Sundaram JP

References (2)

Title : Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus - Fedorova_2008_PLoS.Genet_4_e1000046
Author(s) : Fedorova ND , Khaldi N , Joardar VS , Maiti R , Amedeo P , Anderson MJ , Crabtree J , Silva JC , Badger JH , Albarraq A , Angiuoli S , Bussey H , Bowyer P , Cotty PJ , Dyer PS , Egan A , Galens K , Fraser-Liggett CM , Haas BJ , Inman JM , Kent R , Lemieux S , Malavazi I , Orvis J , Roemer T , Ronning CM , Sundaram JP , Sutton G , Turner G , Venter JC , White OR , Whitty BR , Youngman P , Wolfe KH , Goldman GH , Wortman JR , Jiang B , Denning DW , Nierman WC
Ref : PLoS Genet , 4 :e1000046 , 2008
Abstract : We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated "gene dumps" and, perhaps, simultaneously, as "gene factories".
ESTHER : Fedorova_2008_PLoS.Genet_4_e1000046
PubMedSearch : Fedorova_2008_PLoS.Genet_4_e1000046
PubMedID: 18404212
Gene_locus related to this paper: aspcl-a1c4m6 , aspcl-a1c5a7 , aspcl-a1c6w3 , aspcl-a1c8p7 , aspcl-a1c8q9 , aspcl-a1c9k4 , aspcl-a1c759 , aspcl-a1c786 , aspcl-a1c823 , aspcl-a1c859 , aspcl-a1c881 , aspcl-a1c994 , aspcl-a1cag4 , aspcl-a1caj8 , aspcl-a1cas0 , aspcl-a1cc86 , aspcl-a1ccq2 , aspcl-a1cfv7 , aspcl-a1chj6 , aspcl-a1cif4 , aspcl-a1ck14 , aspcl-a1cke4 , aspcl-a1ckq1 , aspcl-a1cli1 , aspcl-a1cln8 , aspcl-a1cm72 , aspcl-a1cns2 , aspcl-a1cpk9 , aspcl-a1cra8 , aspcl-a1crr5 , aspcl-a1crs9 , aspcl-a1cs04 , aspcl-a1cs39 , aspcl-a1cu39 , aspcl-atg15 , aspcl-axe1 , aspcl-cuti1 , aspcl-cuti3 , aspcl-dapb , aspcl-dpp4 , aspcl-dpp5 , aspcl-faeb , aspcl-faec1 , aspcl-faec2 , aspfc-b0xp50 , aspfc-b0xu40 , aspfc-b0xzj6 , aspfc-b0y2h6 , aspfc-b0y962 , aspfc-b0yaj6 , aspfc-dpp5 , aspfu-DPP4 , aspfu-faeb1 , aspfu-faec , aspfu-ppme1 , aspfu-q4w9r3 , aspfu-q4w9t5 , aspfu-q4w9z4 , aspfu-q4wa57 , aspfu-q4wa78 , aspfu-q4wag0 , aspfu-q4wal3 , aspfu-q4wbc5 , aspfu-q4wbj7 , aspfu-q4wdg2 , aspfu-q4wf06 , aspfu-q4wf29 , aspfu-q4wf56 , aspfu-q4wfq9 , aspfu-q4wg73 , aspfu-q4wgm4 , aspfu-q4win2 , aspfu-q4wk31 , aspfu-q4wk44 , aspfu-q4wk90 , aspfu-q4wm12 , aspfu-q4wm84 , aspfu-q4wm86 , aspfu-q4wmr0 , aspfu-q4wny7 , aspfu-q4wp19 , aspfu-q4wpb9 , aspfu-q4wqj8 , aspfu-q4wqv2 , aspfu-q4wrr7 , aspfu-q4wu51 , aspfu-q4wub2 , aspfu-q4wui7 , aspfu-q4wuk8 , aspfu-q4wum3 , aspfu-q4wuw0 , aspfu-q4wvy1 , aspfu-q4ww22 , aspfu-q4wx13 , aspfu-q4wxd0 , aspfu-q4wxe4 , aspfu-q4wxr1 , aspfu-q4wyq5 , aspfu-q4wz16 , aspfu-q4wzd5 , aspfu-q4wzh6 , aspfu-q4x0n6 , aspfu-q4x1n0 , aspfu-q4x1w9 , aspfu-q4x078 , neofi-a1cwa6 , neofi-a1d4m8 , neofi-a1d4p0 , neofi-a1d5p2 , neofi-a1d104 , neofi-a1d380 , neofi-a1d512 , neofi-a1d654 , neofi-a1da18 , neofi-a1dal8 , neofi-a1df46 , neofi-a1dhj0 , neofi-a1di44 , neofi-a1dk35 , neofi-a1dki7 , neofi-a1dkt6 , neofi-a1dn55 , neofi-atg15 , neofi-axe1 , neofi-faeb1 , neofi-faeb2 , neofi-faec , aspcl-a1cd34 , aspcl-a1cd88 , neofi-a1dc66 , aspcl-a1ceh5 , neofi-a1dfr9 , aspfm-a0a084bf80 , aspcl-a1cqb5 , aspcl-a1cs44 , neofi-a1d517 , neofi-a1dbz0 , neofi-a1cuz0 , aspcl-a1c5e8 , neofi-a1d0b8 , aspcl-a1cdf0 , aspcl-a1ccd3 , neofi-a1da82 , neofi-a1d5e6 , aspcl-kex1 , aspcl-cbpya

Title : Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial pan-genome - Tettelin_2005_Proc.Natl.Acad.Sci.U.S.A_102_13950
Author(s) : Tettelin H , Masignani V , Cieslewicz MJ , Donati C , Medini D , Ward NL , Angiuoli SV , Crabtree J , Jones AL , Durkin AS , DeBoy RT , Davidsen TM , Mora M , Scarselli M , Margarit y Ros I , Peterson JD , Hauser CR , Sundaram JP , Nelson WC , Madupu R , Brinkac LM , Dodson RJ , Rosovitz MJ , Sullivan SA , Daugherty SC , Haft DH , Selengut J , Gwinn ML , Zhou L , Zafar N , Khouri H , Radune D , Dimitrov G , Watkins K , O'Connor KJ , Smith S , Utterback TR , White O , Rubens CE , Grandi G , Madoff LC , Kasper DL , Telford JL , Wessels MR , Rappuoli R , Fraser CM
Ref : Proc Natl Acad Sci U S A , 102 :13950 , 2005
Abstract : The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
ESTHER : Tettelin_2005_Proc.Natl.Acad.Sci.U.S.A_102_13950
PubMedSearch : Tettelin_2005_Proc.Natl.Acad.Sci.U.S.A_102_13950
PubMedID: 16172379
Gene_locus related to this paper: strag-ESTA , strag-GBS0040 , strag-GBS0107 , strag-GBS1828 , strag-pepx , strag-q3dah6 , strag-SAG0246 , strag-SAG0383 , strag-SAG0679 , strag-SAG0680 , strag-SAG0785 , strag-SAG0912 , strag-SAG1562 , strag-SAG2132