Ravasi T

References (5)

Title : Molecular signatures of transgenerational response to ocean acidification in a species of reef fish - Schunter_2016_Nat.Clim.Chang_6_1014
Author(s) : Schunter C , Welch MJ , Ryu T , Zhang H , Berumen ML , Nilsson GE , Munday PL , Ravasi T
Ref : Nature Climate Change , 6 :1014 , 2016
Abstract : The impact of ocean acidification on marine ecosystems will depend on species capacity to adapt. Recent studies show that the behaviour of reef fishes is impaired at projected CO 2 levels; however, individual variation exists that might promote adaptation. Here, we show a clear signature of parental sensitivity to high CO 2 in the brain molecular phenotype of juvenile spiny damselfish, Acanthochromis polyacanthus, primarily driven by circadian rhythm genes. Offspring of CO 2-tolerant and CO 2-sensitive parents were reared at near-future CO 2 (754 mu atm) or present-day control levels (414 mu atm). By integrating 33 brain transcriptomes and proteomes with a de novo assembled genome we investigate the molecular responses of the fish brain to increased CO 2 and the expression of parental tolerance to high CO 2 in the offspring molecular phenotype. Exposure to high CO 2 resulted in differential regulation of 173 and 62 genes and 109 and 68 proteins in the tolerant and sensitive groups, respectively. Importantly, the majority of differences between offspring of tolerant and sensitive parents occurred in high CO 2 conditions. This transgenerational molecular signature suggests that individual variation in CO 2 sensitivity could facilitate adaptation of fish populations to ocean acidification.
ESTHER : Schunter_2016_Nat.Clim.Chang_6_1014
PubMedSearch : Schunter_2016_Nat.Clim.Chang_6_1014
PubMedID:
Gene_locus related to this paper: 9tele-a0a3q1gx16 , amppe-a0a3p8tjm7 , 9tele-a0a3q1ffq1 , amppe-a0a3p8rlw2 , 9tele-a0a3q1glr8

Title : Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49 - Harjes_2014_Genome.Announc_2_e00160
Author(s) : Harjes J , Ryu T , Abdelmohsen UR , Moitinho-Silva L , Horn H , Ravasi T , Hentschel U
Ref : Genome Announc , 2 : , 2014
Abstract : The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.
ESTHER : Harjes_2014_Genome.Announc_2_e00160
PubMedSearch : Harjes_2014_Genome.Announc_2_e00160
PubMedID: 24604655
Gene_locus related to this paper: 9pseu-w7ipe6 , 9pseu-w7j5t1 , 9pseu-w7itw0 , 9pseu-w7j7f0 , 9pseu-w7j0k4 , 9pseu-w7j3n1 , 9pseu-w7j4v6 , 9pseu-w7ibj5 , 9pseu-w7j408 , 9pseu-w7jed3 , 9pseu-w7ij19 , 9pseu-w7ica9 , 9pseu-w7ixg5

Title : Antisense transcription in the mammalian transcriptome - Katayama_2005_Science_309_1564
Author(s) : Katayama S , Tomaru Y , Kasukawa T , Waki K , Nakanishi M , Nakamura M , Nishida H , Yap CC , Suzuki M , Kawai J , Suzuki H , Carninci P , Hayashizaki Y , Wells C , Frith M , Ravasi T , Pang KC , Hallinan J , Mattick J , Hume DA , Lipovich L , Batalov S , Engstrom PG , Mizuno Y , Faghihi MA , Sandelin A , Chalk AM , Mottagui-Tabar S , Liang Z , Lenhard B , Wahlestedt C
Ref : Science , 309 :1564 , 2005
Abstract : Antisense transcription (transcription from the opposite strand to a protein-coding or sense strand) has been ascribed roles in gene regulation involving degradation of the corresponding sense transcripts (RNA interference), as well as gene silencing at the chromatin level. Global transcriptome analysis provides evidence that a large proportion of the genome can produce transcripts from both strands, and that antisense transcripts commonly link neighboring "genes" in complex loci into chains of linked transcriptional units. Expression profiling reveals frequent concordant regulation of sense/antisense pairs. We present experimental evidence that perturbation of an antisense RNA can alter the expression of sense messenger RNAs, suggesting that antisense transcription contributes to control of transcriptional outputs in mammals.
ESTHER : Katayama_2005_Science_309_1564
PubMedSearch : Katayama_2005_Science_309_1564
PubMedID: 16141073
Gene_locus related to this paper: mouse-lipli , mouse-Ppgb , mouse-q3uuq7

Title : The transcriptional landscape of the mammalian genome - Carninci_2005_Science_309_1559
Author(s) : Carninci P , Kasukawa T , Katayama S , Gough J , Frith MC , Maeda N , Oyama R , Ravasi T , Lenhard B , Wells C , Kodzius R , Shimokawa K , Bajic VB , Brenner SE , Batalov S , Forrest AR , Zavolan M , Davis MJ , Wilming LG , Aidinis V , Allen JE , Ambesi-Impiombato A , Apweiler R , Aturaliya RN , Bailey TL , Bansal M , Baxter L , Beisel KW , Bersano T , Bono H , Chalk AM , Chiu KP , Choudhary V , Christoffels A , Clutterbuck DR , Crowe ML , Dalla E , Dalrymple BP , de Bono B , Della Gatta G , di Bernardo D , Down T , Engstrom P , Fagiolini M , Faulkner G , Fletcher CF , Fukushima T , Furuno M , Futaki S , Gariboldi M , Georgii-Hemming P , Gingeras TR , Gojobori T , Green RE , Gustincich S , Harbers M , Hayashi Y , Hensch TK , Hirokawa N , Hill D , Huminiecki L , Iacono M , Ikeo K , Iwama A , Ishikawa T , Jakt M , Kanapin A , Katoh M , Kawasawa Y , Kelso J , Kitamura H , Kitano H , Kollias G , Krishnan SP , Kruger A , Kummerfeld SK , Kurochkin IV , Lareau LF , Lazarevic D , Lipovich L , Liu J , Liuni S , McWilliam S , Madan Babu M , Madera M , Marchionni L , Matsuda H , Matsuzawa S , Miki H , Mignone F , Miyake S , Morris K , Mottagui-Tabar S , Mulder N , Nakano N , Nakauchi H , Ng P , Nilsson R , Nishiguchi S , Nishikawa S , Nori F , Ohara O , Okazaki Y , Orlando V , Pang KC , Pavan WJ , Pavesi G , Pesole G , Petrovsky N , Piazza S , Reed J , Reid JF , Ring BZ , Ringwald M , Rost B , Ruan Y , Salzberg SL , Sandelin A , Schneider C , Schonbach C , Sekiguchi K , Semple CA , Seno S , Sessa L , Sheng Y , Shibata Y , Shimada H , Shimada K , Silva D , Sinclair B , Sperling S , Stupka E , Sugiura K , Sultana R , Takenaka Y , Taki K , Tammoja K , Tan SL , Tang S , Taylor MS , Tegner J , Teichmann SA , Ueda HR , van Nimwegen E , Verardo R , Wei CL , Yagi K , Yamanishi H , Zabarovsky E , Zhu S , Zimmer A , Hide W , Bult C , Grimmond SM , Teasdale RD , Liu ET , Brusic V , Quackenbush J , Wahlestedt C , Mattick JS , Hume DA , Kai C , Sasaki D , Tomaru Y , Fukuda S , Kanamori-Katayama M , Suzuki M , Aoki J , Arakawa T , Iida J , Imamura K , Itoh M , Kato T , Kawaji H , Kawagashira N , Kawashima T , Kojima M , Kondo S , Konno H , Nakano K , Ninomiya N , Nishio T , Okada M , Plessy C , Shibata K , Shiraki T , Suzuki S , Tagami M , Waki K , Watahiki A , Okamura-Oho Y , Suzuki H , Kawai J , Hayashizaki Y
Ref : Science , 309 :1559 , 2005
Abstract : This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
ESTHER : Carninci_2005_Science_309_1559
PubMedSearch : Carninci_2005_Science_309_1559
PubMedID: 16141072
Gene_locus related to this paper: mouse-abhd1 , mouse-abhd3 , mouse-abhd4 , mouse-acot4 , mouse-adcl4 , mouse-DGLB , mouse-ephx3 , mouse-Kansl3 , mouse-lipli , mouse-LIPN , mouse-Ppgb , mouse-q3uuq7 , mouse-srac1 , mouse-Tex30 , mouse-tmco4 , mouse-tmm53 , mouse-f172a

Title : Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs - Okazaki_2002_Nature_420_563
Author(s) : Okazaki Y , Furuno M , Kasukawa T , Adachi J , Bono H , Kondo S , Nikaido I , Osato N , Saito R , Suzuki H , Yamanaka I , Kiyosawa H , Yagi K , Tomaru Y , Hasegawa Y , Nogami A , Schonbach C , Gojobori T , Baldarelli R , Hill DP , Bult C , Hume DA , Quackenbush J , Schriml LM , Kanapin A , Matsuda H , Batalov S , Beisel KW , Blake JA , Bradt D , Brusic V , Chothia C , Corbani LE , Cousins S , Dalla E , Dragani TA , Fletcher CF , Forrest A , Frazer KS , Gaasterland T , Gariboldi M , Gissi C , Godzik A , Gough J , Grimmond S , Gustincich S , Hirokawa N , Jackson IJ , Jarvis ED , Kanai A , Kawaji H , Kawasawa Y , Kedzierski RM , King BL , Konagaya A , Kurochkin IV , Lee Y , Lenhard B , Lyons PA , Maglott DR , Maltais L , Marchionni L , McKenzie L , Miki H , Nagashima T , Numata K , Okido T , Pavan WJ , Pertea G , Pesole G , Petrovsky N , Pillai R , Pontius JU , Qi D , Ramachandran S , Ravasi T , Reed JC , Reed DJ , Reid J , Ring BZ , Ringwald M , Sandelin A , Schneider C , Semple CA , Setou M , Shimada K , Sultana R , Takenaka Y , Taylor MS , Teasdale RD , Tomita M , Verardo R , Wagner L , Wahlestedt C , Wang Y , Watanabe Y , Wells C , Wilming LG , Wynshaw-Boris A , Yanagisawa M , Yang I , Yang L , Yuan Z , Zavolan M , Zhu Y , Zimmer A , Carninci P , Hayatsu N , Hirozane-Kishikawa T , Konno H , Nakamura M , Sakazume N , Sato K , Shiraki T , Waki K , Kawai J , Aizawa K , Arakawa T , Fukuda S , Hara A , Hashizume W , Imotani K , Ishii Y , Itoh M , Kagawa I , Miyazaki A , Sakai K , Sasaki D , Shibata K , Shinagawa A , Yasunishi A , Yoshino M , Waterston R , Lander ES , Rogers J , Birney E , Hayashizaki Y
Ref : Nature , 420 :563 , 2002
Abstract : Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
ESTHER : Okazaki_2002_Nature_420_563
PubMedSearch : Okazaki_2002_Nature_420_563
PubMedID: 12466851
Gene_locus related to this paper: mouse-1lipg , mouse-1llip , mouse-1plrp , mouse-3neur , mouse-ABH15 , mouse-abhd4 , mouse-abhd5 , mouse-Abhd8 , mouse-Abhd11 , mouse-abhda , mouse-acot4 , mouse-adcl4 , mouse-AI607300 , mouse-BAAT , mouse-bphl , mouse-C87498 , mouse-Ldah , mouse-Ces1d , mouse-Ces2e , mouse-CMBL , mouse-DGLB , mouse-dpp9 , mouse-ES10 , mouse-F135A , mouse-FASN , mouse-hslip , mouse-hyes , mouse-Kansl3 , mouse-LIPH , mouse-LIPK , mouse-lipli , mouse-LIPM , mouse-lypla1 , mouse-lypla2 , mouse-MEST , mouse-MGLL , mouse-ndr4 , mouse-OVCA2 , mouse-pafa , mouse-pcp , mouse-ppce , mouse-Ppgb , mouse-PPME1 , mouse-q3uuq7 , mouse-Q8BLF1 , mouse-ACOT6 , mouse-Q8C1A9 , mouse-Q9DAI6 , mouse-Q80UX8 , mouse-Q8BGG9 , mouse-Q8C167 , mouse-rbbp9 , mouse-SERHL , mouse-tssp