

Title : Efficient enzymatic synthesis of L-ascorbyl palmitate using CALB-embedded metal-organic framework - Zhang_2021_Biotechnol.Prog__e3218
Author(s) : Zhang XJ , Qi FY , Qi JM , Yang F , Shen JW , Cai X , Liu ZQ , Zheng YG
Ref : Biotechnol Prog , :e3218 , 2021
Abstract : The Candida Antarctica lipase B (CALB) was embedded in the metal-organic framework, zeolitic imidazolate framework-8 (ZIF-8) and applied in the enzymatic synthesis of L-ascorbic acid palmitate (ASP) for the first time. The obtained CALB@ZIF-8 achieved the enzyme loading of 80 mg/g with 11.3 U/g (dry weight) unit activity, 59.8% activity recovery and 92.7% immobilization yield. Under the optimal condition, ASP was synthesized with over 75.9% conversion of L-ascorbic acid in a 10-batch reaction. Continuous synthesis of ASP was subsequently performed in a packed bed bioreactor with an outstanding average space-time yield of 58.1 g L(-1) h(-1) , which was higher than ever reported continuous ASP biosynthesis reactions. This article is protected by copyright. All rights reserved.
ESTHER : Zhang_2021_Biotechnol.Prog__e3218
PubMedSearch : Zhang_2021_Biotechnol.Prog__e3218
PubMedID: 34601810

Title : Functional expression of a novel methanol-stable esterase from Geobacillus subterraneus DSM13552 for biocatalytic synthesis of cinnamyl acetate in a solvent-free system - Cai_2020_BMC.Biotechnol_20_36
Author(s) : Cai X , Lin L , Shen Y , Wei W , Wei DZ
Ref : BMC Biotechnol , 20 :36 , 2020
Abstract : BACKGROUND: Esterases are widely distributed in nature and have important applications in medical, industrial and physiological. Recently, the increased demand for flavor esters has prompted the search of catalysts like lipases and esterases. Esterases from thermophiles also show thermal stability at elevated temperatures and have become enzymes of special interest in biotechnological applications. Although most of esterases catalyzed reactions are carried out in toxic and inflammable organic solvents, the solvent-free system owning many advantages such as low cost and easy downstream processing. RESULTS: The gene estGSU753 from Geobacillus subterraneus DSM13552 was cloned, sequenced and overexpressed into Escherichia coli BL21 (DE3). The novel gene has an open reading frame of 753 bp and encodes 250-amino-acid esterase (EstGSU753). The sequence analysis showed that the protein contains a catalytic triad formed by Ser97, Asp196 and His226, and the Ser of the active site is located in the conserved motif Gly95-X-Ser97-X-Gly99 included in most esterases and lipases. The protein catalyzed the hydrolysis of pNP-esters of different acyl chain lengths, and the enzyme specific activity was 70 U/mg with the optimum substrate pNP-caprylate. The optimum pH and temperature of the recombinant enzyme were 8.0 and 60 degrees C respectively. The resulting EstGSU753 showed remarkable stability against methanol. After the incubation at 50% methanol for 9 days, EstGSU753 retained 50% of its original activity. Even incubation at 90% methanol for 35 h, EstGSU753 retained 50% of its original activity. Also, the preliminary study of the transesterification shows the potential value in synthesis of short-chain flavor esters in a solvent-free system, and more than 99% conversion was obtained in 6 h (substrate: cinnamyl alcohol, 1.0 M). CONCLUSIONS: This is the first report of esterase gene cloning from Geobacillus subterraneus with detailed enzymatic properties. This methanol-stable esterase showed potential value in industrial applications especially in the perfume industry.
ESTHER : Cai_2020_BMC.Biotechnol_20_36
PubMedSearch : Cai_2020_BMC.Biotechnol_20_36
PubMedID: 32600313

Title : Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis - Cai_2020_Plant.Biotechnol.J_18_814
Author(s) : Cai Y , Cai X , Wang Q , Wang P , Zhang Y , Cai C , Xu Y , Wang K , Zhou Z , Wang C , Geng S , Li B , Dong Q , Hou Y , Wang H , Ai P , Liu Z , Yi F , Sun M , An G , Cheng J , Shi Q , Xie Y , Shi X , Chang Y , Huang F , Chen Y , Hong S , Mi L , Sun Q , Zhang L , Zhou B , Peng R , Zhang X , Liu F
Ref : Plant Biotechnol J , 18 :814 , 2020
Abstract : The diploid wild cotton species Gossypium australe possesses excellent traits including resistance to disease and delayed gland morphogenesis, and has been successfully used for distant breeding programmes to incorporate disease resistance traits into domesticated cotton. Here, we sequenced the G. australe genome by integrating PacBio, Illumina short read, BioNano (DLS) and Hi-C technologies, and acquired a high-quality reference genome with a contig N50 of 1.83 Mb and a scaffold N50 of 143.60 Mb. We found that 73.5% of the G. australe genome is composed of various repeat sequences, differing from those of G. arboreum (85.39%), G. hirsutum (69.86%) and G. barbadense (69.83%). The G. australe genome showed closer collinear relationships with the genome of G. arboreum than G. raimondii and has undergone less extensive genome reorganization than the G. arboreum genome. Selection signature and transcriptomics analyses implicated multiple genes in disease resistance responses, including GauCCD7 and GauCBP1, and experiments revealed induction of both genes by Verticillium dahliae and by the plant hormones strigolactone (GR24), salicylic acid (SA) and methyl jasmonate (MeJA). Experiments using a Verticillium-resistant domesticated G. barbadense cultivar confirmed that knockdown of the homologues of these genes caused a significant reduction in resistance against Verticillium dahliae. Moreover, knockdown of a newly identified gland-associated gene GauGRAS1 caused a glandless phenotype in partial tissues using G. australe. The G. australe genome represents a valuable resource for cotton research and distant relative breeding as well as for understanding the evolutionary history of crop genomes.
ESTHER : Cai_2020_Plant.Biotechnol.J_18_814
PubMedSearch : Cai_2020_Plant.Biotechnol.J_18_814
PubMedID: 31479566
Gene_locus related to this paper: gosra-a0a0d2pzd7

Title : Ambient light sensor based colorimetric dipstick reader for rapid monitoring organophosphate pesticides on a smart phone - Fu_2019_Anal.Chim.Acta_1092_126
Author(s) : Fu Q , Zhang C , Xie J , Li Z , Qu L , Cai X , Ouyang H , Song Y , Du D , Lin Y , Tang Y
Ref : Anal Chim Acta , 1092 :126 , 2019
Abstract : Organophosphate pesticides (OPs) are widely used around the world to control pests in agricultural, residential, and commercial settings. Ingestion of high-dose OPs could lead to acute toxicity, and persistent influence on health could result from acute poisoning or long-term exposure to low dose OPs. An easy to operate, low cost and home available OPs testing platform is urgently needed. Ambient light sensor (ALS) based smart phone colorimetric reader has the advantages of easy to operate, low cost, high accuracy and versatility. In this work, a novel ALS based smart phone colorimetric dipsticks (CDs) reader was reported for rapid monitoring OPs. In this method, acetylcholinesterase (ACHE) CDs was used to test OPs and results were analyzed using an ALS based reader according to the absorbance of ACHE CDs. The results obtained using the ALS based CDs reader were comparable to those obtained using gas chromatography-mass spectrometry (GC-MS) and Ellman assay. The ALS based CDs reader has the advantages of portable, low cost, and high accuracy, and therefore could act an effective platform for OPs monitoring.
ESTHER : Fu_2019_Anal.Chim.Acta_1092_126
PubMedSearch : Fu_2019_Anal.Chim.Acta_1092_126
PubMedID: 31708025

Title : Investigation of the neuroprotective effects of crocin via antioxidant activities in HT22 cells and in mice with Alzheimer's disease - Wang_2019_Int.J.Mol.Med_43_956
Author(s) : Wang C , Cai X , Hu W , Li Z , Kong F , Chen X , Wang D
Ref : Int J Mol Med , 43 :956 , 2019
Abstract : Due to its complex pathogenesis, the prevention and therapization of Alzheimer's disease (AD) remains a serious challenge. Crocin, the main compound isolated from Crocus sativus L., demonstrates various pharmacological activities including antiapoptotic properties. The present study investigated the neuroprotective effect of crocin and the underlying mechanisms. In lglutamatedamaged HT22 cells, 3h crocin pretreatment strongly enhanced the HT22 cell viability, reduced the apoptotic rate, mitigated mitochondrial dysfunction, suppressed intracellular reactive oxygen species (ROS) accumulation and Ca2+ overload compared with untreated cells. Additionally, crocin significantly decreased the expression levels of Bax, Bad and cleaved caspase3 and increased the expression levels of Bcell lymphomaextra large, phosphorylated (P) protein kinase B and Pmammalian target of rapamycin compared with untreated cells. In mice with AD induced by dgalactose and aluminum trichloride, crocin substantially improved the cognition and memory abilities of the mice as measured by their coordination of movement in an open field test, and reduced their escape time in the Morris water maze test compared with untreated mice. Biochemical analysis confirmed that crocin was able to reduce the Abeta142 content in the mouse brains, increase the levels of glutathione peroxidase, superoxide dismutase, acetylcholine and choline acetyltransferase, and reduce the levels of ROS and acetylcholinesterase in the serum, cerebral cortex and hypothalamus compared with untreated mice. Immunohistochemical analysis demonstrated that crocin reduced Abeta142 deposition in the hippocampus of the brains of treated mice compared with untreated mice. In conclusion, crocin demonstrates good prospects in the treatment of AD through the oxidative stressassociated apoptosis signaling pathway.
ESTHER : Wang_2019_Int.J.Mol.Med_43_956
PubMedSearch : Wang_2019_Int.J.Mol.Med_43_956
PubMedID: 30569175

Title : Insecticidal and Acetylcholinesterase Inhibition Activity of Veratrum nigrum Alkaloidal Extract against the German Cockroach (Blattella germanica) - Cai_2018_J.Arthropod.Borne.Dis_12_414
Author(s) : Cai X , Li Q , Xiao L , Lu H , Tang J , Huang J , Yuan J
Ref : J Arthropod Borne Dis , 12 :414 , 2018
Abstract : Background: Veratrum nigrum (Liliaceae) is perennial medicinal plant widely used to treat various conditions. To determine its insecticidal properties against the German cockroach (Blattella germanica), several laboratory tests were carried out. Methods: A 4kg dry sample of V. nigrum root was purchased from the medicinal material market in Yunnan Province in 2015, China. In contact toxicity tests, V. nigrum alkaloidal extract was topically applied to the abdomen of cockroaches using a micro-applicator. In vitro acetylcholinesterase (AChE) activity tests were performed using a modified Ellman method. Results: Veratrum nigrum alkaloidal extract was toxic to male adults and 4(th) nymphs cockroaches, with median lethal dose (LD50) values of 14.90mug/insect, 14.21mug/insect for adults and 41.45mug/insect, 39.01mug/insect for 4(th) nymphs after 24h and 48h exposure, respectively. There was a significant difference between adults and nymphs in terms of tolerance to V. nigrum alkaloidal extract. There was no significant difference in mortalities at 24h and 48h, the lethal effect of V. nigrum alkaloidal extract on German cockroach was quick. AChE activity tests showed that V. nigrum alkaloidal extract had an excellent inhibitory effect on AChE: inhibition in the 4(th) nymphs and male adults had 50% inhibiting concentration (IC50) values of 3.56mg/ml and 5.78mg/ml respectively. The inhibitory effect of AChE activity was positively correlated with inhibitory time (0-20min), at a concentration of 1mg/ml, inhibition of nymph and adult AChE activity had 50% inhibiting time (IT50) values of 8.34min and 16.75min, respectively. Conclusion: V. nigrum may be explored as a potential natural insecticide for control of the German cockroach.
ESTHER : Cai_2018_J.Arthropod.Borne.Dis_12_414
PubMedSearch : Cai_2018_J.Arthropod.Borne.Dis_12_414
PubMedID: 30918910

Title : Autotransporter domain-dependent enzymatic analysis of a novel extremely thermostable carboxylesterase with high biodegradability towards pyrethroid pesticides - Cai_2017_Sci.Rep_7_3461
Author(s) : Cai X , Wang W , Lin L , He D , Huang G , Shen Y , Wei W , Wei D
Ref : Sci Rep , 7 :3461 , 2017
Abstract : The EstPS1 gene, which encodes a novel carboxylesterase of Pseudomonas synxantha PS1 isolated from oil well-produced water, was cloned and sequenced. EstPS1 has an open reading frame of 1923 bp and encodes the 640-amino acid carboxylesterase (EstPS1), which contains an autotransporter (AT) domain (357-640 amino acids). Homology analysis revealed that EstPS1 shared the highest identity (88%) with EstA from Pseudomonas fluorescens A506 (NCBI database) and belonged to the carboxylesterase family (EC The optimum pH and temperature of recombinant EstPS1 were found to be 8.0 and 60 degrees C, respectively. EstPS1 showed high thermostability, and the half-lives (T1/2 thermal inactivation) at 60, 70, 80, 90, and 100 degrees C were 14 h, 2 h, 31 min, 10 min, and 1 min, respectively. To understand the role of the AT domain in carboxylesterase, AT domain-truncated carboxylesterase (EstPS1DeltaAT) was generated. EstPS1DeltaAT showed a clearly decreased secretion rate, owing to the AT domain strongly improved secretory expression in the heterogeneous system. EstPS1 degraded various pyrethroid pesticides, and hydrolysis efficiencies were dependent on the pyrethroid molecular structure. EstPS1 degraded all the tested pyrethroid pesticides and hydrolysed the p-nitrophenyl esters of medium-short-chain fatty acids, indicating that EstPS1 is an esterase with broad specificity.
ESTHER : Cai_2017_Sci.Rep_7_3461
PubMedSearch : Cai_2017_Sci.Rep_7_3461
PubMedID: 28615636

Title : A novel oil-body nanoemulsion formulation of ginkgolide B: pharmacokinetics study and in vivo pharmacodynamics evaluations - Yang_2014_J.Pharm.Sci_103_1075
Author(s) : Yang P , Cai X , Zhou K , Lu C , Chen W
Ref : J Pharm Sci , 103 :1075 , 2014
Abstract : The goal of this study was to develop a novel oil-body nanoemulsion (ONE) for Ginkgolide B (GB) and to conduct pharmacokinetics and pharmacodynamics evaluations. GB-ONE was prepared by O/O emulsion method. The differences in pharmacokinetics parameters and tissue distribution of rats after oral administrated with GB-ONE were investigated by liquid chromatography-tandem mass spectrometry. Changes in the ethological and pathological characterizations of the Alzheimer's disease rats after treated with GB-ONE were evaluated by Morris water maze (MWM) and pathological section, respectively. Furthermore, choline acetyltransferase (ChAT) and acetylcholinesterase (AchE) activity in hippocampus was analyzed by spectrophotometric method. The results indicated that the AUC of GB in rats' plasma was significantly improved after incorporated into ONE, and GB-ONE was significantly targeted into brain. In MWM experiment, memory improvement of rats with cognition impaired was confirmed after administrated with GB-ONE. Furthermore, GB-ONE significantly inhibited AchE activity and enhanced the activity of ChAT in the hippocampus. The overall results implicated that the novel ONE was effective for improving the drawbacks of GB and showed great potential for clinical application. (c) 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1075-1084, 2014.
ESTHER : Yang_2014_J.Pharm.Sci_103_1075
PubMedSearch : Yang_2014_J.Pharm.Sci_103_1075
PubMedID: 24496859

Title : Functional expression of a novel alkaline-adapted lipase of Bacillus amyloliquefaciens from stinky tofu brine and development of immobilized enzyme for biodiesel production - Cai_2014_Antonie.Van.Leeuwenhoek_106_1049
Author(s) : Cai X , Ma J , Wei DZ , Lin JP , Wei W
Ref : Antonie Van Leeuwenhoek , 106 :1049 , 2014
Abstract : Using enrichment procedures, a lipolytic strain was isolated from a stinky tofu brine and was identified as Bacillus amyloliquefaciens (named B. amyloliquefaciens Nsic-8) by morphological, physiological, biochemical tests and 16S rDNA sequence analysis. Meanwhile, the key enzyme gene (named lip BA) involved in ester metabolism was obtained from Nsic-8 with the assistance of homology analysis. The novel gene has an open reading frame of 645 bp, and encodes a 214-amino-acid lipase (LipBA). The deduced amino acid sequence shows the highest identity with the lipase from B. amyloliquefaciens IT-45 (NCBI database) and belongs to the family of triacylglycerol lipase (EC The lipase gene was expressed in Escherichia coli BL21(DE3) using plasmid pET-28a. The enzyme activity and specific activity were 250 +/- 16 U/ml and 1750 +/- 153 U/mg, respectively. The optimum pH and temperature of the recombinant enzyme were 9.0 and 40 degrees C respectively. LipBA showed much higher stability under alkaline conditions and was stable at pH 7.0-11.0. The Km and Vmax values of purified LipBA using 4-nitrophenyl palmitate as the substrate were 1.04 +/- 0.06 mM and 119.05 +/- 7.16 mumol/(ml min), respectively. After purification, recombinant lipase was immobilized with the optimal conditions (immobilization time 3 h at 30 degrees C, with 92 % enzyme recovery) and the immobilized enzyme was applied in biodiesel production. This is the first report of the lipase activity and lipase gene obtained from B. amyloliquefaciens (including wild strain and recombinant strain) and the recombinant LipBA with the detailed enzymatic properties. Also the preliminary study of the transesterification shows the potential value in biodiesel production applications.
ESTHER : Cai_2014_Antonie.Van.Leeuwenhoek_106_1049
PubMedSearch : Cai_2014_Antonie.Van.Leeuwenhoek_106_1049
PubMedID: 25199563
Gene_locus related to this paper: bacam-r9xui2

Title : Association between microsomal epoxide hydrolase 1 polymorphisms and susceptibility to esophageal cancer: a meta-analysis - Zhao_2013_Tumour.Biol_34_2383
Author(s) : Zhao W , Luo J , Cai X
Ref : Tumour Biol , 34 :2383 , 2013
Abstract : Microsomal epoxide hydrolase 1 (EPHX1) plays an important role in the detoxification of carcinogenic polycyclic aromatic hydrocarbons. EPHX1 Tyr113His and His139Arg polymorphisms have been reported to have some impacts on the EPHX1 activity. Previous case-control studies assessing the associations between EPHX1 polymorphisms and esophageal cancer risk reported conflicting results. To quantitatively summarize the associations of EPHX1 Tyr113His and His139Arg polymorphisms with esophageal cancer risk, a systemic review and meta-analysis of published studies were performed. Published literatures from PubMed, Embase, and China National Knowledge Infrastructure databases were searched. The strength of the associations between EPHX1 polymorphisms and esophageal cancer risk was estimated by the pooled odds ratios (ORs) with its 95 % confidence interval (95 %CI). This meta-analysis yielded nine case-control studies, which included nine studies for Tyr113His polymorphism (1,291 cases and 2,120 controls) and seven studies for His139Arg polymorphism (899 cases and 1,615 controls). Overall, meta-analysis showed that EPHX1 Tyr113His polymorphism was not associated with esophageal cancer risk under all genetic models. Meta-analysis of these seven studies for EPHX1 His139Arg polymorphism showed that EPHX1 His139Arg polymorphism was also not associated with esophageal cancer risk under all genetic models. However, subgroup analysis by ethnicity further showed that there was an obvious association between EPHX1 His139Arg polymorphism and decreased risk of esophageal cancer in Caucasians (ArgArg versus HisArg/HisHis: OR = 0.52, 95 %CI 0.27-0.97, P = 0.041). This meta-analysis suggests that EPHX1 His139Arg polymorphism is associated with decreased risk of esophageal cancer in Caucasians. In addition, more studies with large samples are needed to get a more precise estimation on the associations mentioned above.
ESTHER : Zhao_2013_Tumour.Biol_34_2383
PubMedSearch : Zhao_2013_Tumour.Biol_34_2383
PubMedID: 23681797

Title : The genomes of four tapeworm species reveal adaptations to parasitism - Tsai_2013_Nature_496_57
Author(s) : Tsai IJ , Zarowiecki M , Holroyd N , Garciarrubio A , Sanchez-Flores A , Brooks KL , Tracey A , Bobes RJ , Fragoso G , Sciutto E , Aslett M , Beasley H , Bennett HM , Cai J , Camicia F , Clark R , Cucher M , De Silva N , Day TA , Deplazes P , Estrada K , Fernandez C , Holland PW , Hou J , Hu S , Huckvale T , Hung SS , Kamenetzky L , Keane JA , Kiss F , Koziol U , Lambert O , Liu K , Luo X , Luo Y , Macchiaroli N , Nichol S , Paps J , Parkinson J , Pouchkina-Stantcheva N , Riddiford N , Rosenzvit M , Salinas G , Wasmuth JD , Zamanian M , Zheng Y , Cai X , Soberon X , Olson PD , Laclette JP , Brehm K , Berriman M
Ref : Nature , 496 :57 , 2013
Abstract : Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.
ESTHER : Tsai_2013_Nature_496_57
PubMedSearch : Tsai_2013_Nature_496_57
PubMedID: 23485966
Gene_locus related to this paper: echgr-k4epc5 , hymmi-a0a068x9f5 , echmu-u6hbw4 , echgr-w6ugl0 , echmu-u6hr32 , echmu-a0a068y5f4 , hymmi-a0a068xag4 , hymmi-a0a068x810 , hymmi-a0a068xcc1 , echmu-a0a068yf54 , echgr-a0a068wxj3 , echgr-a0a068wgw1 , hymmi-a0a068xge7 , hymmi-a0a068x8h9 , echmu-a0a068y747 , hymmi-a0a068xgj7 , echgr-a0a068wl60

Title : Complete genome sequence of Haemophilus parasuis SH0165 - Yue_2009_J.Bacteriol_191_1359
Author(s) : Yue M , Yang F , Yang J , Bei W , Cai X , Chen L , Dong J , Zhou R , Jin M , Jin Q , Chen H
Ref : Journal of Bacteriology , 191 :1359 , 2009
Abstract : Haemophilus parasuis is the causative agent of Glasser's disease, which produces big losses in swine populations worldwide. H. parasuis SH0165, belonging to the dominant serovar 5 in China, is a clinically isolated strain with high-level virulence. Here, we report the first completed genome sequence of this species.
ESTHER : Yue_2009_J.Bacteriol_191_1359
PubMedSearch : Yue_2009_J.Bacteriol_191_1359
PubMedID: 19074396
Gene_locus related to this paper: haepr-b0qsi5 , haepr-b0qve9 , haeps-b8f6u1 , haeps-b8f692 , haeps-b8f714

Title : Transport of the dipeptidyl peptidase-4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance P-glycoprotein - Chu_2007_J.Pharmacol.Exp.Ther_321_673
Author(s) : Chu XY , Bleasby K , Yabut J , Cai X , Chan GH , Hafey MJ , Xu S , Bergman AJ , Braun MP , Dean DC , Evers R
Ref : Journal of Pharmacology & Experimental Therapeutics , 321 :673 , 2007
Abstract : Sitagliptin, a selective dipeptidyl peptidase 4 inhibitor recently approved for the treatment of type 2 diabetes, is excreted into the urine via active tubular secretion and glomerular filtration in humans. In this report, we demonstrate that sitagliptin is transported by human organic anion transporter hOAT3 (Km=162 microM), organic anion transporting polypeptide OATP4C1, and multidrug resistance (MDR) P-glycoprotein (Pgp), but not by human organic cation transporter 2 hOCT2, hOAT1, oligopeptide transporter hPEPT1, OATP2B1, and the multidrug resistance proteins MRP2 and MRP4. Our studies suggested that hOAT3, OATP4C1, and MDR1 Pgp might play a role in transporting sitagliptin into and out of renal proximal tubule cells, respectively. Sitagliptin did not inhibit hOAT1-mediated cidofovir uptake, but it showed weak inhibition of hOAT3-mediated cimetidine uptake (IC50=160 microM). hOAT3-mediated sitagliptin uptake was inhibited by probenecid, ibuprofen, furosemide, fenofibric acid, quinapril, indapamide, and cimetidine with IC50 values of 5.6, 3.7, 1.7, 2.2, 6.2, 11, and 79 microM, respectively. Sitagliptin did not inhibit Pgp-mediated transport of digoxin, verapamil, ritonavir, quinidine, and vinblastine. Cyclosporine A significantly inhibited Pgp-mediated transport of sitagliptin (IC50=1 microM). Our data indicate that sitagliptin is unlikely to be a perpetrator of drug-drug interactions with Pgp, hOAT1, or hOAT3 substrates at clinically relevant concentrations. Renal secretion of sitagliptin could be inhibited if coadministered with OAT3 inhibitors such as probenecid. However, the magnitude of interactions should be low, and the effects may not be clinically meaningful, due to the high safety margin of sitagliptin.
ESTHER : Chu_2007_J.Pharmacol.Exp.Ther_321_673
PubMedSearch : Chu_2007_J.Pharmacol.Exp.Ther_321_673
PubMedID: 17314201

Title : Differential genome contents of nontypeable Haemophilus influenzae strains from adults with chronic obstructive pulmonary disease - Fernaays_2006_Infect.Immun_74_3366
Author(s) : Fernaays MM , Lesse AJ , Sethi S , Cai X , Murphy TF
Ref : Infect Immun , 74 :3366 , 2006
Abstract : Haemophilus influenzae is an important cause of otitis media in children and lower respiratory infection in adults with chronic obstructive pulmonary disease (COPD). Patients with COPD experience periodic exacerbations that are associated with acquisition of new bacterial strains. However, not every strain acquisition is associated with exacerbation. To test the hypothesis that genetic differences among strains account for differences in pathogenic potential, a microarray consisting of 4,992 random 1.5- to 3-kb genomic fragments of an exacerbation strain was constructed. Competitive hybridization was performed using six strains associated with exacerbation as well as five strains associated with asymptomatic colonization. Seven sequences that were absent in all five colonization strains and present in at least two exacerbation strains were identified. One such sequence was a previously unreported gene with high homology to the meningococcal immunoglobulin A (IgA) protease gene, which is distinct from the previously described H. influenzae IgA protease. To assess the distribution of the seven sequences among well-characterized strains of H. influenzae, 59 exacerbation strains and 73 asymptomatic colonization strains were screened by PCR for the presence of these sequences. The presence or absence of any single sequence was not significantly associated with exacerbations of COPD. However, logistic regression and subgroup analysis identified combinations of the presence and absence of genes that are associated with exacerbations. These results indicate that patterns of genes are associated with the ability of strains of H. influenzae to cause exacerbations of COPD, supporting the concept that differences in pathogenic potential are based in part on genomic differences among infecting strains, not merely host factors.
ESTHER : Fernaays_2006_Infect.Immun_74_3366
PubMedSearch : Fernaays_2006_Infect.Immun_74_3366
PubMedID: 16714566
Gene_locus related to this paper: haein-sfgh

Title : [Determination of buprofezin, methamidophos, acephate, and triazophos residues in Chinese tea samples by gas chromatography] - Zhang_2004_Se.Pu_22_154
Author(s) : Zhang S , Yi J , Ye J , Zheng W , Cai X , Gong Z
Ref : Se Pu , 22 :154 , 2004
Abstract : A method has been developed for the simultaneous determination of buprofezin, methamidophos, acephate and triazophos residues in Chinese tea samples. The pesticide residues were extracted from tea samples with a mixture of ethyl acetate and n-hexane (50:50, v/v) at 45 degrees C. The extracts were subsequently treated with a column packed with 40 mg of active carbon by gradient elution with ethyl acetate and n-hexane. Buprofenzin and the three organophosphorus pesticides were analyzed by gas chromatography using a DB-210 capillary column and a nitrogen-phosphorus detector. The recoveries for spiked standards were 73.4%-96.9%. The relative standard deviations were all within 4.63%. The limits of quantitation (3sigma) in the tea samples were about 7.0-12.0 microg/kg.
ESTHER : Zhang_2004_Se.Pu_22_154
PubMedSearch : Zhang_2004_Se.Pu_22_154
PubMedID: 15712876