(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Viridiplantae: NE > Streptophyta: NE > Streptophytina: NE > Embryophyta: NE > Tracheophyta: NE > Euphyllophyta: NE > Spermatophyta: NE > Magnoliophyta: NE > Mesangiospermae: NE > Liliopsida: NE > Petrosaviidae: NE > commelinids: NE > Poales: NE > Poaceae: NE > BOP clade: NE > Oryzoideae: NE > Oryzeae: NE > Oryzinae: NE > Oryza: NE > Oryza sativa: NE > Oryza sativa Japonica Group: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Oryza sativa Japonica Group: N, E.
Oryza sativa subsp. indica: N, E.
Oryza sativa Indica Group: N, E.
Oryza glaberrima: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MASPTSSASAPASHHLRLWWGRRGRGGAVGATFTVALLAAALLLALSLYA SSLPRAPTTPSSSSNLVGLTLVRRAKEKGAVCLDGSAPGYHLQRGSGTGS QNWLLHLEGGGWCRNLRSCASRQKSVLGSSQYMECQIEFAGILSNDKFQN PDFYNWNKVKIRYCDGASFSGNVKNELQNGTKFFFRGQRIWEAVMSELLL KGLRHAKQAFLTGCSAGGLATFIHCDNFRTLLPKDSRVKCLADGGFFLDV EDISGQRTMRAFYNDVVRLQDLRGRFPHCGPNMDLGQCFFPSEVVKDIIT PVFVLNPAYDAWQVQHVLSPVASDPQHSWLECRLDISKCDSNQLEILQGF RKKLHDTISELKHKKDWGFFIDSCFIHCQSLNSLTWHSPSSLRVNNKTIA EAVGDWFFDRREVKEIDCEYPCNPTCHNLVFAKPFKA
The Rice Annotation Project Database (RAP-DB) was created to provide the genome sequence assembly of the International Rice Genome Sequencing Project (IRGSP), manually curated annotation of the sequence, and other genomics information that could be useful for comprehensive understanding of the rice biology. Since the last publication of the RAP-DB, the IRGSP genome has been revised and reassembled. In addition, a large number of rice-expressed sequence tags have been released, and functional genomics resources have been produced worldwide. Thus, we have thoroughly updated our genome annotation by manual curation of all the functional descriptions of rice genes. The latest version of the RAP-DB contains a variety of annotation data as follows: clone positions, structures and functions of 31 439 genes validated by cDNAs, RNA genes detected by massively parallel signature sequencing (MPSS) technology and sequence similarity, flanking sequences of mutant lines, transposable elements, etc. Other annotation data such as Gnomon can be displayed along with those of RAP for comparison. We have also developed a new keyword search system to allow the user to access useful information. The RAP-DB is available at: http://rapdb.dna.affrc.go.jp/ and http://rapdb.lab.nig.ac.jp/.
        
Title: The map-based sequence of the rice genome. Matsumo T, Sasaki T Ref: Nature, 436:793, 2005 : PubMed
We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000-40,000. Only 2%-3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.