Astakhova TY

References (7)

Title : Combining Experimental and Computational Methods to Produce Conjugates of Anticholinesterase and Antioxidant Pharmacophores with Linker Chemistries Affecting Biological Activities Related to Treatment of Alzheimer's Disease - Makhaeva_2024_Molecules_29_321
Author(s) : Makhaeva GF , Kovaleva NV , Rudakova EV , Boltneva NP , Lushchekina SV , Astakhova TY , Timokhina EN , Serkov IV , Proshin AN , Soldatova YV , Poletaeva DA , Faingold, II , Mumyatova VA , Terentiev AA , Radchenko EV , Palyulin VA , Bachurin SO , Richardson RJ
Ref : Molecules , 29 :321 , 2024
Abstract : Effective therapeutics for Alzheimer's disease (AD) are in great demand worldwide. In our previous work, we responded to this need by synthesizing novel drug candidates consisting of 4-amino-2,3-polymethylenequinolines conjugated with butylated hydroxytoluene via fixed-length alkylimine or alkylamine linkers (spacers) and studying their bioactivities pertaining to AD treatment. Here, we report significant extensions of these studies, including the use of variable-length spacers and more detailed biological characterizations. Conjugates were potent inhibitors of acetylcholinesterase (AChE, the most active was 17d IC(50) 15.1 +/- 0.2 nM) and butyrylcholinesterase (BChE, the most active was 18d: IC(50) 5.96 +/- 0.58 nM), with weak inhibition of off-target carboxylesterase. Conjugates with alkylamine spacers were more effective cholinesterase inhibitors than alkylimine analogs. Optimal inhibition for AChE was exhibited by cyclohexaquinoline and for BChE by cycloheptaquinoline. Increasing spacer length elevated the potency against both cholinesterases. Structure-activity relationships agreed with docking results. Mixed-type reversible AChE inhibition, dual docking to catalytic and peripheral anionic sites, and propidium iodide displacement suggested the potential of hybrids to block AChE-induced beta-amyloid (Abeta) aggregation. Hybrids also exhibited the inhibition of Abeta self-aggregation in the thioflavin test; those with a hexaquinoline ring and C8 spacer were the most active. Conjugates demonstrated high antioxidant activity in ABTS and FRAP assays as well as the inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Quantum-chemical calculations explained antioxidant results. Computed ADMET profiles indicated favorable blood-brain barrier permeability, suggesting the CNS activity potential. Thus, the conjugates could be considered promising multifunctional agents for the potential treatment of AD.
ESTHER : Makhaeva_2024_Molecules_29_321
PubMedSearch : Makhaeva_2024_Molecules_29_321
PubMedID: 38257233

Title : Derivatives of 9-phosphorylated acridine as butyrylcholinesterase inhibitors with antioxidant activity and the ability to inhibit beta-amyloid self-aggregation: potential therapeutic agents for Alzheimer's disease - Makhaeva_2023_Front.Pharmacol_14_1219980
Author(s) : Makhaeva GF , Kovaleva NV , Rudakova EV , Boltneva NP , Lushchekina SV , Astakhova TY , Timokhina EN , Serebryakova OG , Shchepochkin AV , Averkov MA , Utepova IA , Demina NS , Radchenko EV , Palyulin VA , Fisenko VP , Bachurin SO , Chupakhin ON , Charushin VN , Richardson RJ
Ref : Front Pharmacol , 14 :1219980 , 2023
Abstract : We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of beta-amyloid (Abeta(42)) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results. All new compounds weakly inhibited AChE and off-target CES. Dihydroacridines with aryl substituents in the phosphoryl moiety inhibited BChE; the most active were the dibenzyloxy derivative 1d and its diphenethyl bioisostere 1e (IC(50) = 2.90 +/- 0.23 microM and 3.22 +/- 0.25 microM, respectively). Only one acridine, 2d, an analog of dihydroacridine, 1d, was an effective BChE inhibitor (IC(50) = 6.90 +/- 0.55 microM), consistent with docking results. Dihydroacridines inhibited Abeta(42) self-aggregation; 1d and 1e were the most active (58.9% +/- 4.7% and 46.9% +/- 4.2%, respectively). All dihydroacridines 1 demonstrated high ABTS(+)-scavenging and iron-reducing activities comparable to Trolox, but acridines 2 were almost inactive. Observed features were well explained by quantum-chemical calculations. ADMET parameters calculated for all compounds predicted favorable intestinal absorption, good blood-brain barrier permeability, and low cardiac toxicity. Overall, the best results were obtained for two dihydroacridine derivatives 1d and 1e with dibenzyloxy and diphenethyl substituents in the phosphoryl moiety. These compounds displayed high inhibition of BChE activity and Abeta(42) self-aggregation, high antioxidant activity, and favorable predicted ADMET profiles. Therefore, we consider 1d and 1e as lead compounds for further in-depth studies as potential anti-AD preparations.
ESTHER : Makhaeva_2023_Front.Pharmacol_14_1219980
PubMedSearch : Makhaeva_2023_Front.Pharmacol_14_1219980
PubMedID: 37654616

Title : Conjugates of Tacrine and Salicylic Acid Derivatives as New Promising Multitarget Agents for Alzheimer's Disease - Makhaeva_2023_Int.J.Mol.Sci_24_2285
Author(s) : Makhaeva GF , Kovaleva NV , Rudakova EV , Boltneva NP , Grishchenko MV , Lushchekina SV , Astakhova TY , Serebryakova OG , Timokhina EN , Zhilina EF , Shchegolkov EV , Ulitko MV , Radchenko EV , Palyulin VA , Burgart YV , Saloutin VI , Bachurin SO , Richardson RJ
Ref : Int J Mol Sci , 24 :2285 , 2023
Abstract : A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The structure of the salicylamide moiety exerted little effect on anticholinesterase activity, but AChE inhibition increased with spacer elongation. The most active conjugates were salicylimine derivatives: IC(50) values of the lead compound 10c were 0.0826 microM (AChE) and 0.0156 microM (BChE), with weak inhibition of the off-target carboxylesterase. The hybrids were mixed-type reversible inhibitors of both cholinesterases and displayed dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking, which, along with experimental results on propidium iodide displacement, suggested their potential to block AChE-induced beta-amyloid aggregation. All conjugates inhibited Abeta(42) self-aggregation in the thioflavin test, and inhibition increased with spacer elongation. Salicylimine 10c and salicylamide 5c with (CH(2))(8) spacers were the lead compounds for inhibiting Abeta(42) self-aggregation, which was corroborated by molecular docking to Abeta(42). ABTS(+)-scavenging activity was highest for salicylamides 5a-c, intermediate for salicylimines 10a-c, low for F-containing salicylamides 7, and non-existent for methoxybenzoylamides 6 and difluoromethoxybenzoylamides 8. In the FRAP antioxidant (AO) assay, the test compounds displayed little or no activity. Quantum chemical analysis and molecular dynamics (MD) simulations with QM/MM potentials explained the AO structure-activity relationships. All conjugates were effective chelators of Cu(2+), Fe(2+), and Zn(2+), with molar compound/metal (Cu(2+)) ratios of 2:1 (5b) and ~1:1 (10b). Conjugates exerted comparable or lower cytotoxicity than tacrine on mouse hepatocytes and had favorable predicted intestinal absorption and blood-brain barrier permeability. The overall results indicate that the synthesized conjugates are promising new multifunctional agents for the potential treatment of AD.
ESTHER : Makhaeva_2023_Int.J.Mol.Sci_24_2285
PubMedSearch : Makhaeva_2023_Int.J.Mol.Sci_24_2285
PubMedID: 36768608

Title : Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer's Activity Profile - Makhaeva_2022_Molecules_27_
Author(s) : Makhaeva GF , Kovaleva NV , Boltneva NP , Rudakova EV , Lushchekina SV , Astakhova TY , Serkov IV , Proshin AN , Radchenko EV , Palyulin VA , Korabecny J , Soukup O , Bachurin SO , Richardson RJ
Ref : Molecules , 27 : , 2022
Abstract : Using two ways of functionalizing amiridine-acylation with chloroacetic acid chloride and reaction with thiophosgene-we have synthesized new homobivalent bis-amiridines joined by two different spacers-bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) -as potential multifunctional agents for the treatment of Alzheimer's disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug-drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a-c exhibited an IC(50)(AChE) = 2.9-1.4 microM, IC(50)(BChE) = 0.13-0.067 microM, and 14-18% propidium displacement at 20 microM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Abeta(42) aggregation. Conjugates 3 had no effect on Abeta(42) self-aggregation, whereas compounds 5c-e (m = 4, 5, 6) showed mild (13-17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2-2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood-brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c-e appear promising for future optimization and development as multitarget anti-AD agents.
ESTHER : Makhaeva_2022_Molecules_27_
PubMedSearch : Makhaeva_2022_Molecules_27_
PubMedID: 35164325

Title : Conjugates of Tacrine with Salicylamide as Promising Multitarget Agents for Alzheimer's Disease - Grishchenko_2022_ChemMedChem__e202200080
Author(s) : Grishchenko MV , Makhaeva GF , Burgart YV , Rudakova EV , Boltneva NP , Kovaleva NV , Serebryakova OG , Lushchekina SV , Astakhova TY , Zhilina EF , Shchegolkov EV , Richardson RJ , Saloutin VI
Ref : ChemMedChem , :e202200080 , 2022
Abstract : New conjugates of tacrine and salicylamide with alkylene spacers were synthesized and evaluated as potential multifunctional agents for Alzheimer's disease (AD). The compounds exhibited high acetylcholinesterase (AChE, IC(50) to 0.224microM) and butyrylcholinesterase (BChE, IC(50) to 0.0104microM) inhibitory activities. They were also rather poor inhibitors of carboxylesterase, suggesting a low tendency to exert potential unwanted drug-drug interactions in clinical use. The conjugates were mixed-type reversible inhibitors of both cholinesterases and demonstrated dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking that, along with experimental results on propidium iodide displacement, suggest their potential to block AChE-induced beta-amyloid aggregation. The new conjugates exhibited high ABTS(.+) -scavenging activity. N-(6-(1,2,3,4-Tetrahydroacridin-9-ylamino)hexyl)salicylamide is a lead compound that also demonstrates metal chelating ability toward Cu(2+) , Fe(2+) and Zn(2+) . Thus, the new conjugates have displayed the potential to be multifunctional anti-AD agents for further development.
ESTHER : Grishchenko_2022_ChemMedChem__e202200080
PubMedSearch : Grishchenko_2022_ChemMedChem__e202200080
PubMedID: 35322571

Title : New Multifunctional Agents for Potential Alzheimer's Disease Treatment Based on Tacrine Conjugates with 2-Arylhydrazinylidene-1,3-Diketones - Elkina_2022_Biomolecules_12_
Author(s) : Elkina NA , Grishchenko MV , Shchegolkov EV , Makhaeva GF , Kovaleva NV , Rudakova EV , Boltneva NP , Lushchekina SV , Astakhova TY , Radchenko EV , Palyulin VA , Zhilina EF , Perminova AN , Lapshin LS , Burgart YV , Saloutin VI , Richardson RJ
Ref : Biomolecules , 12 : , 2022
Abstract : Alzheimer's disease (AD) is considered a modern epidemic because of its increasing prevalence worldwide and serious medico-social consequences, including the economic burden of treatment and patient care. The development of new effective therapeutic agents for AD is one of the most urgent and challenging tasks. To address this need, we used an aminoalkylene linker to combine the well-known anticholinesterase drug tacrine with antioxidant 2-tolylhydrazinylidene-1,3-diketones to create 3 groups of hybrid compounds as new multifunctional agents with the potential for AD treatment. Lead compounds of the new conjugates effectively inhibited acetylcholinesterase (AChE, IC(50) 0.24-0.34 M) and butyrylcholinesterase (BChE, IC(50) 0.036-0.0745 M), with weak inhibition of off-target carboxylesterase. Anti-AChE activity increased with elongation of the alkylene spacer, in agreement with molecular docking, which showed compounds binding to both the catalytic active site and peripheral anionic site (PAS) of AChE, consistent with mixed type reversible inhibition. PAS binding along with effective propidium displacement suggest the potential of the hybrids to block AChE-induced beta-amyloid aggregation, a disease-modifying effect. All of the conjugates demonstrated metal chelating ability for Cu(2+), Fe(2+), and Zn(2+), as well as high antiradical activity in the ABTS test. Non-fluorinated hybrid compounds 6 and 7 also showed Fe(3+) reducing activity in the FRAP test. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters acceptable for potential lead compounds at the early stages of anti-AD drug development.
ESTHER : Elkina_2022_Biomolecules_12_
PubMedSearch : Elkina_2022_Biomolecules_12_
PubMedID: 36358901

Title : New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer's Disease Treatment - Makhaeva_2020_Molecules_25_3915
Author(s) : Makhaeva GF , Kovaleva NV , Boltneva NP , Lushchekina SV , Astakhova TY , Rudakova EV , Proshin AN , Serkov IV , Radchenko EV , Palyulin VA , Bachurin SO , Richardson RJ
Ref : Molecules , 25 :3915 , 2020
Abstract : New hybrid compounds of 4-amino-2,3-polymethylene-quinoline containing different sizes of the aliphatic ring and linked to p-tolylsulfonamide with alkylene spacers of increasing length were synthesized as potential drugs for treatment of Alzheimer's disease (AD). All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The lead compound 4-methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-pentyl)-benzenesulfonamide (7h) exhibited an IC(50) (AChE) = 0.131 +/- 0.01 muM (five times more potent than tacrine), IC(50)(BChE) = 0.0680 +/- 0.0014 muM, and 17.5 +/- 1.5% propidium displacement at 20 muM. The compounds possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. Kinetics studies were consistent with mixed-type reversible inhibition of both cholinesterases. Molecular docking demonstrated dual binding sites of the conjugates in AChE and clarified the differences in the structure-activity relationships for AChE and BChE inhibition. The conjugates could bind to the AChE peripheral anionic site and displace propidium, indicating their potential to block AChE-induced beta-amyloid aggregation, thereby exerting a disease-modifying effect. All compounds demonstrated low antioxidant activity. Computational ADMET profiles predicted that all compounds would have good intestinal absorption, medium blood-brain barrier permeability, and medium cardiac toxicity risk. Overall, the results indicate that the novel conjugates show promise for further development and optimization as multitarget anti-AD agents.
ESTHER : Makhaeva_2020_Molecules_25_3915
PubMedSearch : Makhaeva_2020_Molecules_25_3915
PubMedID: 32867324