Liang X

References (34)

Title : Neurotoxicity of Benzotriazole Ultraviolet Stabilizers in Teleost Fishes: A Review - Li_2024_Toxics_12_
Author(s) : Li M , Ivantsova E , Liang X , Martyniuk CJ
Ref : Toxics , 12 : , 2024
Abstract : Plastic additives that maintain integrity have been extensively studied for potential toxicity to fish; however, chemicals that protect polymers from (artificial) UV degradation are less studied. Benzotriazole UV stabilizers (BUVSs) are the most widely used UV stabilizers in plastics and are often used in sunscreens, cosmetics, paint, and food packaging. BUVSs can negatively affect aquatic wildlife when released into the environment via plastic degradation. In this review, we summarize the distribution of BUVSs globally and discuss neurotoxicological endpoints measured in fish to understand how these plastic additives can affect the neurological health of teleost fishes. BUVSs have been detected in aquatic environments at concentrations ranging from 0.05 up to 99,200 ng/L. Studies show that BUVSs affect behavioral responses and acetylcholinesterase activity, indicators of neurotoxicity. Our computational analysis using transcriptome data suggests certain pathways associated with neurodegeneration are responsive to exposure to BUVSs, like "Complement Activation in Alzheimer's Disease". Based on our review, we identify some research needs for future investigations: (1) molecular studies in the central nervous system to define precise mechanisms of neurotoxicity; (2) a wider range of tests for assessing aberrant behaviors given that BUVSs can affect the activity of larval zebrafish; and (3) histopathology of the nervous system to accompany biochemical analyses. These data are expected to enhance understanding of the neurotoxicity potential of benzotriazoles and other plastic additives.
ESTHER : Li_2024_Toxics_12_
PubMedSearch : Li_2024_Toxics_12_
PubMedID: 38393220

Title : Molecular Modeling Insights into Metal-Organic Frameworks (MOFs) as a Potential Matrix for Immobilization of Lipase: An In Silico Study - Patil_2023_Biology.(Basel)_12_
Author(s) : Patil PJ , Kamble SA , Dhanavade MJ , Liang X , Zhang C , Li X
Ref : Biology (Basel) , 12 : , 2023
Abstract : CRL is a highly versatile enzyme that finds extensive utility in numerous industries, which is attributed to its selectivity and catalytic efficiency, which have been impeded by the impracticality of its implementation, leading to a loss of native catalytic activity and non-reusability. Enzyme immobilization is a necessary step for enabling its reuse, and it provides methods for regulating the biocatalyst's functional efficacy in a synthetic setting. MOFs represent a novel category of porous materials possessing distinct superlative features that make MOFs an optimal host matrix for developing enzyme-MOF composites. In this study, we employed molecular modeling approaches, for instance, molecular docking and MD simulation, to explore the interactions between CRL and a specific MOF, ZIF-8. The present study involved conducting secondary structural analysis and homology modeling of CRL, followed by docking ZIF-8 with CRL. The results of the molecular docking analysis indicate that ZIF-8 was situated within the active site pocket of CRL, where it formed hydrogen bonds with Val-81, Phe-87, Ser-91, Asp-231, Thr-132, Lue-297, Phe-296, Phe-344, Thr-347, and Ser-450. The MD simulation analysis revealed that the CRL and ZIF-8 docked complex exhibited stability over the entire simulation period, and all interactions presented in the initial docked complex were maintained throughout the simulation. The findings derived from this investigation could promote comprehension of the molecular mechanisms underlying the interaction between CRL and ZIF-8 as well as the development of immobilized CRL for diverse industrial purposes.
ESTHER : Patil_2023_Biology.(Basel)_12_
PubMedSearch : Patil_2023_Biology.(Basel)_12_
PubMedID: 37626937

Title : Exogenous methyl jasmonate induced cassava defense response and enhanced resistance to Tetranychus urticae - Zhang_2023_Exp.Appl.Acarol__
Author(s) : Zhang Y , Liu Y , Liang X , Wu C , Liu X , Wu M , Yao X , Qiao Y , Zhan X , Chen Q
Ref : Exp Appl Acarol , : , 2023
Abstract : Exogenous application of methyl jasmonate (MeJA) could activate plant defense response against the two-spotted spider mite (TSSM), Tetranychus urticae Koch,sin different plants. However, whether MeJA can also serve as an elicitor in cassava (Manihot esculenta Crantz) remains unknown. In this study, induced defense responses were investigated in TSSM-resistant cassava variety C1115 and TSSM-susceptible cassava variety KU50 when applied with MeJA. The performance of TSSM feeding on cassava plants that werespre-treated with various concentrations of MeJA was first evaluated. Subsequently, the activities of antioxidative enzymes (superoxide dismutase and catalase), detoxification enzymes (glutathione S-transferase, cytochrome P450 and carboxylesterase) and digestive enzymes (protease, amylase and invertase) in TSSM were analyzed at days 1, 2, 4 and 8 post-feeding. The results showed that MeJA treatment can induce cassava defense responses to TSSM in terms of reducing egg production and adult longevity as well as slowing development and prolonging thesegg stage. Noticeably, C1115 exhibited stronger inhibition of TSSM development and reproduction than KU50. In addition, the activities of all the tested enzymes were induced in both C1115 and KU50, the most in C1115. We conclude that exogenous methyl jasmonate can induce cassava defense responses and enhance resistance to TSSM.
ESTHER : Zhang_2023_Exp.Appl.Acarol__
PubMedSearch : Zhang_2023_Exp.Appl.Acarol__
PubMedID: 36635606

Title : Biotransformation, metabolic response, and toxicity of UV-234 and UV-326 in larval zebrafish (Danio rerio) - Zhang_2023_Environ.Int_174_107896
Author(s) : Zhang J , Huang Y , Pei Y , Wang Y , Li M , Chen H , Liang X , Martyniuk CJ
Ref : Environ Int , 174 :107896 , 2023
Abstract : Benzotriazole ultraviolet stabilizers (BUVSs) are emerging pollutants that are widely detected in aquatic ecosystems. While structure-dependent effects of BUVSs are reported, the relationship between biotransformation and toxicity outcomes remains unclear. In this study, zebrafish embryos were exposed to two common BUVSs (UV-234 and UV-326) at 1, 10, and 100 microg/L for up to 7 days. Comparison of their uptake and biotransformation revealed that the bioaccumulation capacity of UV-234 was higher than that of UV-326, while UV-326 was more extensively biotransformed with additional conjugation reactions. However, UV-326 showed low metabolism due to inhibited phase II enzymes, which may result in the comparable internal concentrations of both BUVSs in larval zebrafish. Both BUVSs induced oxidative stress while decreased MDA, suggesting the disturbance of lipid metabolism. The subsequent metabolomic profiling revealed that UV-234 and UV-326 exerted different effects on arachidonic acid, lipid, and energy metabolism. However, both BUVSs negatively impacted the cyclic guanosine monophosphate / protein kinase G pathway. This converged metabolic change resulted in comparable toxicity of UV-234 and UV-326, which was confirmed by the induction of downstream apoptosis, neuroinflammation, and abnormal locomotion behavior. These data have important implications for understanding the metabolism, disposition, and toxicology of BUVSs in aquatic organisms.
ESTHER : Zhang_2023_Environ.Int_174_107896
PubMedSearch : Zhang_2023_Environ.Int_174_107896
PubMedID: 36966637

Title : Smartphone-based colorimetric sensor array using gold nanoparticles for rapid distinguishment of multiple pesticides in real samples - Zhao_2023_Food.Chem_404_134768
Author(s) : Zhao T , Liang X , Guo X , Yang X , Guo J , Zhou X , Huang X , Zhang W , Wang Y , Liu Z , Jiang Z , Zhou H
Ref : Food Chem , 404 :134768 , 2023
Abstract : A simple, sensitive method for pesticide distinguishment based on a colorimetric sensor array using diverse gold nanoparticles (AuNPs) at room temperature is presented in this study. Acetylcholinesterase (AChE) hydrolysis ability was influenced by different pesticides and produced different concentrations of thiocholine by hydrolyzing acetylthiocholine iodide (ATCh). Thiocholine could be easily linked to the AuNPs through an Aus-sS covalent bond, and AuNPs underwent aggregation, resulting in a visible color change due to alteration of surface plasmon resonance properties. Based on these results, we successfully distinguished eight pesticides (glyphosate, thiram, imidacloprid, tribenuron methyl, nicosulfuron, thifensulfuron methyl, dichlorprop, and fenoprop) utilizing five different AuNPs by colorimetric assay. The limit of detection (LOD) of this visual method for all pesticides was less than 1.5x 10(-7) M, which was more sensitive than the U.S. Environmental Protection Agency regulations specify (1.18s-s3.91x10(-6) M). This method was further improved by combining a portable smartphone device with a color picking application using (color name AR) and RGB (red, green, blue) values. The method was successfully applied to pesticide residue distinguishment in real samples by linear discriminant analysis (LDA).
ESTHER : Zhao_2023_Food.Chem_404_134768
PubMedSearch : Zhao_2023_Food.Chem_404_134768
PubMedID: 36444090

Title : Construction of Fusion Protein with Carbohydrate-Binding Module and Leaf-Branch Compost Cutinase to Enhance the Degradation Efficiency of Polyethylene Terephthalate - Chen_2023_Int.J.Mol.Sci_24_2780
Author(s) : Chen Y , Zhang S , Zhai Z , Ma J , Liang X , Li Q
Ref : Int J Mol Sci , 24 :2780 , 2023
Abstract : Poly(ethylene terephthalate) (PET) is a manufactured plastic broadly available, whereas improper disposal of PET waste has become a serious burden on the environment. Leaf-branch compost cutinase (LCC) is one of the most powerful and promising PET hydrolases, and its mutant LCC(ICCG) shows high catalytic activity and excellent thermal stability. However, low binding affinity with PET has been found to dramatically limit its further industrial application. Herein, TrCBM and CfCBM were rationally selected from the CAZy database to construct fusion proteins with LCC(ICCG), and mechanistic studies revealed that these two domains could bind with PET favorably via polar amino acids. The optimal temperatures of LCC(ICCG)-TrCBM and CfCBM-LCC(ICCG) were measured to be 70 and 80 degreesC, respectively. Moreover, these two fusion proteins exhibited favorable thermal stability, maintaining 53.1% and 48.8% of initial activity after the incubation at 90 degreesC for 300 min. Compared with LCC(ICCG), the binding affinity of LCC(ICCG)-TrCBM and CfCBM-LCC(ICCG) for PET has been improved by 1.4- and 1.3-fold, respectively, and meanwhile their degradation efficiency on PET films was enhanced by 3.7% and 24.2%. Overall, this study demonstrated that the strategy of constructing fusion proteins is practical and prospective to facilitate the enzymatic PET degradation ability.
ESTHER : Chen_2023_Int.J.Mol.Sci_24_2780
PubMedSearch : Chen_2023_Int.J.Mol.Sci_24_2780
PubMedID: 36769118
Gene_locus related to this paper: 9bact-g9by57

Title : Molecular mechanism of LIP05 derived from Monascus purpureus YJX-8 for synthesizing fatty acid ethyl esters under aqueous phase - Zhao_2022_Front.Microbiol_13_1107104
Author(s) : Zhao J , Xu Y , Lu H , Zhao D , Zheng J , Lin M , Liang X , Ding Z , Dong W , Yang M , Li W , Zhang C , Sun B , Li X
Ref : Front Microbiol , 13 :1107104 , 2022
Abstract : Fatty acid ethyl esters are important flavor chemicals in strong-flavor Baijiu. Monascus purpureus YJX-8 is recognized as an important microorganism for ester synthesis in the fermentation process. Enzyme LIP05 from YJX-8 can efficiently catalyze the synthesis of fatty acid ethyl esters under aqueous phase, but the key catalytic sites affecting esterification were unclear. The present work combined homology modeling, molecular dynamics simulation, molecular docking and site-directed mutation to analyze the catalytic mechanism of LIP05. Protein structure modeling indicated LIP05 belonged to alpha/beta fold hydrolase, contained a lid domain and a core catalytic pocket with conserved catalytic triad Ser150-His215-Asp202, and the oxyanion hole composed of Gly73 and Thr74. Ile30 and Leu37 of the lid domain were found to affect substrate specificity. The Pi-bond stacking between Tyr116 and Tyr149 played an important role in stabilizing the catalytic active center of LIP05. Tyr116 and Ile204 determined the substrate spectrum by composing the substrate-entrance channel. Residues Leu83, Ile204, Ile211 and Leu216 were involved in forming the hydrophobic substrate-binding pocket through steric hindrance and hydrophobic interaction. The catalytic mechanism for esterification in aqueous phase of LIP05 was proposed and provided a reference for clarifying the synthesis of fatty acid ethyl esters during the fermentation process of strong-flavor Baijiu.
ESTHER : Zhao_2022_Front.Microbiol_13_1107104
PubMedSearch : Zhao_2022_Front.Microbiol_13_1107104
PubMedID: 36713181

Title : Evaluation of the toxicity effects of microplastics and cadmium on earthworms - Liang_2022_Sci.Total.Environ__155747
Author(s) : Liang X , Zhou D , Wang J , Li Y , Liu Y , Ning Y
Ref : Sci Total Environ , :155747 , 2022
Abstract : Microplastics (MPs) and heavy metal pollution have become research hotspots in recent years. This study focused on the comprehensive evaluation of the toxicity effect on Eisenia fetida under combined exposure to MPs and the heavy metal cadmium (Cd). With Cd concentration, MPs concentration and MPs partical size as stress factors, the TOPSIS model was constructed to explore the toxicity levels of the stress factors. A short-term co-exposure test and a long-term co-exposure test were designed by orthogonal combination tests with equivalent toxicity levels. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione peroxidase (GPX), glutathione S transferase (GST), and acetylcholinesterase (AChE) and the contents of protein (TP), glutathione (GSH), and malondialdehyde (MDA) in earthworms were determined. Integrated biological responses version 2 (IBRv2) was used to evaluate the toxicity of MPs and Cd combined exposure on earthworms. The results showed that the toxicity ratio of Cd concentration, MPs concentration and MPs partical size was 46 to 29 to 25. Combined exposure to MPs and Cd enhanced the activities of SOD, POD, CAT, GPX and GST, MDA and GSH contents also increased, while the AChE activities were inhibited. SOD, GPX and GST play important roles in the resistance of earthworms to pollutant stress. During short-term co-exposure, Cd concentration had antagonistic effects with on MPs concentration and MPs partical size, while they showed synergistic effects during long-term co-exposure.
ESTHER : Liang_2022_Sci.Total.Environ__155747
PubMedSearch : Liang_2022_Sci.Total.Environ__155747
PubMedID: 35533859

Title : Methyl Jasmonate-Treated Pepper (Capsicum annuum L.) Depresses Performance and Alters Activities of Protective, Detoxification and Digestive Enzymes of Green Peach Aphid [Myzus persicae (Sulzer) (Hemiptera: Aphididae)] - Zhan_2022_J.Insect.Sci_22_
Author(s) : Zhan X , Liu Y , Liang X , Wu C , Liu X , Shui J , Zhang Y , Wang Y , Chen Q
Ref : J Insect Sci , 22 : , 2022
Abstract : Methyl jasmonate (MeJA) is a phytohormone that has been used to artificially induce plant resistance against multiple arthropod herbivores. However, it is still uncertain whether MeJA can trigger pepper plant resistance against Myzus persicae (Sulzer) (Hemiptera: Aphididae) (green peach aphid, GPA). In this study, we assessed the effects of different concentrations (0, 0.008, 0.04, 0.2, 1.0, and 5.0 mM) of MeJA-treated pepper on the development and reproduction performance of GPA to identify an appropriate concentration for vigorous resistance enhancement. MeJA dose was applied on the pepper to investigate the changes in activities of protective enzyme (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD and polyphenol oxidase, PPO), detoxification enzymes (acetylcholinesterase, AchE; glutathione S-transferase, GSTs; cytocrome P450, CYP450, and carboxylesterase, CarE), and digestive enzymes (protease, PRO and amylase, AMY) in GPA. The results showed that all concentrations of MeJA-treated pepper significantly suppressed GPA performance, wherein 0.2 mM was the optimal concentration, as it presented the lowest intrinsic rate of increase (rm), finite rate of increase (lambda), and the highest population doubling time (Dt) values. Furthermore, the protective enzymes (SOD and CAT), detoxification enzymes (GSTs, CYP450, and CarE), and AMY activities increased significantly in MeJA-treated groups than the control group, while the POD and PPO activities were remarkly inhibited under 0.2 mM treatment. These findings indicate that exogenous spraying of 0.2 mM of MeJA significantly enhanced pepper resistance against GPA. The result of this study suggests MeJA application can be used as a promising strategy in integrative management of this insect pest.
ESTHER : Zhan_2022_J.Insect.Sci_22_
PubMedSearch : Zhan_2022_J.Insect.Sci_22_
PubMedID: 36545895

Title : Comparative transcriptome analysis reveals the non-neuronal cholinergic system in the ovary of the oriental armyworm, Mythimna separata Walker (Lepidoptera: Noctuidae) - Tian_2022_Pest.Manag.Sci__
Author(s) : Tian X , Guo J , Su X , Zhan B , Liang X , Ma A , Zhang Y , Lu S
Ref : Pest Manag Sci , : , 2022
Abstract : BACKGROUND: Acetylcholine (ACh), as a classical neurotransmitter, plays great roles in the nervous system. There is increasing evidence of its non-neuronal roles in regulating basic cell functions in vertebrates. However, knowledge about the non-neuronal cholinergic system in insects is scarce. RESULTS: A comparative transcriptome analysis was performed to investigate differences in the key molecular components of the cholinergic system between the head and ovary. The results showed that expression levels of most cholinergic system-related genes were higher in the head than in the ovary, and some cholinergic components were absent in the ovary. ACh contents ranged from 0.1 to 1.3 microg mg(-1) of wet weight during the development of the ovary, and weak acetylcholinesterase activity was also detected. Moreover, the ovary has a capacity for ACh synthesis. Bromoacetylcarnitine (BrACar), a specific carnitine acetyltransferase (CarAT) inhibitor, greatly inhibits ACh synthesis by 83.83% in ovary homogenates, but bromoacetylcholine (BrACh), a specific choline acetyltransferase (ChAT) inhibitor, has no effect on ACh synthesis in the ovary. These findings indicate that non-neuronal ACh in the ovary is only catalyzed by CarAT. CONCLUSION: This study reveals the existence of the non-neuronal cholinergic system in the ovary of M. separata, whose synthesis and release mechanisms are different from those of the head. These results provide novel insights into the non-neuronal cholinergic system in insects, and will be valuable in the discovery of new target genes and the future development of green pest control. 2022 Society of Chemical Industry.
ESTHER : Tian_2022_Pest.Manag.Sci__
PubMedSearch : Tian_2022_Pest.Manag.Sci__
PubMedID: 36053883

Title : Molecular and behavioral responses of zebrafish embryos\/larvae after sertraline exposure - Yang_2021_Ecotoxicol.Environ.Saf_208_111700
Author(s) : Yang H , Liang X , Zhao Y , Gu X , Mao Z , Zeng Q , Chen H , Martyniuk CJ
Ref : Ecotoxicology & Environmental Safety , 208 :111700 , 2021
Abstract : Sertraline (SER) is one of the most frequently detected antidepressant drugs in aquatic environments. However, knowledge regarding SER-induced behavioral alterations in fish is insufficient, as well as the mechanisms underlying SER-induced toxicity. The present study aimed to determine behavioral and molecular responses in larval fish following SER exposure with a focus on its mode of action. Zebrafish embryos (~6 h-post-fertilization, hpf) were exposed to one of three concentrations of SER (1, 10, 100 microg/L) for 6 days, respectively. Evaluated parameters included development, behavior, transcripts related to serotonin signaling, serotonin levels, and acetylcholinesterase activity. Accelerated hatching of zebrafish embryos was observed for those fish exposed to 100 microg/L SER at 54 hpf. Locomotor activity (e.g. distance moved and mobile cumulative duration) was significantly reduced in larval zebrafish following exposure to 10 and 100 microg/L SER. Conversely, larval fish showed increased dark-avoidance after exposure to 1-100 microg/L SER. Of the measured transcripts related to serotonin signaling, only serotonin transporter (serta) and serotonin receptor 2c (5-ht2c) mRNA levels were increased in fish in response to 10 microg/L SER treatment. However, serotonin levels were unaltered in larvae exposed to SER. There were no differences among groups in acetylcholinesterase activity at any concentration tested. Taking together, the results evidenced that exposure to SER alters behavioral responses in early-staged zebrafish, which may be related to the abnormal expression of 5-ht2c. This study elucidates molecular responses to SER and characterizes targets that may be sensitive to antidepressant pharmaceuticals in larval fish.
ESTHER : Yang_2021_Ecotoxicol.Environ.Saf_208_111700
PubMedSearch : Yang_2021_Ecotoxicol.Environ.Saf_208_111700
PubMedID: 33396031

Title : Protein liposomes-mediated targeted acetylcholinesterase gene delivery for effective liver cancer therapy - Wang_2021_J.Nanobiotechnology_19_31
Author(s) : Wang K , Shang F , Chen D , Cao T , Wang X , Jiao J , He S , Liang X
Ref : J Nanobiotechnology , 19 :31 , 2021
Abstract : BACKGROUND: Effective methods to deliver therapeutic genes to solid tumors and improve their bioavailability are the main challenges of current medical research on gene therapy. The development of efficient non-viral gene vector with tumor-targeting has very important application value in the field of cancer therapy. Proteolipid integrated with tumor-targeting potential of functional protein and excellent gene delivery performance has shown potential for targeted gene therapy. RESULTS: Herein, we prepared transferrin-modified liposomes (Tf-PL) for the targeted delivery of acetylcholinesterase (AChE) therapeutic gene to liver cancer. We found that the derived Tf-PL/AChE liposomes exhibited much higher transfection efficiency than the commercial product Lipo 2000 and shown premium targeting efficacy to liver cancer SMMC-7721 cells in vitro. In vivo, the Tf-PL/AChE could effectively target liver cancer, and significantly inhibit the growth of liver cancer xenografts grafted in nude mice by subcutaneous administration. CONCLUSIONS: This study proposed a transferrin-modified proteolipid-mediated gene delivery strategy for targeted liver cancer treatment, which has a promising potential for precise personalized cancer therapy.
ESTHER : Wang_2021_J.Nanobiotechnology_19_31
PubMedSearch : Wang_2021_J.Nanobiotechnology_19_31
PubMedID: 33482834

Title : Transcription Factor CfSte12 of Colletotrichum fructicola Is a Key Regulator of Early Apple Glomerella Leaf Spot Pathogenesis - Liu_2020_Appl.Environ.Microbiol_87_
Author(s) : Liu W , Liang X , Gleason ML , Cao M , Zhang R , Sun G
Ref : Applied Environmental Microbiology , 87 : , 2020
Abstract : Glomerella leaf spot (GLS), caused by Colletotrichum fructicola, is a rapidly emerging disease leading to defoliation, fruit spot, and storage fruit rot on apple in China. Little is known about the mechanisms of GLS pathogenesis. Early transcriptome analysis revealed that expression of the zinc finger transcription factor Ste12 gene in C. fructicola (CfSte12) was upregulated in appressoria and leaf infection. To investigate functions of CfSte12 during pathogenesis, we constructed gene deletion mutants (deltaCfSte12) by homologous recombination. Phenotypic analysis revealed that CfSte12 was involved in pathogenesis of nonwounded apple fruit and leaf, as well as wounded apple fruit. Subsequent histological studies revealed that loss of pathogenicity by deltaCfSte12 on apple leaf was expressed as defects of conidium germination, appressorium development, and appressorium-mediated penetration. Further RNA sequencing-based transcriptome comparison revealed that CfSte12 modulates the expression of genes related to appressorium function (e.g., genes for the tetraspanin PLS1, Gas1-like proteins, cutinases, and melanin biosynthesis) and candidate effectors likely involved in plant interaction. In sum, our results demonstrated that CfSte12 is a key regulator of early apple GLS pathogenesis in C. fructicola In addition, CfSte12 is also needed for sexual development of perithecia and ascospores.IMPORTANCE Glomerella leaf spot (GLS) is an emerging fungal disease of apple that causes huge economic losses in Asia, North America, and South America. The damage inflicted by GLS manifests in rapid necrosis of leaves, severe defoliation, and necrotic spot on the fruit surface. However, few studies have addressed mechanisms of GLS pathogenesis. In this study, we identified and characterized a key pathogenicity-related transcription factor, CfSte12, of Colletotrichum fructicola that contributes to GLS pathogenesis. We provide evidence that the CfSte12 protein regulates many important pathogenic processes of GLS, including conidium germination, appressorium formation, appressorium-mediated penetration, and colonization. CfSte12 also impacts development of structures needed for sexual reproduction which are vital for the GLS disease cycle. These results reveal a key pathogenicity-related transcription factor, CfSte12, in C. fructicola that causes GLS.
ESTHER : Liu_2020_Appl.Environ.Microbiol_87_
PubMedSearch : Liu_2020_Appl.Environ.Microbiol_87_
PubMedID: 33067192

Title : Environmentally relevant concentrations of sertraline disrupts behavior and the brain and liver transcriptome of juvenile yellow catfish (Tachysurus fulvidraco): Implications for the feeding and growth axis - Chen_2020_J.Hazard.Mater_409_124974
Author(s) : Chen H , Liang X , Gu X , Zeng Q , Mao Z , Martyniuk CJ
Ref : J Hazard Mater , 409 :124974 , 2020
Abstract : Sertraline (SER) is one of the most prevalent antidepressants detected in aquatic environments, but its impact on fish behavior and growth remain poorly understood. As such, behavior and growth were assessed in yellow catfish (Tachysurus fulvidraco) following SER exposure. SER induced shoaling, reduced food consumption and growth, and increased cannibalism at environmentally relevant concentrations. To ascertain toxicity mechanisms, acetylcholinesterase (AChE) activity and transcripts related to growth and feeding were measured. AChE activity was increased in fish exposed to 10 and 100 microg/L SER. Transcript levels of neuropeptide Y, somatostatin, growth hormone, and insulin growth factor 1 were reduced in the brain following SER exposure. RNA-seq conducted in brain and liver revealed that gene networks associated with feeding and growth (i.e. leptin expression networks in the brain and insulin signaling pathways in the liver) were altered, proposed to be associated with the decreased food intake and growth. The brain also accumulated SER, which may relate to neurobehavioral responses. Lastly, the main metabolite of SER, norsertraline, was detected in the liver, and may also relate to toxicity. This study uncovers mechanisms and key events proposed to lead to impaired behavior and growth after exposure to some antidepressants.
ESTHER : Chen_2020_J.Hazard.Mater_409_124974
PubMedSearch : Chen_2020_J.Hazard.Mater_409_124974
PubMedID: 33450510

Title : Morning and Evening Circadian Pacemakers Independently Drive Premotor Centers via a Specific Dopamine Relay - Liang_2019_Neuron_102_843
Author(s) : Liang X , Ho MCW , Zhang Y , Li Y , Wu MN , Holy TE , Taghert PH
Ref : Neuron , 102 :843 , 2019
Abstract : Many animals exhibit morning and evening peaks of locomotor behavior. In Drosophila, two corresponding circadian neural oscillators-M (morning) cells and E (evening) cells-exhibit a corresponding morning or evening neural activity peak. Yet we know little of the neural circuitry by which distinct circadian oscillators produce specific outputs to precisely control behavioral episodes. Here, we show that ring neurons of the ellipsoid body (EB-RNs) display spontaneous morning and evening neural activity peaks in vivo: these peaks coincide with the bouts of locomotor activity and result from independent activation by M and E pacemakers. Further, M and E cells regulate EB-RNs via identified PPM3 dopaminergic neurons, which project to the EB and are normally co-active with EB-RNs. These in vivo findings establish the fundamental elements of a circadian neuronal output pathway: distinct circadian oscillators independently drive a common pre-motor center through the agency of specific dopaminergic interneurons.
ESTHER : Liang_2019_Neuron_102_843
PubMedSearch : Liang_2019_Neuron_102_843
PubMedID: 30981533

Title : Screening and determination for potential acetylcholinesterase inhibitory constituents from ginseng stem-leaf saponins using ultrafiltration (UF)-LC-ESI-MS(2) - Yang_2019_Phytochem.Anal_30_26
Author(s) : Yang Y , Liang X , Jin P , Li N , Zhang Q , Yan W , Zhang H , Sun J
Ref : Phytochem Anal , 30 :26 , 2019
Abstract : INTRODUCTION: Previous studies have demonstrated that several ginsenosides have remarkable inhibitory effect on acetylcholinesterase (AChE). In the present study, ginseng stem-leaf saponins (GSLS) can improve learning and memory of Alzheimer's disease patients. However, much comprehensive information regarding AChE inhibition of GSLS and its metabolites is yet unknown. OBJECTIVE: The present study aims to screen and determine the potential of AChE inhibitors (AChEIs) from GSLS. METHODOLOGY: The active fraction of the GSLS detected in vitro AChE inhibition assays was selected as a starting material for the screening of the potential of AChEIs using ultrafiltration liquid chromatography coupled to electrospray ionisation tandem mass spectrometry (UF-LC-ESI-MS(2) ). RESULTS: The results showed that 31 ginsenosides were identified with analysis using rapid resolution liquid chromatography with a diode array detector combined with electrospray ionisation tandem mass spectrometry (RRLC-DAD-ESI-MS(2) ) from the active fraction, and there are 27 compounds with AChE binding activity. Among them, 11 ginsenosides were evaluated and confirmed using in vitro enzymatic assay, and ginsenosides F1 , Rd, Rk3 , 20(S)-Rg3 , F2 and Rb2 were found to possess strong AChE inhibitory activities. CONCLUSION: The proposed UF-LC-ESI-MS(2) method was a powerful tool for the discovery of AChEIs from traditional Chinese medicine (TCM).
ESTHER : Yang_2019_Phytochem.Anal_30_26
PubMedSearch : Yang_2019_Phytochem.Anal_30_26
PubMedID: 30159954

Title : Protein-Inorganic Hybrid Nanoflower-Rooted Agarose Hydrogel Platform for Point-of-Care Detection of Acetylcholine - Kong_2019_ACS.Appl.Mater.Interfaces_11_11857
Author(s) : Kong D , Jin R , Zhao X , Li H , Yan X , Liu F , Sun P , Gao Y , Liang X , Lin Y , Lu G
Ref : ACS Appl Mater Interfaces , 11 :11857 , 2019
Abstract : Rapid and precise profiling of acetylcholine (ACh) has become important for diagnosing diseases and safeguarding health care because of its pivotal role in the central nervous system. Herein, we developed a new colorimetric sensor based on protein-inorganic hybrid nanoflowers as artificial peroxidase, comprising a test kit and a smartphone reader, which sensitively quantifies ACh in human serum. In this sensor, ACh indirectly triggered the substrate reaction with the help of a multienzyme system including acetylcholinesterase, choline oxidase, and mimic peroxidase (nanoflowers), accompanying the enhancement of absorbance intensity at 652 nm. Therefore, the multienzyme platform can be used to detect ACh via monitoring the change of the absorbance in a range from 0.0005 to 6.0 mmol L(-1). It is worth mentioning that the platform was used to prepare a portable agarose gel-based kit for rapid qualitative monitoring of ACh. Coupling with ImageJ program, the image information of test kits can be transduced into the hue parameter, which provides a directly quantitative tool to identify ACh. Based on the advantages of simple operation, good selectivity, and low cost, the availability of a portable kit for point-of-care testing will achieve the needs of frequent screening and diagnostic tracking.
ESTHER : Kong_2019_ACS.Appl.Mater.Interfaces_11_11857
PubMedSearch : Kong_2019_ACS.Appl.Mater.Interfaces_11_11857
PubMedID: 30830739

Title : Synthesis and Evaluation of Novel Ligustrazine Derivatives as Multi-Targeted Inhibitors for the Treatment of Alzheimer's Disease - Wu_2018_Molecules_23_
Author(s) : Wu W , Liang X , Xie G , Chen L , Liu W , Luo G , Zhang P , Yu L , Zheng X , Ji H , Zhang C , Yi W
Ref : Molecules , 23 : , 2018
Abstract : A series of novel ligustrazine derivatives 8a(-)r were designed, synthesized, and evaluated as multi-targeted inhibitors for anti-Alzheimer's disease (AD) drug discovery. The results showed that most of them exhibited a potent ability to inhibit both ChEs, with a high selectivity towards AChE. In particular, compounds 8q and 8r had the greatest inhibitory abilities for AChE, with IC50 values of 1.39 and 0.25 nM, respectively, and the highest selectivity towards AChE (for 8q, IC50 BuChE/IC50 AChE = 2.91 x 10(6); for 8r, IC50 BuChE/IC50 AChE = 1.32 x 10(7)). Of note, 8q and 8r also presented potent inhibitory activities against Abeta aggregation, with IC50 values of 17.36 microM and 49.14 microM, respectively. Further cellular experiments demonstrated that the potent compounds 8q and 8r had no obvious cytotoxicity in either HepG2 cells or SH-SY5Y cells, even at a high concentration of 500 muM. Besides, a combined Lineweaver-Burk plot and molecular docking study revealed that these compounds might act as mixed-type inhibitors to exhibit such effects via selectively targeting both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChEs. Taken together, these results suggested that further development of these compounds should be of great interest.
ESTHER : Wu_2018_Molecules_23_
PubMedSearch : Wu_2018_Molecules_23_
PubMedID: 30301153

Title : Genome sequence of the ectophytic fungus Ramichloridium luteum reveals unique evolutionary adaptations to plant surface niche - Wang_2017_BMC.Genomics_18_729
Author(s) : Wang B , Liang X , Gleason ML , Zhang R , Sun G
Ref : BMC Genomics , 18 :729 , 2017
Abstract : BACKGROUND: Ectophytic fungi occupy the waxy plant surface, an extreme environment characterized by prolonged desiccation, nutrient limitation, and exposure to solar radiation. The nature of mechanisms that facilitate adaptation to this environment remains unclear. In this study, we sequenced the complete genome of an ectophytic fungus, Ramichloridium luteum, which colonizes the surface of apple fruit, and carried out comparative genomic and transcriptome analysis.
RESULTS: The R. luteum genome was 28.18 Mb and encoded 9466 genes containing 1.85% repetitive elements. Compared with cell-penetrating pathogens, genes encoding plant cell wall degrading enzymes (PCWDEs), PTH11-like G protein-coupled receptors (GPCRs) and effectors were drastically reduced. In contrast, genes encoding cutinases and secretory lipases were strikingly expanded, and four of nine secretory lipases were probably acquired by horizontal gene transfer from Basidiomycota. Transcriptomic analysis revealed elevated expression of genes involved in cuticle degradation (cutinase, secretory lipase) and stress responses (melanin biosynthesis, aquaporins, lysozymes and HOG pathway).
CONCLUSIONS: Taken together, our results highlight genomic features associated with evolution of surface niche adaptation by the ectophytic fungus R. luteum, namely the contraction of PCWDEs, PTH11-like GPCRs and effectors, and the expansion of cuticle degradation and stress tolerance.
ESTHER : Wang_2017_BMC.Genomics_18_729
PubMedSearch : Wang_2017_BMC.Genomics_18_729
PubMedID: 28915794

Title : Juvenile Hormone Epoxide Hydrolase: a Promising Target for Hemipteran Pest Management - Tusun_2017_Sci.Rep_7_789
Author(s) : Tusun A , Li M , Liang X , Yang T , Yang B , Wang G
Ref : Sci Rep , 7 :789 , 2017
Abstract : Juvenile hormone epoxide hydrolase (JHEH) has attracted great interest because of its critical role in the regulation of juvenile hormone (JH) in insects. In this study, one JHEH gene from Apolygus lucorum (AlucJHEH) was characterized in terms of deduced amino acid sequence, phylogeny, homology modeling and docking simulation. The results reveals a conserved catalytic mechanism of AlucJHEH toward JH. Our study also demonstrates that the mRNA of AlucJHEH gene was detectable in head, thorax and abdomen from all life stages. To functionally characterize the AlucJHEH gene, three fragments of double-stranded RNAs (dsRNAs) were designed to target different regions of the sequence. Injection of 3rd nymphs with dsRNA fragments successfully knocked down the target gene expression, and a significantly decreased survival rate was observed, together with a molting block, These findings confirm the important regulatory roles of AlucJHEH in A. lucorum and indicate this gene as a promising target for future hemipterans pest control.
ESTHER : Tusun_2017_Sci.Rep_7_789
PubMedSearch : Tusun_2017_Sci.Rep_7_789
PubMedID: 28400585

Title : ST09, a Novel Thioester Derivative of Tacrine, Alleviates Cognitive Deficits and Enhances Glucose Metabolism in Vascular Dementia Rats - Liu_2016_CNS.Neurosci.Ther_22_220
Author(s) : Liu JM , Wu PF , Rao J , Zhou J , Shen ZC , Luo H , Huang JG , Liang X , Long LH , Xie QG , Jiang FC , Wang F , Chen JG
Ref : CNS Neurosci Ther , 22 :220 , 2016
Abstract : AIMS: Chemical entities containing mercapto group have been increasingly attractive in the therapy of central nerve system (CNS) diseases. In the recent study, we screened a series of mercapto-tacrine derivatives with synergistic neuropharmacological profiles in vitro.
METHODS: We investigated the effect and mechanism of ST09, a thioester derivative of tacrine containing a potential mercapto group, on the vascular dementia (VaD) model of rat induced by bilateral common carotid arteries occlusion (2-VO).
RESULTS: ST09 and its active metabolite ST10 retained excellent inhibition on acetylcholinesterase (AChE) activity. ST09 significantly attenuated the 2-VO-induced impairment in spatial acquisition performance and inhibited the 2-VO-induced rise of AChE activity. In the VaD model, ST09 attenuated the oxidative stress and decreased the apoptosis in the cortex and hippocampus. Compared with donepezil, ST09 exhibited a better effect on the regeneration of free thiols in 2-VO rats. Interestingly, ST09, not donepezil, greatly improved glucose metabolism in various brain regions of 2-VO rats using functional imaging of (18) F-labeled fluoro-deoxyglucose (FDG) positron emission tomography (PET).
CONCLUSIONS: ST09 may serve as a more promising agent for the therapy of VaD than tacrine owing to the introduction of a potential mercapto group into the parent skeleton.
ESTHER : Liu_2016_CNS.Neurosci.Ther_22_220
PubMedSearch : Liu_2016_CNS.Neurosci.Ther_22_220
PubMedID: 26813743

Title : Resveratrol limits diabetes-associated cognitive decline in rats by preventing oxidative stress and inflammation and modulating hippocampal structural synaptic plasticity - Tian_2016_Brain.Res_1650_1
Author(s) : Tian X , Liu Y , Ren G , Yin L , Liang X , Geng T , Dang H , An R
Ref : Brain Research , 1650 :1 , 2016
Abstract : Many patients with diabetes are at increased risk of cognitive dysfunction and dementia. Resveratrol, a polyphenol found mainly in grapes and red wine, has antioxidant, anti-inflammatory, and neuroprotective activities. Studies demonstrated that resveratrol could prevent memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. However, whether administration of resveratrol could modulate the structural synaptic plasticity in diabetic rats remains unknown. Therefore, we tested its influence against cognitive dysfunction as well as on hippocampal structural synaptic plasticity in streptozotocin-induced diabetic rats. Our results showed that the cognitive performances in diabetic group were markedly deteriorated, accompanied by noticeable alterations in oxidative as well as inflammation parameters, SYN and GAP-43 expression were reduced in the hippocampus. In contrast, chronic treatment with resveratrol (10, 20mg/kg) improved neuronal injury and cognitive performance by attenuating oxidative stress and inflammation as well as inhibiting synapse loss in diabetic rats. In conclusion, the present study suggested that oral supplementation of resveratrol might be a potential therapeutic strategy for the treatment and/or prevention of diabetic encephalopathy.
ESTHER : Tian_2016_Brain.Res_1650_1
PubMedSearch : Tian_2016_Brain.Res_1650_1
PubMedID: 27566063

Title : Development of self-assembling peptide nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery - Liang_2015_Biomaterials_82_194
Author(s) : Liang X , Shi B , Wang K , Fan M , Jiao D , Ao J , Song N , Wang C , Gu J , Li Z
Ref : Biomaterials , 82 :194 , 2015
Abstract : Development of rational vectors for efficient drug and gene delivery is crucial for cancer treatment. In this study, epidermal growth factor receptor (EGFR)-binding peptide amphiphile (PA) were used as the primary bilayer skeleton material to construct ultra-stable self-assembling peptide nanovesicle (SPV). The resulted EGFR-targeted SPV (ESPV) could efficiently encapsulate therapeutic cargos (drugs or small interfering RNAs [siRNAs]) or labelled fluorescent cargo (quantum dots [QDs]) and exhibited excellent affinity for EGFR-positive cancer cells. Moreover, ESPV could deliver more drug or plasmid DNA to tumour sites and promote gene expression (a three-fold ratio of ESPVs vs cationic liposomes). Notably, the individual delivery or co-delivery of doxorubicin (DOX) and the acetylcholinesterase (AChE) gene via the ESPVs resulted in excellent drug/gene delivery both in vitro and in vivo and exerted a significant growth-suppressing effect on a liver cancer xenograft. This nanoscale, targeted cargo-packaging technology may provide a new strategy for the design of highly targeted cancer therapy vectors.
ESTHER : Liang_2015_Biomaterials_82_194
PubMedSearch : Liang_2015_Biomaterials_82_194
PubMedID: 26763734

Title : Characterization of large structural genetic mosaicism in human autosomes - Machiela_2015_Am.J.Hum.Genet_96_487
Author(s) : Machiela MJ , Zhou W , Sampson JN , Dean MC , Jacobs KB , Black A , Brinton LA , Chang IS , Chen C , Chen K , Cook LS , Crous Bou M , De Vivo I , Doherty J , Friedenreich CM , Gaudet MM , Haiman CA , Hankinson SE , Hartge P , Henderson BE , Hong YC , Hosgood HD, 3rd , Hsiung CA , Hu W , Hunter DJ , Jessop L , Kim HN , Kim YH , Kim YT , Klein R , Kraft P , Lan Q , Lin D , Liu J , Le Marchand L , Liang X , Lissowska J , Lu L , Magliocco AM , Matsuo K , Olson SH , Orlow I , Park JY , Pooler L , Prescott J , Rastogi R , Risch HA , Schumacher F , Seow A , Setiawan VW , Shen H , Sheng X , Shin MH , Shu XO , VanDen Berg D , Wang JC , Wentzensen N , Wong MP , Wu C , Wu T , Wu YL , Xia L , Yang HP , Yang PC , Zheng W , Zhou B , Abnet CC , Albanes D , Aldrich MC , Amos C , Amundadottir LT , Berndt SI , Blot WJ , Bock CH , Bracci PM , Burdett L , Buring JE , Butler MA , Carreon T , Chatterjee N , Chung CC , Cook MB , Cullen M , Davis FG , Ding T , Duell EJ , Epstein CG , Fan JH , Figueroa JD , Fraumeni JF, Jr. , Freedman ND , Fuchs CS , Gao YT , Gapstur SM , Patino-Garcia A , Garcia-Closas M , Gaziano JM , Giles GG , Gillanders EM , Giovannucci EL , Goldin L , Goldstein AM , Greene MH , Hallmans G , Harris CC , Henriksson R , Holly EA , Hoover RN , Hu N , Hutchinson A , Jenab M , Johansen C , Khaw KT , Koh WP , Kolonel LN , Kooperberg C , Krogh V , Kurtz RC , Lacroix A , Landgren A , Landi MT , Li D , Liao LM , Malats N , McGlynn KA , McNeill LH , McWilliams RR , Melin BS , Mirabello L , Peplonska B , Peters U , Petersen GM , Prokunina-Olsson L , Purdue M , Qiao YL , Rabe KG , Rajaraman P , Real FX , Riboli E , Rodriguez-Santiago B , Rothman N , Ruder AM , Savage SA , Schwartz AG , Schwartz KL , Sesso HD , Severi G , Silverman DT , Spitz MR , Stevens VL , Stolzenberg-Solomon R , Stram D , Tang ZZ , Taylor PR , Teras LR , Tobias GS , Viswanathan K , Wacholder S , Wang Z , Weinstein SJ , Wheeler W , White E , Wiencke JK , Wolpin BM , Wu X , Wunder JS , Yu K , Zanetti KA , Zeleniuch-Jacquotte A , Ziegler RG , de Andrade M , Barnes KC , Beaty TH , Bierut LJ , Desch KC , Doheny KF , Feenstra B , Ginsburg D , Heit JA , Kang JH , Laurie CA , Li JZ , Lowe WL , Marazita ML , Melbye M , Mirel DB , Murray JC , Nelson SC , Pasquale LR , Rice K , Wiggs JL , Wise A , Tucker M , Perez-Jurado LA , Laurie CC , Caporaso NE , Yeager M , Chanock SJ
Ref : American Journal of Human Genetics , 96 :487 , 2015
Abstract : Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 x 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.
ESTHER : Machiela_2015_Am.J.Hum.Genet_96_487
PubMedSearch : Machiela_2015_Am.J.Hum.Genet_96_487
PubMedID: 25748358

Title : Association of Lp-PLA2-A and early recurrence of vascular events after TIA and minor stroke - Lin_2015_Neurology_85_1585
Author(s) : Lin J , Zheng H , Cucchiara BL , Li J , Zhao X , Liang X , Wang C , Li H , Mullen MT , Johnston SC , Wang Y
Ref : Neurology , 85 :1585 , 2015
Abstract : OBJECTIVE: To determine the association of lipoprotein-associated phospholipase A2 (Lp-PLA2) measured in the acute period and the short-term risk of recurrent vascular events in patients with TIA or minor stroke.
METHODS: We measured Lp-PLA2 activity (Lp-PLA2-A) in a subset of 3,201 participants enrolled in the CHANCE (Clopidogrel in High-Risk Patients with Acute Non-disabling Cerebrovascular Events) trial. Participants with TIA or minor stroke were enrolled within 24 hours of symptom onset and randomized to single or dual antiplatelet therapy. In the current analysis, the primary outcome was defined as the composite of ischemic stroke, myocardial infarction, or death within 90 days.
RESULTS: The composite endpoint occurred in 299 of 3,021 participants (9.9%). The population average Lp-PLA2-A level was 209 +/- 59 nmol/min/mL (95% confidence interval [CI] 207-211). Older age, male sex, and current smoking were associated with higher Lp-PLA2-A levels. Lp-PLA2-A was significantly associated with the primary endpoint (adjusted hazard ratio 1.07, 95% CI 1.01-1.13 for every 30 nmol/min/mL increase). Similar results were seen for ischemic stroke alone. Adjustment for low-density lipoprotein cholesterol attenuated the association between Lp-PLA2-A and the primary endpoint (adjusted hazard ratio 1.04, 95% CI 0.97-1.11 for every 30 nmol/min/mL increase).
CONCLUSIONS: Higher levels of Lp-PLA2-A in the acute period are associated with increased short-term risk of recurrent vascular events.
ESTHER : Lin_2015_Neurology_85_1585
PubMedSearch : Lin_2015_Neurology_85_1585
PubMedID: 26311748

Title : In vitro acaricidal activity of 1,8-cineole against Sarcoptes scabiei var. cuniculi and regulating effects on enzyme activity - Hu_2015_Parasitol.Res_114_2959
Author(s) : Hu Z , Chen Z , Yin Z , Jia R , Song X , Li L , Zou Y , Liang X , He C , Yin L , Lv C , Zhao L , Su G , Ye G , Shi F
Ref : Parasitol Res , 114 :2959 , 2015
Abstract : 1,8-Cineole found in many essential oils is a monoterpene and acts as a repellent against Sarcoptes scabiei var. cuniculi. In the present study, the acaricidal activity of 1,8-cineole against S. scabiei var. cuniculi was evaluated and the acaricidal mechanism was also investigated by assaying enzyme activities. The results showed that the lethal concentration of 50 % (LC50) value (95 % confidence limit (CL)) and the lethal time of 50 % (LT50) value (95 % CL) of 1,8-cineole were 2.77 mg/mL and 3.606 h, respectively. The pathological changes under transmission electron microscopy showed that the morphology of the mitochondria was abnormal, the cell nuclear membrane was damaged, and the nuclear chromatin was dissoluted. The activities of superoxide dismutase (SOD), glutathione-s-transferases (GSTs), monoamine oxidase (MAO), nitric oxide synthase (NOS), and acetylcholinesterase (AChE) were significantly changed after treatment with 1,8-cineole for 4, 8, 12, and 24 h. SOD and GSTs are associated with the protection mechanism of scabies mites. And, the activities of SOD and GSTs were increased as compared with the control group. MAO, AChE, and NOS are associated with the nervous system of scabies mites. The activity of MAO was increased whereas the AChE was suppressed. The activity of NOS was suppressed in the high-dose group whereas increased in the middle-dose group and low-dose group. These results indicated that the mechanism of 1,8-cineole mainly attributed to the changes of these enzyme activities related to the nervous system of scabies mites.
ESTHER : Hu_2015_Parasitol.Res_114_2959
PubMedSearch : Hu_2015_Parasitol.Res_114_2959
PubMedID: 25924796

Title : Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution - Li_2015_Nat.Biotechnol_33_524
Author(s) : Li F , Fan G , Lu C , Xiao G , Zou C , Kohel RJ , Ma Z , Shang H , Ma X , Wu J , Liang X , Huang G , Percy RG , Liu K , Yang W , Chen W , Du X , Shi C , Yuan Y , Ye W , Liu X , Zhang X , Liu W , Wei H , Wei S , Zhu S , Zhang H , Sun F , Wang X , Liang J , Wang J , He Q , Huang L , Cui J , Song G , Wang K , Xu X , Yu JZ , Zhu Y , Yu S
Ref : Nat Biotechnol , 33 :524 , 2015
Abstract : Gossypium hirsutum has proven difficult to sequence owing to its complex allotetraploid (AtDt) genome. Here we produce a draft genome using 181-fold paired-end sequences assisted by fivefold BAC-to-BAC sequences and a high-resolution genetic map. In our assembly 88.5% of the 2,173-Mb scaffolds, which cover 89.6% approximately 96.7% of the AtDt genome, are anchored and oriented to 26 pseudochromosomes. Comparison of this G. hirsutum AtDt genome with the already sequenced diploid Gossypium arboreum (AA) and Gossypium raimondii (DD) genomes revealed conserved gene order. Repeated sequences account for 67.2% of the AtDt genome, and transposable elements (TEs) originating from Dt seem more active than from At. Reduction in the AtDt genome size occurred after allopolyploidization. The A or At genome may have undergone positive selection for fiber traits. Concerted evolution of different regulatory mechanisms for Cellulose synthase (CesA) and 1-Aminocyclopropane-1-carboxylic acid oxidase1 and 3 (ACO1,3) may be important for enhanced fiber production in G. hirsutum.
ESTHER : Li_2015_Nat.Biotechnol_33_524
PubMedSearch : Li_2015_Nat.Biotechnol_33_524
PubMedID: 25893780
Gene_locus related to this paper: gosra-a0a0d2rxs2 , gosra-a0a0d2tng2 , gosra-a0a0d2twz7 , goshi-a0a1u8hr03 , gosra-a0a0d2vdc5 , goshi-a0a1u8ljh5 , gosra-a0a0d2vj24 , goshi-a0a1u8pxd3 , gosra-a0a0d2sr31 , goshi-a0a1u8knd1 , goshi-a0a1u8nhw9 , goshi-a0a1u8mt09 , goshi-a0a1u8kis4 , goshi-a0a1u8ibk3 , goshi-a0a1u8ieg2 , goshi-a0a1u8iki6 , goshi-a0a1u8jvp4 , goshi-a0a1u8jw35 , gosra-a0a0d2pzd7 , goshi-a0a1u8ied7

Title : The evolution and pathogenic mechanisms of the rice sheath blight pathogen - Zheng_2013_Nat.Commun_4_1424
Author(s) : Zheng A , Lin R , Zhang D , Qin P , Xu L , Ai P , Ding L , Wang Y , Chen Y , Liu Y , Sun Z , Feng H , Liang X , Fu R , Tang C , Li Q , Zhang J , Xie Z , Deng Q , Li S , Wang S , Zhu J , Wang L , Liu H , Li P
Ref : Nat Commun , 4 :1424 , 2013
Abstract : Rhizoctonia solani is a major fungal pathogen of rice (Oryza sativa L.) that causes great yield losses in all rice-growing regions of the world. Here we report the draft genome sequence of the rice sheath blight disease pathogen, R. solani AG1 IA, assembled using next-generation Illumina Genome Analyser sequencing technologies. The genome encodes a large and diverse set of secreted proteins, enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, which probably reflect an exclusive necrotrophic lifestyle. We find few repetitive elements, a closer relationship to Agaricomycotina among Basidiomycetes, and expand protein domains and families. Among the 25 candidate pathogen effectors identified according to their functionality and evolution, we validate 3 that trigger crop defence responses; hence we reveal the exclusive expression patterns of the pathogenic determinants during host infection.
ESTHER : Zheng_2013_Nat.Commun_4_1424
PubMedSearch : Zheng_2013_Nat.Commun_4_1424
PubMedID: 23361014
Gene_locus related to this paper: thaca-l8wvp3 , thaca-l8wv47 , thaca-l8wp17 , thaca-l8x532

Title : Draft Genome Sequence of Streptomyces bottropensis ATCC 25435, a Bottromycin-Producing Actinomycete - Zhang_2013_Genome.Announc_1_e0001913
Author(s) : Zhang H , Zhou W , Zhuang Y , Liang X , Liu T
Ref : Genome Announc , 1 :e0001913 , 2013
Abstract : A series of bottromycin antibiotics have been isolated and identified from Streptomyces bottropensis strain ATCC 25435. Here, a draft genome sequence of S. bottropensis ATCC 25435 is presented. The genome carries an intact biosynthetic gene cluster for bottromycin antibiotics, which provides insight into the combinatorial biosynthesis of bottromycin antibiotics.
ESTHER : Zhang_2013_Genome.Announc_1_e0001913
PubMedSearch : Zhang_2013_Genome.Announc_1_e0001913
PubMedID: 23516178
Gene_locus related to this paper: 9actn-k0p1p9 , 9actn-m3fsi6 , 9actn-m3dmy7

Title : New targets of pemphigus vulgaris antibodies identified by protein array technology - Kalantari-Dehaghi_2011_Exp.Dermatol_20_154
Author(s) : Kalantari-Dehaghi M , Molina DM , Farhadieh M , Morrow WJ , Liang X , Felgner PL , Grando SA
Ref : Exp Dermatol , 20 :154 , 2011
Abstract : We performed partial evaluation of pemphigus vulgaris (PV) autoantibody profile using the protein array technology. The sera from seven patients with acute PV and five healthy donors were probed for the presence of autoantibodies characteristic of the organ-non-specific autoimmune disorders rheumatoid arthritis, lupus erythematosus, scleroderma, diabetes and some other autoimmune disorders, but not to desmosomal proteins. The array targeted 785 human genes amplified using Mammalian Gene Clone Collection with gene-specific primers containing 20-bp nucleotide extension complementary to ends of linear pXT7 vector. The array identified PV antibodies significantly (P<0.05) differentially reactive with 16 antigens, most of which were cell-surface proteins, such as CD2, CD31, CD33, CD36, CD37, CD40, CD54, CD66c and CD84 molecules, nicotinamide/nicotinic acid mononucleotide adenylyltransferase, immunoglobulin heavy chain constant region gamma 2 and others. Reactivity with Fc-IgG helps explain an ability of the chimeric desmoglein constructs to absorb out all disease-causing PV antibodies. Anti-M(1) muscarinic receptor antibody was also identified, consistent with the facts that while blockade of this receptor causes keratinocyte detachment, its activation is therapeutic in PV. Further proteomics analysis of PV antibodies should help elucidate the immunopathogenic mechanisms underlying keratinocyte detachment and blistering.
ESTHER : Kalantari-Dehaghi_2011_Exp.Dermatol_20_154
PubMedSearch : Kalantari-Dehaghi_2011_Exp.Dermatol_20_154
PubMedID: 21255096

Title : Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase - Meng_2011_Biotechnol.Biofuels_4_6
Author(s) : Meng Y , Wang G , Yang N , Zhou Z , Li Y , Liang X , Chen J , Li J
Ref : Biotechnol Biofuels , 4 :6 , 2011
Abstract : BACKGROUND: Enzymatic biodiesel production by transesterification in solvent media has been investigated intensively, but glycerol, as a by-product, could block the immobilized enzyme and excess n-hexane, as a solution aid, would reduce the productivity of the enzyme. Esterification, a solvent-free and no-glycerol-release system for biodiesel production, has been developed, and two-step catalysis of soybean oil, hydrolysis followed by esterification, with Yarrowia lipolytica lipase is reported in this paper. RESULTS: First, soybean oil was hydrolyzed at 40 degrees C by 100 U of lipase broth per 1 g of oil with approximately 30% to 60% (vol/vol) water. The free fatty acid (FFA) distilled from this hydrolysis mixture was used for the esterification of FFA to fatty acid ethyl ester by immobilized lipase. A mixture of 2.82 g of FFA and equimolar ethanol (addition in three steps) were shaken at 30 degrees C with 18 U of lipase per 1 gram of FFA. The degree of esterification reached 85% after 3 hours. The lipase membranes were taken out, dehydrated and subjected to fresh esterification so that over 82% of esterification was maintained, even though the esterification was repeated every 3 hours for 25 batches. CONCLUSION: The two-step enzymatic process without glycerol released and solvent-free demonstrated higher efficiency and safety than enzymatic transesterification, which seems very promising for lipase-catalyzed, large-scale production of biodiesel, especially from high acid value waste oil.
ESTHER : Meng_2011_Biotechnol.Biofuels_4_6
PubMedSearch : Meng_2011_Biotechnol.Biofuels_4_6
PubMedID: 21366905

Title : Characterization of ST-4821 complex, a unique Neisseria meningitidis clone - Peng_2008_Genomics_91_78
Author(s) : Peng J , Yang L , Yang F , Yang J , Yan Y , Nie H , Zhang X , Xiong Z , Jiang Y , Cheng F , Xu X , Chen S , Sun L , Li W , Shen Y , Shao Z , Liang X , Xu J , Jin Q
Ref : Genomics , 91 :78 , 2008
Abstract : Ten outbreaks of a new serogroup C meningococcal disease emerged during 2003-2005 in China. The multilocus sequence typing results indicated that unique sequence type 4821 clone meningococci were responsible for these outbreaks. Herein, we determined the entire genomic DNA sequence of serogroup C isolate 053442, which belongs to ST-4821. Comparison of 053442 gene contents with other meningococcal genomes shows that they have similar characteristics, including thousands of repetitive elements and simple sequence repeats, numerous phase-variable genes, and similar virulence-related factors. However, many strain-specific regions were found in each genome. We also present the results of a genomic comparison of 28 ST-4821 complex isolates that were isolated from different serogroups using comparative genomic hybridization analysis. Genome comparison between the newly emerged hyperinvasive isolates belonging to different serogroups will further our understanding of their respective pathogenetic mechanisms.
ESTHER : Peng_2008_Genomics_91_78
PubMedSearch : Peng_2008_Genomics_91_78
PubMedID: 18031983
Gene_locus related to this paper: neigo-pip , neima-metx , neimb-q9k0t9 , neime-ESD , neime-NMA2216 , neime-NMB0276 , neime-NMB1877

Title : The Genomes of Oryza sativa: a history of duplications - Yu_2005_PLoS.Biol_3_e38
Author(s) : Yu J , Wang J , Lin W , Li S , Li H , Zhou J , Ni P , Dong W , Hu S , Zeng C , Zhang J , Zhang Y , Li R , Xu Z , Li X , Zheng H , Cong L , Lin L , Yin J , Geng J , Li G , Shi J , Liu J , Lv H , Li J , Deng Y , Ran L , Shi X , Wang X , Wu Q , Li C , Ren X , Li D , Liu D , Zhang X , Ji Z , Zhao W , Sun Y , Zhang Z , Bao J , Han Y , Dong L , Ji J , Chen P , Wu S , Xiao Y , Bu D , Tan J , Yang L , Ye C , Xu J , Zhou Y , Yu Y , Zhang B , Zhuang S , Wei H , Liu B , Lei M , Yu H , Li Y , Xu H , Wei S , He X , Fang L , Huang X , Su Z , Tong W , Tong Z , Ye J , Wang L , Lei T , Chen C , Chen H , Huang H , Zhang F , Li N , Zhao C , Huang Y , Li L , Xi Y , Qi Q , Li W , Hu W , Tian X , Jiao Y , Liang X , Jin J , Gao L , Zheng W , Hao B , Liu S , Wang W , Yuan L , Cao M , McDermott J , Samudrala R , Wong GK , Yang H
Ref : PLoS Biol , 3 :e38 , 2005
Abstract : We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000-40,000. Only 2%-3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family.
ESTHER : Yu_2005_PLoS.Biol_3_e38
PubMedSearch : Yu_2005_PLoS.Biol_3_e38
PubMedID: 15685292
Gene_locus related to this paper: orysa-Q7XTC5 , orysa-Q852M6 , orysa-Q8GSE8 , orysa-Q9S7P1 , orysa-Q9FYP7 , orysa-Q5ZBH3 , orysa-Q5ZA26 , orysa-Q5JLP6 , orysa-Q8H5P9 , orysa-Q8H5P5 , orysa-Q7F1Y5 , orysa-Q949C9 , orysa-cbp1 , orysa-cbp3 , orysa-cbpx , orysa-Q33B71 , orysa-Q8GSJ3 , orysa-LPL1 , orysa-Q6YSZ8 , orysa-Q8S5X5 , orysa-Q8LIG3 , orysa-Q6K7F5 , orysa-Q7F1B1 , orysa-Q8H4S9 , orysa-Q69UB1 , orysa-Q9FW17 , orysa-Q337C3 , orysa-Q7F959 , orysa-Q84QZ6 , orysa-Q84QY7 , orysa-Q851E3 , orysa-Q6YTH5 , orysa-Q0JK71 , orysa-Q8S1D9 , orysa-Q5N8V4 , orysa-Q0JCY4 , orysa-Q8GTK2 , orysa-B9EWJ8 , orysa-Q8H3K6 , orysa-Q6ZDG8 , orysa-Q6ZDG6 , orysa-Q6ZDG5 , orysa-Q6ZDG4 , orysa-Q5NAI4 , orysa-Q658B2 , orysa-Q5JMQ8 , orysa-Q5QMD9 , orysa-Q5N7L1 , orysa-Q8RYV9 , orysa-Q8H3R3 , orysa-Q5SNH3 , orysa-Q8W0F0 , orysa-pir7a , orysa-pir7b , orysa-q2qlm4 , orysa-q2qm78 , orysa-q2qm82 , orysa-q2qn31 , orysa-q2qnj4 , orysa-q2qnt9 , orysa-q2qur1 , orysa-q2qx94 , orysa-q2qyi1 , orysa-q2qyj1 , orysa-q2r051 , orysa-q2r077 , orysa-q2ram0 , orysa-q2rat1 , orysa-q2rbb3 , orysa-Q4VWY7 , orysa-q5na00 , orysa-q5nbu1 , orysa-Q5QLC0 , orysa-q5smv5 , orysa-Q5VP27 , orysa-q5vrt2 , orysa-q5w6c5 , orysa-q5z5a3 , orysa-q5z9i2 , orysa-q5z417 , orysa-q5z901 , orysa-Q5ZAM8 , orysa-Q5ZBI5 , orysa-Q5ZCR3 , orysa-q6atz0 , orysa-q6ave2 , orysa-q6f358 , orysa-q6h6s1 , orysa-q6h7i6 , orysa-q6i5q3 , orysa-q6i5u7 , orysa-q6j657 , orysa-q6k3d9 , orysa-q6k4q2 , orysa-q6k880 , orysa-q6l5b6 , orysa-Q6L5F5 , orysa-q6l556 , orysj-q6yse8 , orysa-q6yy42 , orysa-q6yzk1 , orysa-q6z8b1 , orysa-q6z995 , orysa-q6zc62 , orysa-q6zia4 , orysa-q6zjq6 , orysa-q7x7y5 , orysa-Q7XC50 , orysa-q7xej4 , orysa-q7xem8 , orysa-q7xkj9 , orysa-q7xr62 , orysa-q7xr63 , orysa-q7xr64 , orysa-q7xsg1 , orysa-q7xsq2 , orysa-q7xts6 , orysa-q7xv53 , orysa-Q7XVB5 , orysa-Q8L562 , orysa-Q8LQS5 , orysa-Q8RZ40 , orysa-Q8RZ79 , orysa-Q8S0U8 , orysa-Q8S0V0 , orysa-Q8S125 , orysa-Q8SAY7 , orysa-Q8SAY9 , orysa-Q8W3C6 , orysa-Q8W3F2 , orysa-Q8W3F4 , orysa-Q8W3F6 , orysa-Q9LHX5 , orysa-q33aq0 , orysa-q53lh1 , orysa-q53m20 , orysa-q53nd8 , orysa-q60e79 , orysa-q60ew8 , orysa-q67iz2 , orysa-q67iz3 , orysa-q67iz7 , orysa-q67iz8 , orysa-q67j02 , orysa-q67j05 , orysa-q67j07 , orysa-q67j09 , orysa-q67j10 , orysa-q67tr6 , orysa-q67tv0 , orysa-q67uz1 , orysa-q67v34 , orysa-q67wz5 , orysa-q69j38 , orysa-q69k08 , orysa-q69md7 , orysa-q69me0 , orysa-q69pf3 , orysa-q69ti3 , orysa-q69xr2 , orysa-q69y12 , orysa-q69y21 , orysa-q75hy2 , orysa-q75i01 , orysa-Q94JD7 , orysa-Q0J0A4 , orysa-q651a8 , orysa-q651z3 , orysa-q652g4 , orysa-q688m0 , orysa-q688m8 , orysa-q688m9 , orysa-Q6H8G1 , orysi-a2wn01 , orysi-a2xc83 , orysi-a2yh83 , orysi-a2z179 , orysi-a2zef2 , orysi-b8a7e6 , orysi-b8a7e7 , orysi-b8bfe5 , orysi-b8bhp9 , orysj-a3b9l8 , orysj-b9eub8 , orysj-b9eya5 , orysj-b9fi05 , orysj-b9fkb0 , orysj-b9fn42 , orysj-b9gbb7 , orysj-cgep , orysj-PLA7 , orysj-q0d4u5 , orysj-q0djj0 , orysj-q0jaf0 , orysj-q5jl22 , orysj-q5jlw7 , orysj-q5z419 , orysj-q6h7q9 , orysj-q6yvk6 , orysj-q6z6i1 , orysj-q7f8x1 , orysj-q7xcx3 , orysj-q9fwm6 , orysj-q10j20 , orysj-q10ss2 , orysj-q69uw6 , orysj-q94d71 , orysj-q338c0 , orysi-b8bly4 , orysj-b9gbs4 , orysi-a2zb88 , orysj-b9gbs1 , orysi-b8b698 , orysj-pla4 , orysj-pla1

Title : Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa - Liang_2001_J.Bacteriol_183_843
Author(s) : Liang X , Pham XQ , Olson MV , Lory S
Ref : Journal of Bacteriology , 183 :843 , 2001
Abstract : Pseudomonas aeruginosa, a ubiquitous gram-negative bacterium, is capable of colonizing a wide range of environmental niches and can also cause serious infections in humans. In order to understand the genetic makeup of pathogenic P. aeruginosa strains, a method of differential hybridization of arrayed libraries of cloned DNA fragments was developed. An M13 library of DNA from strain X24509, isolated from a patient with a urinary tract infection, was screened using a DNA probe from P. aeruginosa strain PAO1. The genome of PAO1 has been recently sequenced and can be used as a reference for comparisons of genetic organization in different strains. M13 clones that did not react with a DNA probe from PAO1 carried X24509-specific inserts. When a similar array hybridization analysis with DNA probes from different strains was used, a set of M13 clones which carried sequences present in the majority of human P. aeruginosa isolates from a wide range of clinical sources was identified. The inserts of these clones were used to identify cosmids encompassing a contiguous 48.9-kb region of the X24509 chromosome called PAGI-1 (for "P. aeruginosa genomic island 1"). PAGI-1 is incorporated in the X24509 chromosome at a locus that shows a deletion of a 6,729-bp region present in strain PAO1. Survey of the incidence of PAGI-1 revealed that this island is present in 85% of the strains from clinical sources. Approximately half of the PAGI-1-carrying strains show the same deletion as X24509, while the remaining strains contain both the PAGI-1 sequences and the 6,729-bp PAO1 segment. Sequence analysis of PAGI-1 revealed that it contains 51 predicted open reading frames. Several of these genes encoded products with predictable function based on their sequence similarities to known genes, including insertion sequences, determinants of regulatory proteins, a number of dehydrogenase gene homologs, and two for proteins of implicated in detoxification of reactive oxygen species. It is very likely that PAGI-1 was acquired by a large number of P. aeruginosa isolates through horizontal gene transfer. The selection for its maintenance may be the consequence of expression of any one of the genes of unknown function or the genes which allow P. aeruginosa to survive under the conditions that generate reactive oxygen species. Alternatively, one or both of the transcriptional regulators encoded in PAGI-1 may control the expression of genes in the P. aeruginosa chromosome, which provides a selective advantage for strains that have acquired this genomic island.
ESTHER : Liang_2001_J.Bacteriol_183_843
PubMedSearch : Liang_2001_J.Bacteriol_183_843
PubMedID: 11208781
Gene_locus related to this paper: pseae-Q9APW4