Hotta K

References (7)

Title : Elucidation of Pyranonigrin Biosynthetic Pathway Reveals a Mode of Tetramic Acid, Fused gamma-Pyrone, and exo-Methylene Formation - Yamamoto_2015_Org.Lett_17_4992
Author(s) : Yamamoto T , Tsunematsu Y , Noguchi H , Hotta K , Watanabe K
Ref : Org Lett , 17 :4992 , 2015
Abstract : Successful activation of the pyranonigrin biosynthetic gene cluster and gene knockout in Aspergillus niger plus in vivo and in vitro assays led to isolation of six new products, including a spiro cyclobutane-containing dimeric compound, which served as the basis for the proposed comprehensive pyranonigrin biosynthetic pathway. Two redox enzymes are key to forming the characteristic fused gamma-pyrone core, and a protease homologue performs the exo-methylene formation.
ESTHER : Yamamoto_2015_Org.Lett_17_4992
PubMedSearch : Yamamoto_2015_Org.Lett_17_4992
PubMedID: 26414728
Gene_locus related to this paper: aspnc-pyni

Title : Epoxide hydrolase-lasalocid a structure provides mechanistic insight into polyether natural product biosynthesis - Wong_2015_J.Am.Chem.Soc_137_86
Author(s) : Wong FT , Hotta K , Chen X , Fang M , Watanabe K , Kim CY
Ref : Journal of the American Chemical Society , 137 :86 , 2015
Abstract : Biosynthesis of some polyether natural products involves a kinetically disfavored epoxide-opening cyclic ether formation, a reaction termed anti-Baldwin cyclization. One such example is the biosynthesis of lasalocid A, an ionophore antibiotic polyether. During lasalocid A biosynthesis, an epoxide hydrolase, Lsd19, converts the bisepoxy polyketide intermediate into the tetrahydrofuranyl-tetrahydropyran product. We report the crystal structure of Lsd19 in complex with lasalocid A. The structure unambiguously shows that the C-terminal domain of Lsd19 catalyzes the intriguing anti-Baldwin cyclization. We propose a general mechanism for epoxide selection by ionophore polyether epoxide hydrolases.
ESTHER : Wong_2015_J.Am.Chem.Soc_137_86
PubMedSearch : Wong_2015_J.Am.Chem.Soc_137_86
PubMedID: 25535803

Title : Elucidation of pseurotin biosynthetic pathway points to trans-acting C-methyltransferase: generation of chemical diversity - Tsunematsu_2014_Angew.Chem.Int.Ed.Engl_53_8475
Author(s) : Tsunematsu Y , Fukutomi M , Saruwatari T , Noguchi H , Hotta K , Tang Y , Watanabe K
Ref : Angew Chem Int Ed Engl , 53 :8475 , 2014
Abstract : Pseurotins comprise a family of structurally related Aspergillal natural products having interesting bioactivity. However, little is known about the biosynthetic steps involved in the formation of their complex chemical features. Systematic deletion of the pseurotin biosynthetic genes in A. fumigatus and invivo and invitro characterization of the tailoring enzymes to determine the biosynthetic intermediates, and the gene products responsible for the formation of each intermediate, are described. Thus, the main biosynthetic steps leading to the formation of pseurotinA from the predominant precursor, azaspirene, were elucidated. The study revealed the combinatorial nature of the biosynthesis of the pseurotin family of compounds and the intermediates. Most interestingly, we report the first identification of an epoxidase C-methyltransferase bifunctional fusion protein PsoF which appears to methylate the nascent polyketide backbone carbon atom in trans.
ESTHER : Tsunematsu_2014_Angew.Chem.Int.Ed.Engl_53_8475
PubMedSearch : Tsunematsu_2014_Angew.Chem.Int.Ed.Engl_53_8475
PubMedID: 24939566
Gene_locus related to this paper: aspfu-psoB

Title : Enzymatic epoxide-opening cascades catalyzed by a pair of epoxide hydrolases in the ionophore polyether biosynthesis - Minami_2011_Org.Lett_13_1638
Author(s) : Minami A , Migita A , Inada D , Hotta K , Watanabe K , Oguri H , Oikawa H
Ref : Org Lett , 13 :1638 , 2011
Abstract : Our recent findings of the first epoxide hydrolase Lsd19, involved in lasalocid A biosynthesis, led us to investigate a long-standing controversial issue on the mechanism of enzymatic epoxide-opening cascades. The site-directed mutagenesis and domain dissection analysis to reveal the mechanism of the reaction catalyzed by Lsd19 is examined, especially in the role of acidic amino acid pair and catalytic domains.
ESTHER : Minami_2011_Org.Lett_13_1638
PubMedSearch : Minami_2011_Org.Lett_13_1638
PubMedID: 21375229

Title : Polymorphisms in NRXN3, TFAP2B, MSRA, LYPLAL1, FTO and MC4R and their effect on visceral fat area in the Japanese population - Hotta_2010_J.Hum.Genet_55_738
Author(s) : Hotta K , Nakamura M , Nakamura T , Matsuo T , Nakata Y , Kamohara S , Miyatake N , Kotani K , Komatsu R , Itoh N , Mineo I , Wada J , Yoneda M , Nakajima A , Funahashi T , Miyazaki S , Tokunaga K , Kawamoto M , Masuzaki H , Ueno T , Hamaguchi K , Tanaka K , Yamada K , Hanafusa T , Oikawa S , Yoshimatsu H , Nakao K , Sakata T , Matsuzawa Y , Nakamura Y , Kamatani N
Ref : J Hum Genet , 55 :738 , 2010
Abstract : The predominant risk factor of metabolic syndrome is intra-abdominal fat accumulation, which is determined by waist circumference and waist-hip ratio measurements and visceral fat area (VFA) that is measured by computed tomography (CT). There is evidence that waist circumference and waist-hip ratio in the Caucasian population are associated with variations in several genes, including neurexin 3 (NRXN3), transcription factor AP-2beta (TFAP2B), methionine sulfoxide reductase A (MSRA), lysophospholipase-like-1 (LYPLAL1), fat mass and obesity associated (FTO) and melanocortin 4 receptor (MC4R) genes. To investigate the relationship between VFA and subcutaneous fat area (SFA) and these genes in the recruited Japanese population, we genotyped 8 single-nucleotide polymorphisms (SNPs) in these 6 genes from 1228 subjects. Multiple regression analysis revealed that gender, age, and rs1558902 and rs1421085 genotypes (additive model) in FTO were significantly associated with body mass index (BMI; P=0.0039 and 0.0039, respectively), SFA (P=0.0027 and 0.0023, respectively) and VFA (P=0.045 and 0.040, respectively). However, SNPs in other genes, namely, NRXN3, TFAP2B, MSRA, LYPLAL1 and MC4R were not significantly associated with BMI, SFA or VFA. Our data suggest that some SNPs, which were identified in genome-wide studies in the Caucasians, also confer susceptibility to fat distribution in the Japanese subjects.
ESTHER : Hotta_2010_J.Hum.Genet_55_738
PubMedSearch : Hotta_2010_J.Hum.Genet_55_738
PubMedID: 20703240

Title : The complete genomic sequence of Nocardia farcinica IFM 10152 - Ishikawa_2004_Proc.Natl.Acad.Sci.U.S.A_101_14925
Author(s) : Ishikawa J , Yamashita A , Mikami Y , Hoshino Y , Kurita H , Hotta K , Shiba T , Hattori M
Ref : Proc Natl Acad Sci U S A , 101 :14925 , 2004
Abstract : We determined the genomic sequence of Nocardia farcinica IFM 10152, a clinical isolate, and revealed the molecular basis of its versatility. The genome consists of a single circular chromosome of 6,021,225 bp with an average G+C content of 70.8% and two plasmids of 184,027 (pNF1) and 87,093 (pNF2) bp with average G+C contents of 67.2% and 68.4%, respectively. The chromosome encoded 5,674 putative protein-coding sequences, including many candidate genes for virulence and multidrug resistance as well as secondary metabolism. Analyses of paralogous protein families suggest that gene duplications have resulted in a bacterium that can survive not only in soil environments but also in animal tissues, resulting in disease.
ESTHER : Ishikawa_2004_Proc.Natl.Acad.Sci.U.S.A_101_14925
PubMedSearch : Ishikawa_2004_Proc.Natl.Acad.Sci.U.S.A_101_14925
PubMedID: 15466710
Gene_locus related to this paper: 9arch-q5nw20 , nocfa-metx , nocfa-q5ymb5 , nocfa-q5yml0 , nocfa-q5ymz1 , nocfa-q5yn12 , nocfa-q5yn81 , nocfa-q5yna6 , nocfa-q5ynd1 , nocfa-q5yne7 , nocfa-q5ynm0 , nocfa-q5ynw9 , nocfa-q5ynx0 , nocfa-q5yp07 , nocfa-q5yp18 , nocfa-q5yp33 , nocfa-q5yp46 , nocfa-q5yp51 , nocfa-q5ypg5 , nocfa-q5yph7 , nocfa-q5ypm0 , nocfa-q5ypu9 , nocfa-q5ypw3 , nocfa-q5yqi7 , nocfa-q5yql3 , nocfa-q5yqp8 , nocfa-q5yqw8 , nocfa-q5yqy4 , nocfa-q5yr00 , nocfa-q5yr19 , nocfa-q5yrc7 , nocfa-q5yrg2 , nocfa-q5yrn9 , nocfa-q5yrp2 , nocfa-q5yrp3 , nocfa-q5yrq8 , nocfa-q5yrt6 , nocfa-q5yrv3 , nocfa-q5yrz4 , nocfa-q5ys96 , nocfa-q5ys98 , nocfa-q5ysa6 , nocfa-q5ysq0 , nocfa-q5yt17 , nocfa-q5ytb0 , nocfa-q5ytg1 , nocfa-q5ytn3 , nocfa-q5ytr2 , nocfa-q5ytw9 , nocfa-q5ytz8 , nocfa-q5yua9 , nocfa-q5yub8 , nocfa-q5yuk6 , nocfa-q5yum4 , nocfa-q5yun2 , nocfa-q5yun5 , nocfa-q5yun7 , nocfa-q5yuq2 , nocfa-q5yur6 , nocfa-q5yus3 , nocfa-q5yus4 , nocfa-q5yv08 , nocfa-q5yv27 , nocfa-q5yvb8 , nocfa-q5yvi0 , nocfa-q5yvk3 , nocfa-q5yvr2 , nocfa-q5yvw8 , nocfa-q5yvz9 , nocfa-q5yw34 , nocfa-q5yw53 , nocfa-q5ywe0 , nocfa-q5ywh1 , nocfa-q5ywp2 , nocfa-q5ywt3 , nocfa-q5yx25 , nocfa-q5yx42 , nocfa-q5yx67 , nocfa-q5yxc9 , nocfa-q5yxd4 , nocfa-q5yxg3 , nocfa-q5yxx4 , nocfa-q5yy59 , nocfa-q5yyb5 , nocfa-q5yz80 , nocfa-q5yz86 , nocfa-q5yz89 , nocfa-q5yz97 , nocfa-q5yza2 , nocfa-q5yzd7 , nocfa-q5yzg2 , nocfa-q5yzh3 , nocfa-q5yzi0 , nocfa-q5yzq7 , nocfa-q5yzu6 , nocfa-q5z0b7 , nocfa-q5z0l3 , nocfa-q5z0s0 , nocfa-q5z0u1 , nocfa-q5z1b6 , nocfa-q5z1d9 , nocfa-q5z1g6 , nocfa-q5z1t3 , nocfa-q5z1t8 , nocfa-q5z1x5 , nocfa-q5z1x6 , nocfa-q5z1x7 , nocfa-q5z1x8 , nocfa-q5z2c2 , nocfa-q5z2d3 , nocfa-q5z2d5 , nocfa-q5z2e7 , nocfa-q5z2m6 , nocfa-q5z2s1 , nocfa-q5z2x4 , nocfa-q5z2x8 , nocfa-q5z2z7 , nocfa-q5z3c1 , nocfa-q5z3e1 , nocfa-q5z3g0 , nocfa-q5z3g3 , nocfa-q5z3g5 , nocfa-q5z3g6 , nocfa-q5z3g7 , nocfa-q5z3g8 , nocfa-q5z3q1 , nocfa-q5z3z4 , nocfa-q5z200 , nocfa-q5z339 , nocfa-q5ynw5 , nocfa-q5ynd9 , nocfa-q5yp20

Title : The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins - Dehal_2002_Science_298_2157
Author(s) : Dehal P , Satou Y , Campbell RK , Chapman J , Degnan B , De Tomaso A , Davidson B , Di Gregorio A , Gelpke M , Goodstein DM , Harafuji N , Hastings KE , Ho I , Hotta K , Huang W , Kawashima T , Lemaire P , Martinez D , Meinertzhagen IA , Necula S , Nonaka M , Putnam N , Rash S , Saiga H , Satake M , Terry A , Yamada L , Wang HG , Awazu S , Azumi K , Boore J , Branno M , Chin-Bow S , DeSantis R , Doyle S , Francino P , Keys DN , Haga S , Hayashi H , Hino K , Imai KS , Inaba K , Kano S , Kobayashi K , Kobayashi M , Lee BI , Makabe KW , Manohar C , Matassi G , Medina M , Mochizuki Y , Mount S , Morishita T , Miura S , Nakayama A , Nishizaka S , Nomoto H , Ohta F , Oishi K , Rigoutsos I , Sano M , Sasaki A , Sasakura Y , Shoguchi E , Shin-I T , Spagnuolo A , Stainier D , Suzuki MM , Tassy O , Takatori N , Tokuoka M , Yagi K , Yoshizaki F , Wada S , Zhang C , Hyatt PD , Larimer F , Detter C , Doggett N , Glavina T , Hawkins T , Richardson P , Lucas S , Kohara Y , Levine M , Satoh N , Rokhsar DS
Ref : Science , 298 :2157 , 2002
Abstract : The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
ESTHER : Dehal_2002_Science_298_2157
PubMedSearch : Dehal_2002_Science_298_2157
PubMedID: 12481130
Gene_locus related to this paper: cioin-141645 , cioin-147959 , cioin-150181 , cioin-154370 , cioin-ACHE1 , cioin-ACHE2 , cioin-cxest , cioin-f6qcp0 , cioin-f6r8z1 , cioin-f6u176 , cioin-f6vac9 , cioin-f6x584 , cioin-f6xa69 , cioin-f6y403 , cioin-h2xqb4 , cioin-H2XTI0 , cioin-F6T1M3 , cioin-H2XUP7 , cioin-CIN.7233 , cioin-F6V269 , cioin-Cin16330 , cioin-h2xua2 , cioin-f6vaa5 , cioin-f6v9x6 , cioin-f6swc9 , cioin-f7amz2 , cioin-f6s021 , cioin-h2xxq9 , cioin-h2xne6 , cioin-f6ynr2