Reed JC

References (2)

Title : Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding - Zhong_2018_J.Biol.Chem_293_18864
Author(s) : Zhong FL , Robinson K , Teo DET , Tan KY , Lim C , Harapas CR , Yu CH , Xie WH , Sobota RM , Au VB , Hopkins R , D'Osualdo A , Reed JC , Connolly JE , Masters SL , Reversade B
Ref : Journal of Biological Chemistry , 293 :18864 , 2018
Abstract : The inflammasome is a critical molecular complex that activates interleukin-1 driven inflammation in response to pathogen- and danger-associated signals. Germline mutations in the inflammasome sensor NLRP1 cause Mendelian systemic autoimmunity and skin cancer susceptibility, but its endogenous regulation remains less understood. Here we use a proteomics screen to uncover dipeptidyl dipeptidase DPP9 as a novel interacting partner with human NLRP1 and a related inflammasome regulator, CARD8. DPP9 functions as an endogenous inhibitor of NLRP1 inflammasome in diverse primary cell types from human and mice. DPP8/9 inhibition via small molecule drugs and CRISPR/Cas9-mediated genetic deletion specifically activate the human NLRP1 inflammasome, leading to ASC speck formation, pyroptotic cell death, and secretion of cleaved interleukin-1beta. Mechanistically, DPP9 interacts with a unique autoproteolytic domain (Function to Find Domain (FIIND)) found in NLRP1 and CARD8. This scaffolding function of DPP9 and its catalytic activity act synergistically to maintain NLRP1 in its inactive state and repress downstream inflammasome activation. We further identified a single patient-derived germline missense mutation in the NLRP1 FIIND domain that abrogates DPP9 binding, leading to inflammasome hyperactivation seen in the Mendelian autoinflammatory disease Autoinflammation with Arthritis and Dyskeratosis. These results unite recent findings on the regulation of murine Nlrp1b by Dpp8/9 and uncover a new regulatory mechanism for the NLRP1 inflammasome in primary human cells. Our results further suggest that DPP9 could be a multifunctional inflammasome regulator involved in human autoinflammatory diseases.
ESTHER : Zhong_2018_J.Biol.Chem_293_18864
PubMedSearch : Zhong_2018_J.Biol.Chem_293_18864
PubMedID: 30291141
Gene_locus related to this paper: human-DPP9

Title : Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs - Okazaki_2002_Nature_420_563
Author(s) : Okazaki Y , Furuno M , Kasukawa T , Adachi J , Bono H , Kondo S , Nikaido I , Osato N , Saito R , Suzuki H , Yamanaka I , Kiyosawa H , Yagi K , Tomaru Y , Hasegawa Y , Nogami A , Schonbach C , Gojobori T , Baldarelli R , Hill DP , Bult C , Hume DA , Quackenbush J , Schriml LM , Kanapin A , Matsuda H , Batalov S , Beisel KW , Blake JA , Bradt D , Brusic V , Chothia C , Corbani LE , Cousins S , Dalla E , Dragani TA , Fletcher CF , Forrest A , Frazer KS , Gaasterland T , Gariboldi M , Gissi C , Godzik A , Gough J , Grimmond S , Gustincich S , Hirokawa N , Jackson IJ , Jarvis ED , Kanai A , Kawaji H , Kawasawa Y , Kedzierski RM , King BL , Konagaya A , Kurochkin IV , Lee Y , Lenhard B , Lyons PA , Maglott DR , Maltais L , Marchionni L , McKenzie L , Miki H , Nagashima T , Numata K , Okido T , Pavan WJ , Pertea G , Pesole G , Petrovsky N , Pillai R , Pontius JU , Qi D , Ramachandran S , Ravasi T , Reed JC , Reed DJ , Reid J , Ring BZ , Ringwald M , Sandelin A , Schneider C , Semple CA , Setou M , Shimada K , Sultana R , Takenaka Y , Taylor MS , Teasdale RD , Tomita M , Verardo R , Wagner L , Wahlestedt C , Wang Y , Watanabe Y , Wells C , Wilming LG , Wynshaw-Boris A , Yanagisawa M , Yang I , Yang L , Yuan Z , Zavolan M , Zhu Y , Zimmer A , Carninci P , Hayatsu N , Hirozane-Kishikawa T , Konno H , Nakamura M , Sakazume N , Sato K , Shiraki T , Waki K , Kawai J , Aizawa K , Arakawa T , Fukuda S , Hara A , Hashizume W , Imotani K , Ishii Y , Itoh M , Kagawa I , Miyazaki A , Sakai K , Sasaki D , Shibata K , Shinagawa A , Yasunishi A , Yoshino M , Waterston R , Lander ES , Rogers J , Birney E , Hayashizaki Y
Ref : Nature , 420 :563 , 2002
Abstract : Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
ESTHER : Okazaki_2002_Nature_420_563
PubMedSearch : Okazaki_2002_Nature_420_563
PubMedID: 12466851
Gene_locus related to this paper: mouse-1lipg , mouse-1llip , mouse-1plrp , mouse-3neur , mouse-ABH15 , mouse-abhd4 , mouse-abhd5 , mouse-Abhd8 , mouse-Abhd11 , mouse-abhda , mouse-acot4 , mouse-adcl4 , mouse-AI607300 , mouse-BAAT , mouse-bphl , mouse-C87498 , mouse-Ldah , mouse-Ces1d , mouse-Ces2e , mouse-CMBL , mouse-DGLB , mouse-dpp9 , mouse-ES10 , mouse-F135A , mouse-FASN , mouse-hslip , mouse-hyes , mouse-Kansl3 , mouse-LIPH , mouse-LIPK , mouse-lipli , mouse-LIPM , mouse-lypla1 , mouse-lypla2 , mouse-MEST , mouse-MGLL , mouse-ndr4 , mouse-OVCA2 , mouse-pafa , mouse-pcp , mouse-ppce , mouse-Ppgb , mouse-PPME1 , mouse-q3uuq7 , mouse-Q8BLF1 , mouse-ACOT6 , mouse-Q8C1A9 , mouse-Q9DAI6 , mouse-Q80UX8 , mouse-Q8BGG9 , mouse-Q8C167 , mouse-rbbp9 , mouse-SERHL , mouse-tssp