Title: [Cross-resistance and the underlying mechanisms of clothianidin resistant population of Frankliniella occidentalis to insecticides] Yan GL, Wang SY Ref: Ying Yong Sheng Tai Xue Bao, 31:3282, 2020 : PubMed
Clothianidin, belonging to neonicotinoid insecticide with systemic and contact mechanisms, is used to control the invasive pest Frankliniella occidentalis. To identify the resistance risk, we examined the cross-resistance to multiple insecticides and mechanisms of clothianidin resistant population of F. occidentalis. The results showed that F. occidentalis developed a high level of resis-tance to clothianidin (56.8-fold) after selecting for 45 generations. The resistant population of F. occidentalis had medium level of cross-resistance to thiamethoxam, imidacloprid, chlorpyrifos, cyhalothrin and emamectin benzoate (18.6>RR(50)>11.3), and the low level of cross-resistance to phoxim and methomyl, but no cross-resistance to chlorfenapyr and spinosad. The synergists piperonyl butoxide (PBO) and triphenyl phosphate (TPP) had significant synergistic effects on clothianidin in killing the resistant population (CL), Yunnan wild population (YN) and susceptible population (S). Compared with the sensitive population, the CL populations had significantly increased activities of mixed-functional oxidases P(450)(3.6-fold), b(5)(2.9-fold) and O-demethylase (4.9-fold), and carboxylesterase (2.5-fold), with no significant difference in the activities of glutathione S-transferases among CL and S populations. The results highlight the role of increasing mixed-functional oxidases and carboxylesterase in the resistance of F. occidentalis to clothianidin.
OBJECTIVE: To retrospectively investigate the efficacy of human umbilical cord-derived mesenchymal stem cells (UC-MSC) as clinical treatment for HBV-related decompensated liver cirrhosis (HBV-DLC)*D. METHODS: Sixty patients with HBV-DLC were given standard medical treatment combined with a 3-month regimen of UC-MSC at a dose of 0.5-1.0x10(6) cells/kg/month. Another group of patients with HBV-DLC (n=120; control group) that was matched (2:1) to the case group by age, sex, diagnosis, and follow-up period was given the standard medical treatment only. We reviewed all patients' data of biochemical tests, imaging examinations, Child-Pugh scores, and adverse reactions. Comparisons of continuous data between the two groups were made by independent-sample t-test, and comparisons of categorical data were made by chi-square test. RESULTS: Compared with the control group, the group that received the combination UC-MSC treatment showed a significant rise in cholinesterase, globulin and alkaline phosphatase, and reduced Child-Pugh scores during the follow-up period. However, there was no significant difference between the groups of patients for levels of alanine transaminase, total bilirubin, albumin, total cholesterol, or prothrombin activity. CONCLUSIONS: Addition of the UC-MSC treatment to the standard therapy could help to improve liver function in patients with HBV-DLC.
        
Title: The marine-derived fungal metabolite, terrein, inhibits cell proliferation and induces cell cycle arrest in human ovarian cancer cells Chen YF, Wang SY, Shen H, Yao XF, Zhang FL, Lai D Ref: Int J Mol Med, 34:1591, 2014 : PubMed
The difficulties faced in the effective treatment of ovarian cancer are multifactorial, but are mainly associated with relapse and drug resistance. Cancer stem-like cells have been reported to be an important contributor to these hindering factors. In this study, we aimed to investigate the anticancer activities of a bioactive fungal metabolite, namely terrein, against the human epithelial ovarian cancer cell line, SKOV3, primary human ovarian cancer cells and ovarian cancer stem-like cells. Terrein was separated and purified from the fermentation metabolites of the marine sponge-derived fungus, Aspergillus terreus strain PF26. Its anticancer activities against ovarian cancer cells were investigated by cell proliferation assay, cell migration assay, cell apoptosis and cell cycle assays. The ovarian cancer stem-like cells were enriched and cultured in a serum-free in vitro suspension system. Terrein inhibited the proliferation of the ovarian cancer cells by inducing G2/M phase cell cycle arrest. The underlying mechanisms involved the suppression of the expression of LIN28, an important marker gene of stemness in ovarian cancer stem cells. Of note, our study also demonstrated the ability of terrein to inhibit the proliferation of ovarian cancer stem-like cells, in which the expression of LIN28 was also downregulated. Our findings reveal that terrein (produced by fermention) may prove to be a promising drug candidate for the treatment of ovarian cancer by inhibiting the proliferation of cancer stem-like cells.
        
Title: Neuroprotective effect of Liuwei Dihuang decoction on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat Liu JP, Feng L, Zhang MH, Ma DY, Wang SY, Gu J, Fu Q, Qu R, Ma SP Ref: J Ethnopharmacol, 150:371, 2013 : PubMed
ETHNOPHARMACOLOGICAL RELEVANCE: Liuwei Dihuang decoction (LWDHD) is a well-known prescription of traditional Chinese medicine (TCM) and consists of six crude drugs including Rehmannia glutinosa Libosch. (family: Scrophulariaceae), Cornus officinalis Sieb. (family: Cornaceae), Dioscorea oppositifolia L. (family: Dioscoreaceae), Paoenia ostii (family: Paeoniaceae), Alisma orientale (G. Samuelsson) Juz (family: Alismataceae) and Poria cocos (Schw.) Wolf (family: Polyporaceae). It has been used for the treatment of "Kidney-Yin" deficiency syndrome in clinic in China for a long time. Recent studies found that LWDHD had a potential benefit for the treatment of diabetic complications. The aim of the present study is to investigate the neuroprotective effect of LWDHD on memory and cognition deficits in streptozotocin (STZ)-induced diabetic encephalopathy (DE) rats. MATERIALS AND METHODS: Adult male Sprague Dawley (SD) rats were fed with high-glucose-fat diet for 50 days and then received an intraperitoneal injection of STZ (40mg/kg) to induce DE model. Morris water maze test was used to evaluate the memory and cognition capability of DE rats. Choline acetyltransferase (ChAT), acetylcholinesterase (AChE), Na+-K+-ATP enzyme, iNOS and GSH kits were used to determine their activities or content in hippocampus. TUNEL staining, immunohistochemistry and Congo red staining were conducted to evaluate the apoptosis, caspase-3 protein expression, insulin-like growth factors 1 (IGF-1) and brain derived neurophic factor (BDNF) expressions, as well as Abeta deposition. RESULTS: The treatment with LWDHD (1 and 2g/kg, p.o., once daily, 30 days) could significantly reduce the escape latency time and path length, and obviously enhance the spent time in the target quadrant and platform crossings in Morris water maze test compared with model group (P<0.05, P<0.01). LWDHD could also significantly decrease the level of fasting blood glucose, increase Na+-K+-ATP enzyme and ChAT activities, enhance remarkedly GSH level while decrease significantly AChE and iNOS activities in hippocampus (P<0.05, P<0.01). Furthermore, TUNEL staining, Congo red staining and immunohistochemistry showed that LWDHD significantly improved the expressions of IGF-1 and BDNF, attenuated the neural apoptosis, overexpression of caspase-3 and Abeta deposition in the hippocampus and cerebral cortex of STZ-induced DE rats (P<0.01). CONCLUSION: Our findings suggested that LWDHD had a neuroprotective effect on DE rats. LWDHD may be of benefit in the treatment of DE.
        
Title: [Resistance mechanisms and cross-resistance of phoxim-resistant Frankliniella occidentalis Pergande population] Wang SY, Zhou XH, Zhang AS, Li LL, Men XY, Zhang SC, Liu YJ, Yu Y Ref: Ying Yong Sheng Tai Xue Bao, 23:1933, 2012 : PubMed
To understand the resistance risks of Frankliniella occidentalis Pergande against phoxim, this paper studied the resistance mechanisms of phoxim-resistant F. occidentalis population against phoxim and the cross-resistance of the population against other insecticides. The phoxim-resistant population had medium level cross-resistance to chlorpyrifos, lambda-cyhalothrin, and methomyl, low level cross-resistance to chlorfenapyr, imidacloprid, emamectin-benzoate, and spinosad, but no cross-resistance to acetamiprid and abamectin. The synergists piperonyl butoxide (PBO), s, s, s-tributyl phosphorotrithioate (DEF), and triphenyl phosphate (TPP) had significant synergism (P < 0.05) on the toxicity of phoxim to the resistant (XK), field (BJ), and susceptible (S) populations, while diethyl maleate (DEM) had no significant synergism to XK and S populations but had significant synergism to BJ population. As compared with S population, the XK and BJ populations had significantly increased activities of mixed-functional oxidases P450 (2.79-fold and 1.48-fold), b, (2.88-fold and 1.88-fold), O-demethylase (2.60-fold and 1.68-fold), and carboxylesterase (2.02-fold and 1.61-fold, respectively), and XK population had a significantly increased acetylcholine esterase activity (3.10-fold). Both XK and BJ population had an increased activity of glutathione S-transferases (1.11-fold and 1.20-fold, respectively), but the increment was not significant. The increased detoxification enzymes activities in F. occidentalis could play an important role in the resistance of the plant against phoxim.
        
Title: Alterations of biochemical parameters in malformed Indian rice frogs, Rana limnocharis from Southern Taiwan Chiu YW, Wang SY, Wu JP, Huang DJ Ref: J Environ Biol, 32:807, 2011 : PubMed
The purpose of this study is to investigate the factors that cause malformed frogs in upstream Kaoping river (KP site) and Tungkang river (T site) of Southern Taiwan. In this experiment, the activities of monooxygenase (MO), glutathione-S-transferase (GST), acetylcholinesterase (AchE) as well as the concentration of vitellogenin (Vg) in the liver were measured. Results show that activities of MO, GST and AchE, and Vg levels in normal frogs (male/female) were 0.09 +/- 0.02/0.09+/-0.01 deltaA min(-1) mg(-1) protein, 0.12 +/- 0.04/0.13 +/- 0.04 deltaA min(-1) mg(-1) protein, 6.13 +/- 2.69/6.01 +/- 2.09 U mg(-1) protein and 0.87 +/- 0.42/2.18 +/- 0.50 microg mg(-1) protein, respectively. Activities of MO, GST and AchE, and Vg levels in malformed frogs (male/female) were 0.15 +/- 0.04/0.21 +/- 0.07 deltaA min(-1) mg(-1) protein, 0.27 +/- 0.08/0.30 +/- 0.12 deltaA min(-1) mg(-1) protein, 4.59 +/- 2.71/5.19 +/- 3.74 U mg(-1) protein and 1.46 +/- 0.61/3.15 +/- 0.88 microg mg(-1) protein, respectively in KP site, and were 0.16 +/- 0.69/0.1 +/- 80.07 deltaA min(-1) mg(-1) protein, 0.21 +/- 0.07/0.24 +/- 0.08 deltaA min(-1) mg(-1) protein, 5.13 +/- 4.58/3.94 +/- 1.33 U mg(-1) protein and 2.23 +/- 1.47/4.11 +/- 1.63 microg mg(-1) protein, respectively in T site. These results indicate that male and female malformed frogs in both rivers upstream are found with higher activities. No significant difference in AchE activity was found between normal and malformed frogs in this investigation. It is therefore reasonable to speculate that the organic chemicals released from agricultural activities are presumable the main factors that lead to the malformation of frogs.
        
Title: Characterization and heterologous expression of a novel lysophospholipase gene from Antrodia cinnamomea Hsu KH, Wang SY, Chu FH, Shaw JF Ref: J Appl Microbiol, 108:1712, 2010 : PubMed
AIMS: A novel lysophospholipase (LysoPL) from the basidiomycetous fungi Antrodia cinnamomea named ACLysoPL was cloned, heteroexpressed in Escherichia coli and characterized. METHODS AND RESULTS: The gene encoding ACLysoPL was obtained from expressed sequence tags from A. cinnamomea. The full length of this gene has a 945 -bp open reading frame encoding 314 amino acids with a molecular weight of 35.5 kDa. ACLysoPL contains a lipase consensus sequence (GXSXG) motif and a Ser-His-Asp catalytic triad. A putative peroxisomal targeting signal type 1 was found in the C-terminal. Heterologous expression of ACLysoPL in E. coli showed that the enzyme preferentially hydrolyses long-chain acyl esterases at pH 7 and 30 degrees C. ACLysoPL is a psychrophilic enzyme about 40% of whose maximum activity remained at 4 degrees C. The LysoPL activities with lysophospholipids as substrate were analysed by gas chromatography/mass spectrometry. CONCLUSION: We have identified and characterized a gene named ACLysoPL encoding a protein performing LysoPL and esterase activities. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first LysoPL of A. cinnamomea identified and characterized at the molecular level.
Members of the gram-negative, strictly aerobic genus Comamonas occur in various environments. Here we report the complete genome of Comamonas testosteroni strain CNB-2. Strain CNB-2 has a circular chromosome that is 5,373,643 bp long and has a G+C content of 61.4%. A total of 4,803 open reading frames (ORFs) were identified; 3,514 of these ORFs are functionally assigned to energy production, cell growth, signal transduction, or transportation, while 866 ORFs encode hypothetical proteins and 423 ORFs encode purely hypothetical proteins. The CNB-2 genome has many genes for transportation (22%) and signal transduction (6%), which allows the cells to respond and adapt to changing environments. Strain CNB-2 does not assimilate carbohydrates due to the lack of genes encoding proteins involved in glycolysis and pentose phosphate pathways, and it contains many genes encoding proteins involved in degradation of aromatic compounds. We identified 66 Tct and nine TRAP-T systems and a complete tricarboxylic acid cycle, which may allow CNB-2 to take up and metabolize a range of carboxylic acids. This nutritional bias for carboxylic acids and aromatic compounds enables strain CNB-2 to occupy unique niches in environments. Four different sets of terminal oxidases for the respiratory system were identified, and they putatively functioned at different oxygen concentrations. This study conclusively revealed at the genomic level that the genetic versatility of C. testosteroni is vital for competition with other bacteria in its special niches.
Lactobacillus plantarum is a lactic acid bacterium (LAB) species commonly used as a probiotic. We have sequenced the genome of Lactobacillus plantarum JDM1, which is a Chinese commercial LAB with several probiotic functions, using a GS 20 system. We recommend that each commercial probiotic strain should undergo complete genome sequencing to ensure safety and stability.
        
Title: Identification and characterization of a lipase gene from Antrodia cinnamomea Chu FH, Wang SY, Lee LC, Shaw JF Ref: Mycol Res, 112:1421, 2008 : PubMed
A partial (634 bp) cDNA clone, AF1229, obtained from expressed sequence tags (ESTs) of solid-cultured basidiomes of Antrodia cinnamomea is homologous to the lipase gene in Rhizomucor miehei. 5'-rapid amplification of cDNA ends (RACE) and 3'-RACE amplification showed that the full-length lipase gene, Ac-LIP, has a 912bp open reading frame (ORF), a 183bp 5' non-coding region, and a 144bp 3' non-coding region. Ac-LIP contains the lipase consensus sequence, VTVVGHSLGA, and encodes a 303-amino acid polypeptide that appears to be an extracellular protein with a calculated molecular mass of 31.8 kDa. RT-PCR analysis suggested that Ac-LIP was strongly expressed during the basidiomatal formation stage of A. cinnamomea. When over-expressed in Escherichia coli, Ac-LIP yielded a protein that was capable of performing hydrolysis of trilinolein by gas chromatography/mass spectrometry (GC/MS) analysis. A. cinnamomea lipase represents the first enzyme of the lipase family from a basidiomycetous fungus, which has been characterized at the molecular level.
Schistosomiasis remains a serious public health problem with an estimated 200 million people infected in 76 countries. Here we isolated ~ 8,400 potential protein-encoding cDNA contigs from Schistosoma japonicum after sequencing circa 84,000 expressed sequence tags. In tandem, we undertook a high-throughput proteomics approach to characterize the protein expression profiles of a number of developmental stages (cercariae, hepatic schistosomula, female and male adults, eggs, and miracidia) and tissues at the host-parasite interface (eggshell and tegument) by interrogating the protein database deduced from the contigs. Comparative analysis of these transcriptomic and proteomic data, the latter including 3,260 proteins with putative identities, revealed differential expression of genes among the various developmental stages and sexes of S. japonicum and localization of putative secretory and membrane antigens, enzymes, and other gene products on the adult tegument and eggshell, many of which displayed genetic polymorphisms. Numerous S. japonicum genes exhibited high levels of identity with those of their mammalian hosts, whereas many others appeared to be conserved only across the genus Schistosoma or Phylum Platyhelminthes. These findings are expected to provide new insights into the pathophysiology of schistosomiasis and for the development of improved interventions for disease control and will facilitate a more fundamental understanding of schistosome biology, evolution, and the host-parasite interplay.
Human-chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 megabases of chimpanzee chromosome 22. By comparing the whole sequence with the human counterpart, chromosome 21, we found that 1.44% of the chromosome consists of single-base substitutions in addition to nearly 68,000 insertions or deletions. These differences are sufficient to generate changes in most of the proteins. Indeed, 83% of the 231 coding sequences, including functionally important genes, show differences at the amino acid sequence level. Furthermore, we demonstrate different expansion of particular subfamilies of retrotransposons between the lineages, suggesting different impacts of retrotranspositions on human and chimpanzee evolution. The genomic changes after speciation and their biological consequences seem more complex than originally hypothesized.
Schistosoma japonicum causes schistosomiasis in humans and livestock in the Asia-Pacific region. Knowledge of the genome of this parasite should improve understanding of schistosome-host interactions, biomedical aspects of schistosomiasis and invertebrate evolution. We assigned 43,707 expressed sequence tags (ESTs) derived from adult S. japonicum and their eggs to 13,131 gene clusters. Of these, 35% shared no similarity with known genes and 75% had not been reported previously in schistosomes. Notably, S. japonicum encoded mammalian-like receptors for insulin, progesterone, cytokines and neuropeptides, suggesting that host hormones, or endogenous parasite homologs, could orchestrate schistosome development and maturation and that schistosomes modulate anti-parasite immune responses through inhibitors, molecular mimicry and other evasion strategies.
Leptospirosis is a widely spread disease of global concern. Infection causes flu-like episodes with frequent severe renal and hepatic damage, such as haemorrhage and jaundice. In more severe cases, massive pulmonary haemorrhages, including fatal sudden haemoptysis, can occur. Here we report the complete genomic sequence of a representative virulent serovar type strain (Lai) of Leptospira interrogans serogroup Icterohaemorrhagiae consisting of a 4.33-megabase large chromosome and a 359-kilobase small chromosome, with a total of 4,768 predicted genes. In terms of the genetic determinants of physiological characteristics, the facultatively parasitic L. interrogans differs extensively from two other strictly parasitic pathogenic spirochaetes, Treponema pallidum and Borrelia burgdorferi, although similarities exist in the genes that govern their unique morphological features. A comprehensive analysis of the L. interrogans genes for chemotaxis/motility and lipopolysaccharide synthesis provides a basis for in-depth studies of virulence and pathogenesis. The discovery of a series of genes possibly related to adhesion, invasion and the haematological changes that characterize leptospirosis has provided clues about how an environmental organism might evolve into an important human pathogen.