Nordsiek G

References (8)

Title : The DNA sequence of the human X chromosome - Ross_2005_Nature_434_325
Author(s) : Ross MT , Grafham DV , Coffey AJ , Scherer S , McLay K , Muzny D , Platzer M , Howell GR , Burrows C , Bird CP , Frankish A , Lovell FL , Howe KL , Ashurst JL , Fulton RS , Sudbrak R , Wen G , Jones MC , Hurles ME , Andrews TD , Scott CE , Searle S , Ramser J , Whittaker A , Deadman R , Carter NP , Hunt SE , Chen R , Cree A , Gunaratne P , Havlak P , Hodgson A , Metzker ML , Richards S , Scott G , Steffen D , Sodergren E , Wheeler DA , Worley KC , Ainscough R , Ambrose KD , Ansari-Lari MA , Aradhya S , Ashwell RI , Babbage AK , Bagguley CL , Ballabio A , Banerjee R , Barker GE , Barlow KF , Barrett IP , Bates KN , Beare DM , Beasley H , Beasley O , Beck A , Bethel G , Blechschmidt K , Brady N , Bray-Allen S , Bridgeman AM , Brown AJ , Brown MJ , Bonnin D , Bruford EA , Buhay C , Burch P , Burford D , Burgess J , Burrill W , Burton J , Bye JM , Carder C , Carrel L , Chako J , Chapman JC , Chavez D , Chen E , Chen G , Chen Y , Chen Z , Chinault C , Ciccodicola A , Clark SY , Clarke G , Clee CM , Clegg S , Clerc-Blankenburg K , Clifford K , Cobley V , Cole CG , Conquer JS , Corby N , Connor RE , David R , Davies J , Davis C , Davis J , Delgado O , Deshazo D , Dhami P , Ding Y , Dinh H , Dodsworth S , Draper H , Dugan-Rocha S , Dunham A , Dunn M , Durbin KJ , Dutta I , Eades T , Ellwood M , Emery-Cohen A , Errington H , Evans KL , Faulkner L , Francis F , Frankland J , Fraser AE , Galgoczy P , Gilbert J , Gill R , Glockner G , Gregory SG , Gribble S , Griffiths C , Grocock R , Gu Y , Gwilliam R , Hamilton C , Hart EA , Hawes A , Heath PD , Heitmann K , Hennig S , Hernandez J , Hinzmann B , Ho S , Hoffs M , Howden PJ , Huckle EJ , Hume J , Hunt PJ , Hunt AR , Isherwood J , Jacob L , Johnson D , Jones S , de Jong PJ , Joseph SS , Keenan S , Kelly S , Kershaw JK , Khan Z , Kioschis P , Klages S , Knights AJ , Kosiura A , Kovar-Smith C , Laird GK , Langford C , Lawlor S , Leversha M , Lewis L , Liu W , Lloyd C , Lloyd DM , Loulseged H , Loveland JE , Lovell JD , Lozado R , Lu J , Lyne R , Ma J , Maheshwari M , Matthews LH , McDowall J , Mclaren S , McMurray A , Meidl P , Meitinger T , Milne S , Miner G , Mistry SL , Morgan M , Morris S , Muller I , Mullikin JC , Nguyen N , Nordsiek G , Nyakatura G , O'Dell CN , Okwuonu G , Palmer S , Pandian R , Parker D , Parrish J , Pasternak S , Patel D , Pearce AV , Pearson DM , Pelan SE , Perez L , Porter KM , Ramsey Y , Reichwald K , Rhodes S , Ridler KA , Schlessinger D , Schueler MG , Sehra HK , Shaw-Smith C , Shen H , Sheridan EM , Shownkeen R , Skuce CD , Smith ML , Sotheran EC , Steingruber HE , Steward CA , Storey R , Swann RM , Swarbreck D , Tabor PE , Taudien S , Taylor T , Teague B , Thomas K , Thorpe A , Timms K , Tracey A , Trevanion S , Tromans AC , d'Urso M , Verduzco D , Villasana D , Waldron L , Wall M , Wang Q , Warren J , Warry GL , Wei X , West A , Whitehead SL , Whiteley MN , Wilkinson JE , Willey DL , Williams G , Williams L , Williamson A , Williamson H , Wilming L , Woodmansey RL , Wray PW , Yen J , Zhang J , Zhou J , Zoghbi H , Zorilla S , Buck D , Reinhardt R , Poustka A , Rosenthal A , Lehrach H , Meindl A , Minx PJ , Hillier LW , Willard HF , Wilson RK , Waterston RH , Rice CM , Vaudin M , Coulson A , Nelson DL , Weinstock G , Sulston JE , Durbin R , Hubbard T , Gibbs RA , Beck S , Rogers J , Bentley DR
Ref : Nature , 434 :325 , 2005
Abstract : The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.
ESTHER : Ross_2005_Nature_434_325
PubMedSearch : Ross_2005_Nature_434_325
PubMedID: 15772651
Gene_locus related to this paper: human-NLGN3 , human-NLGN4X

Title : DNA sequence and comparative analysis of chimpanzee chromosome 22 - Watanabe_2004_Nature_429_382
Author(s) : Watanabe H , Fujiyama A , Hattori M , Taylor TD , Toyoda A , Kuroki Y , Noguchi H , BenKahla A , Lehrach H , Sudbrak R , Kube M , Taenzer S , Galgoczy P , Platzer M , Scharfe M , Nordsiek G , Blocker H , Hellmann I , Khaitovich P , Paabo S , Reinhardt R , Zheng HJ , Zhang XL , Zhu GF , Wang BF , Fu G , Ren SX , Zhao GP , Chen Z , Lee YS , Cheong JE , Choi SH , Wu KM , Liu TT , Hsiao KJ , Tsai SF , Kim CG , S OO , Kitano T , Kohara Y , Saitou N , Park HS , Wang SY , Yaspo ML , Sakaki Y
Ref : Nature , 429 :382 , 2004
Abstract : Human-chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 megabases of chimpanzee chromosome 22. By comparing the whole sequence with the human counterpart, chromosome 21, we found that 1.44% of the chromosome consists of single-base substitutions in addition to nearly 68,000 insertions or deletions. These differences are sufficient to generate changes in most of the proteins. Indeed, 83% of the 231 coding sequences, including functionally important genes, show differences at the amino acid sequence level. Furthermore, we demonstrate different expansion of particular subfamilies of retrotransposons between the lineages, suggesting different impacts of retrotranspositions on human and chimpanzee evolution. The genomic changes after speciation and their biological consequences seem more complex than originally hypothesized.
ESTHER : Watanabe_2004_Nature_429_382
PubMedSearch : Watanabe_2004_Nature_429_382
PubMedID: 15164055
Gene_locus related to this paper: pantr-a0a2j8lmv7

Title : DNA sequence and analysis of human chromosome 9 - Humphray_2004_Nature_429_369
Author(s) : Humphray SJ , Oliver K , Hunt AR , Plumb RW , Loveland JE , Howe KL , Andrews TD , Searle S , Hunt SE , Scott CE , Jones MC , Ainscough R , Almeida JP , Ambrose KD , Ashwell RI , Babbage AK , Babbage S , Bagguley CL , Bailey J , Banerjee R , Barker DJ , Barlow KF , Bates K , Beasley H , Beasley O , Bird CP , Bray-Allen S , Brown AJ , Brown JY , Burford D , Burrill W , Burton J , Carder C , Carter NP , Chapman JC , Chen Y , Clarke G , Clark SY , Clee CM , Clegg S , Collier RE , Corby N , Crosier M , Cummings AT , Davies J , Dhami P , Dunn M , Dutta I , Dyer LW , Earthrowl ME , Faulkner L , Fleming CJ , Frankish A , Frankland JA , French L , Fricker DG , Garner P , Garnett J , Ghori J , Gilbert JG , Glison C , Grafham DV , Gribble S , Griffiths C , Griffiths-Jones S , Grocock R , Guy J , Hall RE , Hammond S , Harley JL , Harrison ES , Hart EA , Heath PD , Henderson CD , Hopkins BL , Howard PJ , Howden PJ , Huckle E , Johnson C , Johnson D , Joy AA , Kay M , Keenan S , Kershaw JK , Kimberley AM , King A , Knights A , Laird GK , Langford C , Lawlor S , Leongamornlert DA , Leversha M , Lloyd C , Lloyd DM , Lovell J , Martin S , Mashreghi-Mohammadi M , Matthews L , Mclaren S , McLay KE , McMurray A , Milne S , Nickerson T , Nisbett J , Nordsiek G , Pearce AV , Peck AI , Porter KM , Pandian R , Pelan S , Phillimore B , Povey S , Ramsey Y , Rand V , Scharfe M , Sehra HK , Shownkeen R , Sims SK , Skuce CD , Smith M , Steward CA , Swarbreck D , Sycamore N , Tester J , Thorpe A , Tracey A , Tromans A , Thomas DW , Wall M , Wallis JM , West AP , Whitehead SL , Willey DL , Williams SA , Wilming L , Wray PW , Young L , Ashurst JL , Coulson A , Blocker H , Durbin R , Sulston JE , Hubbard T , Jackson MJ , Bentley DR , Beck S , Rogers J , Dunham I
Ref : Nature , 429 :369 , 2004
Abstract : Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.
ESTHER : Humphray_2004_Nature_429_369
PubMedSearch : Humphray_2004_Nature_429_369
PubMedID: 15164053
Gene_locus related to this paper: human-CEL

Title : Comparative genomics of Listeria species - Glaser_2001_Science_294_849
Author(s) : Glaser P , Frangeul L , Buchrieser C , Rusniok C , Amend A , Baquero F , Berche P , Bloecker H , Brandt P , Chakraborty T , Charbit A , Chetouani F , Couve E , de Daruvar A , Dehoux P , Domann E , Dominguez-Bernal G , Duchaud E , Durant L , Dussurget O , Entian KD , Fsihi H , Portillo FG , Garrido P , Gautier L , Goebel W , Gomez-Lopez N , Hain T , Hauf J , Jackson D , Jones LM , Kaerst U , Kreft J , Kuhn M , Kunst F , Kurapkat G , Madueno E , Maitournam A , Vicente JM , Ng E , Nedjari H , Nordsiek G , Novella S , de Pablos B , Perez-Diaz JC , Purcell R , Remmel B , Rose M , Schlueter T , Simoes N , Tierrez A , Vazquez-Boland JA , Voss H , Wehland J , Cossart P
Ref : Science , 294 :849 , 2001
Abstract : Listeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and secreted proteins, transporters, and transcriptional regulators, consistent with the ability of both species to adapt to diverse environments. The presence of 270 L. monocytogenes and 149 L. innocua strain-specific genes (clustered in 100 and 63 islets, respectively) suggests that virulence in Listeria results from multiple gene acquisition and deletion events.
ESTHER : Glaser_2001_Science_294_849
PubMedSearch : Glaser_2001_Science_294_849
PubMedID: 11679669
Gene_locus related to this paper: lisin-LIN0589 , lisin-LIN0754 , lisin-LIN0850 , lisin-LIN0949 , lisin-LIN0950 , lisin-LIN0976 , lisin-LIN1094 , lisin-LIN1546 , lisin-LIN1782 , lisin-LIN2180 , lisin-LIN2214 , lisin-LIN2363 , lisin-LIN2527 , lisin-LIN2544 , lisin-LIN2547 , lisin-LIN2722 , lisin-LIN2825 , lisin-LIN2898 , lismc-c1l0d9 , lismo-LMO0110 , lismo-LMO0493 , lismo-LMO0580 , lismo-LMO0752 , lismo-LMO0760 , lismo-LMO0857 , lismo-LMO0950 , lismo-LMO0951 , lismo-LMO0977 , lismo-LMO1128 , lismo-LMO1258 , lismo-LMO1511 , lismo-LMO1674 , lismo-LMO2074 , lismo-LMO2089 , lismo-LMO2109 , lismo-LMO2262 , lismo-LMO2433 , lismo-LMO2450 , lismo-LMO2452 , lismo-LMO2453 , lismo-LMO2578 , lismo-LMO2677 , lismo-LMO2755 , lismo-metx

Title : Novel features in a combined polyketide synthase\/non-ribosomal peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga15 - Silakowski_2001_Chem.Biol_8_59
Author(s) : Silakowski B , Nordsiek G , Kunze B , Blocker H , Muller R
Ref : Chemical Biology , 8 :59 , 2001
Abstract : BACKGROUND: Myxobacteria have been well established as a potent source for natural products with biological activity. They produce a considerable variety of compounds which represent typical polyketide structures with incorporated amino acids (e.g. the epothilons, the myxothiazols and the myxalamids). Several of these secondary metabolites are effective inhibitors of the electron transport via the respiratory chain and have been widely used. Molecular cloning and characterization of the genes governing the biosynthesis of these structures is of considerable interest, because such information adds to the limited knowledge as to how polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) interact and how they might be manipulated in order to form novel antibiotics.
RESULTS: A DNA region of approximately 50000 base pairs from Stigmatella aurantiaca Sga15 was sequenced and shown by gene disruption to be involved in myxalamid biosynthesis. Sequence analysis reveals that the myxalamids are formed by a combined PKS/NRPS system. The terminal NRPS MxaA extends the assembled polyketide chain of the myxalamids with alanine. MxaA contains an N-terminal domain with homology to NAD binding proteins, which is responsible during the biogenesis for a novel type of reductive chain release giving rise to the 2-amino-propanol moiety of the myxalamids. The last module of the PKS reveals an unprecedented genetic organization; it is encoded on two genes (mxaB1 and mxaB2), subdividing the domains of one module from each other. A sequence comparison of myxobacterial acyl-transferase domains with known systems from streptomycetes and bacilli reveals that consensus sequences proposed to be specific for methylmalonyl-CoA and malonyl-CoA are not always reliable.
CONCLUSIONS: The complete biosynthetic gene cluster of the myxalamid-type electron transport inhibitor from S. aurantiaca Sga15 has been cloned and analyzed. It represents one of the few examples of combined PKS/NRPS systems, the analysis and manipulation of which has the potential to generate novel hybrid structures via combinatorial biosynthesis (e.g. via module-swapping techniques). Additionally, a new type of reductive release from PKS/NRPS systems is described.
ESTHER : Silakowski_2001_Chem.Biol_8_59
PubMedSearch : Silakowski_2001_Chem.Biol_8_59
PubMedID: 11182319
Gene_locus related to this paper: stiau-Q93TW5

Title : The DNA sequence of human chromosome 21 - Hattori_2000_Nature_405_311
Author(s) : Hattori M , Fujiyama A , Taylor TD , Watanabe H , Yada T , Park HS , Toyoda A , Ishii K , Totoki Y , Choi DK , Groner Y , Soeda E , Ohki M , Takagi T , Sakaki Y , Taudien S , Blechschmidt K , Polley A , Menzel U , Delabar J , Kumpf K , Lehmann R , Patterson D , Reichwald K , Rump A , Schillhabel M , Schudy A , Zimmermann W , Rosenthal A , Kudoh J , Schibuya K , Kawasaki K , Asakawa S , Shintani A , Sasaki T , Nagamine K , Mitsuyama S , Antonarakis SE , Minoshima S , Shimizu N , Nordsiek G , Hornischer K , Brant P , Scharfe M , Schon O , Desario A , Reichelt J , Kauer G , Blocker H , Ramser J , Beck A , Klages S , Hennig S , Riesselmann L , Dagand E , Haaf T , Wehrmeyer S , Borzym K , Gardiner K , Nizetic D , Francis F , Lehrach H , Reinhardt R , Yaspo ML
Ref : Nature , 405 :311 , 2000
Abstract : Chromosome 21 is the smallest human autosome. An extra copy of chromosome 21 causes Down syndrome, the most frequent genetic cause of significant mental retardation, which affects up to 1 in 700 live births. Several anonymous loci for monogenic disorders and predispositions for common complex disorders have also been mapped to this chromosome, and loss of heterozygosity has been observed in regions associated with solid tumours. Here we report the sequence and gene catalogue of the long arm of chromosome 21. We have sequenced 33,546,361 base pairs (bp) of DNA with very high accuracy, the largest contig being 25,491,867 bp. Only three small clone gaps and seven sequencing gaps remain, comprising about 100 kilobases. Thus, we achieved 99.7% coverage of 21q. We also sequenced 281,116 bp from the short arm. The structural features identified include duplications that are probably involved in chromosomal abnormalities and repeat structures in the telomeric and pericentromeric regions. Analysis of the chromosome revealed 127 known genes, 98 predicted genes and 59 pseudogenes.
ESTHER : Hattori_2000_Nature_405_311
PubMedSearch : Hattori_2000_Nature_405_311
PubMedID: 10830953
Gene_locus related to this paper: human-LIPI

Title : Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana - Salanoubat_2000_Nature_408_820
Author(s) : Salanoubat M , Lemcke K , Rieger M , Ansorge W , Unseld M , Fartmann B , Valle G , Blocker H , Perez-Alonso M , Obermaier B , Delseny M , Boutry M , Grivell LA , Mache R , Puigdomenech P , de Simone V , Choisne N , Artiguenave F , Robert C , Brottier P , Wincker P , Cattolico L , Weissenbach J , Saurin W , Quetier F , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Benes V , Wurmbach E , Drzonek H , Erfle H , Jordan N , Bangert S , Wiedelmann R , Kranz H , Voss H , Holland R , Brandt P , Nyakatura G , Vezzi A , D'Angelo M , Pallavicini A , Toppo S , Simionati B , Conrad A , Hornischer K , Kauer G , Lohnert TH , Nordsiek G , Reichelt J , Scharfe M , Schon O , Bargues M , Terol J , Climent J , Navarro P , Collado C , Perez-Perez A , Ottenwalder B , Duchemin D , Cooke R , Laudie M , Berger-Llauro C , Purnelle B , Masuy D , de Haan M , Maarse AC , Alcaraz JP , Cottet A , Casacuberta E , Monfort A , Argiriou A , Flores M , Liguori R , Vitale D , Mannhaupt G , Haase D , Schoof H , Rudd S , Zaccaria P , Mewes HW , Mayer KF , Kaul S , Town CD , Koo HL , Tallon LJ , Jenkins J , Rooney T , Rizzo M , Walts A , Utterback T , Fujii CY , Shea TP , Creasy TH , Haas B , Maiti R , Wu D , Peterson J , Van Aken S , Pai G , Militscher J , Sellers P , Gill JE , Feldblyum TV , Preuss D , Lin X , Nierman WC , Salzberg SL , White O , Venter JC , Fraser CM , Kaneko T , Nakamura Y , Sato S , Kato T , Asamizu E , Sasamoto S , Kimura T , Idesawa K , Kawashima K , Kishida Y , Kiyokawa C , Kohara M , Matsumoto M , Matsuno A , Muraki A , Nakayama S , Nakazaki N , Shinpo S , Takeuchi C , Wada T , Watanabe A , Yamada M , Yasuda M , Tabata S
Ref : Nature , 408 :820 , 2000
Abstract : Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes.
ESTHER : Salanoubat_2000_Nature_408_820
PubMedSearch : Salanoubat_2000_Nature_408_820
PubMedID: 11130713
Gene_locus related to this paper: arath-MES17 , arath-AT3G12150 , arath-At3g61680 , arath-AT3g62590 , arath-CXE12 , arath-eds1 , arath-SCP25 , arath-F1P2.110 , arath-F1P2.140 , arath-F11F8.28 , arath-F14D17.80 , arath-F16B3.4 , arath-SCP27 , arath-At3g50790 , arath-At3g05600 , arath-PAD4 , arath-At3g51000 , arath-SCP16 , arath-gid1 , arath-GID1B , arath-Q9LUG8 , arath-Q84JS1 , arath-Q9SFF6 , arath-q9m236 , arath-q9sr22 , arath-q9sr23 , arath-SCP7 , arath-SCP14 , arath-SCP15 , arath-SCP17 , arath-SCP36 , arath-SCP37 , arath-SCP39 , arath-SCP40 , arath-SCP49 , arath-T19F11.2

Title : New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4\/3-1 - Silakowski_1999_J.Biol.Chem_274_37391
Author(s) : Silakowski B , Schairer HU , Ehret H , Kunze B , Weinig S , Nordsiek G , Brandt P , Blocker H , Hofle G , Beyer S , Muller R
Ref : Journal of Biological Chemistry , 274 :37391 , 1999
Abstract : The biosynthetic mta gene cluster responsible for myxothiazol formation from the fruiting body forming myxobacterium Stigmatella aurantiaca DW4/3-1 was sequenced and analyzed. Myxothiazol, an inhibitor of the electron transport via the bc(1)-complex of the respiratory chain, is biosynthesized by a unique combination of several polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS), which are activated by the 4'-phosphopantetheinyl transferase MtaA. Genomic replacement of a fragment of mtaB and insertion of a kanamycin resistance gene into mtaA both impaired myxothiazol synthesis. Genes mtaC and mtaD encode the enzymes for bis-thiazol(ine) formation and chain extension on one pure NRPS (MtaC) and on a unique combination of PKS and NRPS (MtaD). The genes mtaE and mtaF encode PKSs including peptide fragments with homology to methyltransferases. These methyltransferase modules are assumed to be necessary for the formation of the proposed methoxy- and beta-methoxy-acrylate intermediates of myxothiazol biosynthesis. The last gene of the cluster, mtaG, again resembles a NRPS and provides insight into the mechanism of the formation of the terminal amide of myxothiazol. The carbon backbone of an amino acid added to the myxothiazol-acid is assumed to be removed via an unprecedented module with homology to monooxygenases within MtaG.
ESTHER : Silakowski_1999_J.Biol.Chem_274_37391
PubMedSearch : Silakowski_1999_J.Biol.Chem_274_37391
PubMedID: 10601310
Gene_locus related to this paper: stiau-MTAG