Kawashima T

References (8)

Title : The genome of the Western clawed frog Xenopus tropicalis - Hellsten_2010_Science_328_633
Author(s) : Hellsten U , Harland RM , Gilchrist MJ , Hendrix D , Jurka J , Kapitonov V , Ovcharenko I , Putnam NH , Shu S , Taher L , Blitz IL , Blumberg B , Dichmann DS , Dubchak I , Amaya E , Detter JC , Fletcher R , Gerhard DS , Goodstein D , Graves T , Grigoriev IV , Grimwood J , Kawashima T , Lindquist E , Lucas SM , Mead PE , Mitros T , Ogino H , Ohta Y , Poliakov AV , Pollet N , Robert J , Salamov A , Sater AK , Schmutz J , Terry A , Vize PD , Warren WC , Wells D , Wills A , Wilson RK , Zimmerman LB , Zorn AM , Grainger R , Grammer T , Khokha MK , Richardson PM , Rokhsar DS
Ref : Science , 328 :633 , 2010
Abstract : The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.
ESTHER : Hellsten_2010_Science_328_633
PubMedSearch : Hellsten_2010_Science_328_633
PubMedID: 20431018
Gene_locus related to this paper: xenla-q6pcj9 , xentr-a9umk0 , xentr-abhdb , xentr-ACHE , xentr-b0bm77 , xentr-b1h0y7 , xentr-b2guc4 , xentr-b7zt03 , xentr-b7ztj4 , xentr-BCHE1 , xentr-BCHE2 , xentr-cxest2 , xentr-d2x2k4 , xentr-d2x2k6 , xentr-f6rff6 , xentr-f6v0g3 , xentr-f6v2j6 , xentr-f6v3z1 , xentr-f6y4c8 , xentr-f6yve5 , xentr-f7a4y9 , xentr-f7acc5 , xentr-f7e2e2 , xentr-LOC394897 , xentr-ndrg1 , xentr-q0vfb6 , xentr-f7cpl7 , xentr-f6yj44 , xentr-f7ejk4 , xentr-f6q8j8 , xentr-f6z8f0 , xentr-f7d709 , xentr-b0bmb8 , xentr-f7af63 , xentr-a0a1b8y2w9 , xentr-f7d4k9 , xentr-f6r032 , xentr-f6yvq3 , xentr-a0a1b8y2z3 , xentr-f7afg4 , xentr-f6xb15 , xentr-f7e1r2 , xentr-a4ihf1 , xentr-f7eue5 , xentr-f6u7u3 , xentr-f172a , xentr-f7equ8 , xentr-f7dd89 , xentr-a9jtx5

Title : The dynamic genome of Hydra - Chapman_2010_Nature_464_592
Author(s) : Chapman JA , Kirkness EF , Simakov O , Hampson SE , Mitros T , Weinmaier T , Rattei T , Balasubramanian PG , Borman J , Busam D , Disbennett K , Pfannkoch C , Sumin N , Sutton GG , Viswanathan LD , Walenz B , Goodstein DM , Hellsten U , Kawashima T , Prochnik SE , Putnam NH , Shu S , Blumberg B , Dana CE , Gee L , Kibler DF , Law L , Lindgens D , Martinez DE , Peng J , Wigge PA , Bertulat B , Guder C , Nakamura Y , Ozbek S , Watanabe H , Khalturin K , Hemmrich G , Franke A , Augustin R , Fraune S , Hayakawa E , Hayakawa S , Hirose M , Hwang JS , Ikeo K , Nishimiya-Fujisawa C , Ogura A , Takahashi T , Steinmetz PR , Zhang X , Aufschnaiter R , Eder MK , Gorny AK , Salvenmoser W , Heimberg AM , Wheeler BM , Peterson KJ , Bottger A , Tischler P , Wolf A , Gojobori T , Remington KA , Strausberg RL , Venter JC , Technau U , Hobmayer B , Bosch TC , Holstein TW , Fujisawa T , Bode HR , David CN , Rokhsar DS , Steele RE
Ref : Nature , 464 :592 , 2010
Abstract : The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.
ESTHER : Chapman_2010_Nature_464_592
PubMedSearch : Chapman_2010_Nature_464_592
PubMedID: 20228792
Gene_locus related to this paper: 9burk-c9y6c0 , 9burk-c9y8q9 , 9burk-c9y9d4 , 9burk-c9ya28 , 9burk-c9yb37 , 9burk-c9ycr9 , 9burk-c9ydq0 , 9burk-c9ydr2 , 9burk-c9yew1 , 9burk-c9yf78 , 9burk-c9ygh2 , 9burk-c9y7j2

Title : The amphioxus genome and the evolution of the chordate karyotype - Putnam_2008_Nature_453_1064
Author(s) : Putnam NH , Butts T , Ferrier DE , Furlong RF , Hellsten U , Kawashima T , Robinson-Rechavi M , Shoguchi E , Terry A , Yu JK , Benito-Gutierrez EL , Dubchak I , Garcia-Fernandez J , Gibson-Brown JJ , Grigoriev IV , Horton AC , de Jong PJ , Jurka J , Kapitonov VV , Kohara Y , Kuroki Y , Lindquist E , Lucas S , Osoegawa K , Pennacchio LA , Salamov AA , Satou Y , Sauka-Spengler T , Schmutz J , Shin IT , Toyoda A , Bronner-Fraser M , Fujiyama A , Holland LZ , Holland PW , Satoh N , Rokhsar DS
Ref : Nature , 453 :1064 , 2008
Abstract : Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
ESTHER : Putnam_2008_Nature_453_1064
PubMedSearch : Putnam_2008_Nature_453_1064
PubMedID: 18563158
Gene_locus related to this paper: brafl-ACHE1 , brafl-ACHE2 , brafl-ACHEA , brafl-ACHEB , brafl-c3xqm2 , brafl-c3xqm5 , brafl-c3xtl0 , brafl-c3xtl1 , brafl-c3xut6 , brafl-c3xut7 , brafl-c3xvw5 , brafl-c3xx27 , brafl-c3xx28 , brafl-c3xx30 , brafl-c3xx32 , brafl-c3xx36 , brafl-c3xx38 , brafl-c3xx39 , brafl-c3xx40 , brafl-c3xx41 , brafl-c3xxt9 , brafl-c3xyd7 , brafl-c3xyd8 , brafl-c3xyd9 , brafl-c3xye0 , brafl-c3xyt7 , brafl-c3xzy1 , brafl-c3xzy2 , brafl-c3y1p9 , brafl-c3y1t3 , brafl-c3y2u3 , brafl-c3y4l1 , brafl-c3y6v9 , brafl-c3y6y4 , brafl-c3y7d7 , brafl-c3y7s1 , brafl-c3y8k5 , brafl-c3y8t3 , brafl-c3y8t4 , brafl-c3y8t5 , brafl-c3y8v8 , brafl-c3y8w1.1 , brafl-c3y8w2 , brafl-c3y9i7 , brafl-c3y9i8 , brafl-c3y9l9 , brafl-c3y9y3 , brafl-c3y087 , brafl-c3yan2 , brafl-c3yaw4 , brafl-c3ybw7 , brafl-c3yc67 , brafl-c3ydm8 , brafl-c3yfm5 , brafl-c3yfz8 , brafl-c3ygc7 , brafl-c3ygc9.1 , brafl-c3ygd0 , brafl-c3ygd1 , brafl-c3ygd2.1 , brafl-c3ygd4 , brafl-c3ygg6 , brafl-c3ygr1 , brafl-c3yi63 , brafl-c3yi64 , brafl-c3yi67 , brafl-c3yi68 , brafl-c3yi69 , brafl-c3yk61 , brafl-c3ykb2 , brafl-c3yla7 , brafl-c3ylp9 , brafl-c3ylq0 , brafl-c3ylq1 , brafl-c3ymu0 , brafl-c3yne9 , brafl-c3ypm6 , brafl-c3yr72 , brafl-c3yra8 , brafl-c3ys59 , brafl-c3yv27 , brafl-c3ywf1 , brafl-c3ywh9 , brafl-c3yx17 , brafl-c3yx19 , brafl-c3yxb9 , brafl-c3yxi7 , brafl-c3yyq5 , brafl-c3yz04 , brafl-c3z1c7 , brafl-c3z1u9 , brafl-c3z1v0 , brafl-c3z3n7 , brafl-c3z5c8 , brafl-c3z9f4 , brafl-c3z066 , brafl-c3z139 , brafl-c3z975 , brafl-c3zab8 , brafl-c3zab9 , brafl-c3zbr4 , brafl-c3zci7 , brafl-c3zcy8 , brafl-c3zd14 , brafl-c3zer1 , brafl-c3zf44 , brafl-c3zf47 , brafl-c3zf48 , brafl-c3zfs6 , brafl-c3zhm6 , brafl-c3ziv7.1 , brafl-c3ziv7.2 , brafl-c3zlg0 , brafl-c3zlg2 , brafl-c3zlg3 , brafl-c3zli5 , brafl-c3zme7 , brafl-c3zme8 , brafl-c3zmp8 , brafl-c3zmv1 , brafl-c3zmv2 , brafl-c3znd6 , brafl-c3znl2 , brafl-c3zqg7 , brafl-c3zqz2 , brafl-c3zs46 , brafl-c3zs49 , brafl-c3zs56 , brafl-c3zv54 , brafl-c3zvv1 , brafl-c3zwz6 , brafl-c3zxg2 , brafl-c3zxq3 , brafl-c3yim2 , brafl-c3zfs5 , brafl-c3zfs3 , brafl-c3xr79 , brafl-c3y7r2 , brafl-c3yj62 , brafl-c3zg22 , brafl-c3y2t9 , brafl-c3y2u0 , brafl-c3ycg1 , brafl-c3ycg2 , brafl-c3ycg4 , brafl-c3z1l3 , brafl-c3zn71 , brafl-c3zj72 , brafl-c3yf35 , brafl-c3z474 , brafl-c3zqr8 , brafl-c3yde6

Title : The Trichoplax genome and the nature of placozoans - Srivastava_2008_Nature_454_955
Author(s) : Srivastava M , Begovic E , Chapman J , Putnam NH , Hellsten U , Kawashima T , Kuo A , Mitros T , Salamov A , Carpenter ML , Signorovitch AY , Moreno MA , Kamm K , Grimwood J , Schmutz J , Shapiro H , Grigoriev IV , Buss LW , Schierwater B , Dellaporta SL , Rokhsar DS
Ref : Nature , 454 :955 , 2008
Abstract : As arguably the simplest free-living animals, placozoans may represent a primitive metazoan form, yet their biology is poorly understood. Here we report the sequencing and analysis of the approximately 98 million base pair nuclear genome of the placozoan Trichoplax adhaerens. Whole-genome phylogenetic analysis suggests that placozoans belong to a 'eumetazoan' clade that includes cnidarians and bilaterians, with sponges as the earliest diverging animals. The compact genome shows conserved gene content, gene structure and synteny in relation to the human and other complex eumetazoan genomes. Despite the apparent cellular and organismal simplicity of Trichoplax, its genome encodes a rich array of transcription factor and signalling pathway genes that are typically associated with diverse cell types and developmental processes in eumetazoans, motivating further searches for cryptic cellular complexity and/or as yet unobserved life history stages.
ESTHER : Srivastava_2008_Nature_454_955
PubMedSearch : Srivastava_2008_Nature_454_955
PubMedID: 18719581
Gene_locus related to this paper: triad-b3rka6 , triad-b3rkc3 , triad-b3rkc4 , triad-b3rkc5 , triad-b3rkr2 , triad-b3rks9 , triad-b3rkt0 , triad-b3rl14 , triad-b3rls2 , triad-b3rnj7 , triad-b3rnw5 , triad-b3rrr2 , triad-b3rsh1 , triad-b3rsh3 , triad-b3rty7 , triad-b3ru11 , triad-b3rur2 , triad-b3rut0 , triad-b3rvc1 , triad-b3rw12 , triad-b3rwp0 , triad-b3rwr4 , triad-b3rxn2 , triad-b3ry59 , triad-b3s1y9 , triad-b3s3d8 , triad-b3s3e9 , triad-b3s8a0 , triad-b3s9x4 , triad-b3s445 , triad-b3s449 , triad-b3s478 , triad-b3s705 , triad-b3s706 , triad-b3s898 , triad-b3s899 , triad-b3s949 , triad-b3s950 , triad-b3sa20 , triad-b3sa22 , triad-b3sa23 , triad-b3sa24 , triad-b3sa25 , triad-b3sa26 , triad-b3sa27 , triad-b3sa28 , triad-b3sa29 , triad-b3sa31 , triad-b3sa33 , triad-b3sa34 , triad-b3sa36 , triad-b3sb39 , triad-b3scd3 , triad-b3scg3 , triad-b3scg4 , triad-b3scr3 , triad-b3seb0 , triad-b3seb1 , triad-b3seu9 , triad-b3sf12 , triad-b3rt61 , triad-b3rt62 , triad-b3rj15 , triad-b3sdi1

Title : The transcriptional landscape of the mammalian genome - Carninci_2005_Science_309_1559
Author(s) : Carninci P , Kasukawa T , Katayama S , Gough J , Frith MC , Maeda N , Oyama R , Ravasi T , Lenhard B , Wells C , Kodzius R , Shimokawa K , Bajic VB , Brenner SE , Batalov S , Forrest AR , Zavolan M , Davis MJ , Wilming LG , Aidinis V , Allen JE , Ambesi-Impiombato A , Apweiler R , Aturaliya RN , Bailey TL , Bansal M , Baxter L , Beisel KW , Bersano T , Bono H , Chalk AM , Chiu KP , Choudhary V , Christoffels A , Clutterbuck DR , Crowe ML , Dalla E , Dalrymple BP , de Bono B , Della Gatta G , di Bernardo D , Down T , Engstrom P , Fagiolini M , Faulkner G , Fletcher CF , Fukushima T , Furuno M , Futaki S , Gariboldi M , Georgii-Hemming P , Gingeras TR , Gojobori T , Green RE , Gustincich S , Harbers M , Hayashi Y , Hensch TK , Hirokawa N , Hill D , Huminiecki L , Iacono M , Ikeo K , Iwama A , Ishikawa T , Jakt M , Kanapin A , Katoh M , Kawasawa Y , Kelso J , Kitamura H , Kitano H , Kollias G , Krishnan SP , Kruger A , Kummerfeld SK , Kurochkin IV , Lareau LF , Lazarevic D , Lipovich L , Liu J , Liuni S , McWilliam S , Madan Babu M , Madera M , Marchionni L , Matsuda H , Matsuzawa S , Miki H , Mignone F , Miyake S , Morris K , Mottagui-Tabar S , Mulder N , Nakano N , Nakauchi H , Ng P , Nilsson R , Nishiguchi S , Nishikawa S , Nori F , Ohara O , Okazaki Y , Orlando V , Pang KC , Pavan WJ , Pavesi G , Pesole G , Petrovsky N , Piazza S , Reed J , Reid JF , Ring BZ , Ringwald M , Rost B , Ruan Y , Salzberg SL , Sandelin A , Schneider C , Schonbach C , Sekiguchi K , Semple CA , Seno S , Sessa L , Sheng Y , Shibata Y , Shimada H , Shimada K , Silva D , Sinclair B , Sperling S , Stupka E , Sugiura K , Sultana R , Takenaka Y , Taki K , Tammoja K , Tan SL , Tang S , Taylor MS , Tegner J , Teichmann SA , Ueda HR , van Nimwegen E , Verardo R , Wei CL , Yagi K , Yamanishi H , Zabarovsky E , Zhu S , Zimmer A , Hide W , Bult C , Grimmond SM , Teasdale RD , Liu ET , Brusic V , Quackenbush J , Wahlestedt C , Mattick JS , Hume DA , Kai C , Sasaki D , Tomaru Y , Fukuda S , Kanamori-Katayama M , Suzuki M , Aoki J , Arakawa T , Iida J , Imamura K , Itoh M , Kato T , Kawaji H , Kawagashira N , Kawashima T , Kojima M , Kondo S , Konno H , Nakano K , Ninomiya N , Nishio T , Okada M , Plessy C , Shibata K , Shiraki T , Suzuki S , Tagami M , Waki K , Watahiki A , Okamura-Oho Y , Suzuki H , Kawai J , Hayashizaki Y
Ref : Science , 309 :1559 , 2005
Abstract : This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
ESTHER : Carninci_2005_Science_309_1559
PubMedSearch : Carninci_2005_Science_309_1559
PubMedID: 16141072
Gene_locus related to this paper: mouse-abhd1 , mouse-abhd3 , mouse-abhd4 , mouse-acot4 , mouse-adcl4 , mouse-DGLB , mouse-ephx3 , mouse-Kansl3 , mouse-lipli , mouse-LIPN , mouse-Ppgb , mouse-q3uuq7 , mouse-srac1 , mouse-Tex30 , mouse-tmco4 , mouse-tmm53 , mouse-f172a

Title : The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins - Dehal_2002_Science_298_2157
Author(s) : Dehal P , Satou Y , Campbell RK , Chapman J , Degnan B , De Tomaso A , Davidson B , Di Gregorio A , Gelpke M , Goodstein DM , Harafuji N , Hastings KE , Ho I , Hotta K , Huang W , Kawashima T , Lemaire P , Martinez D , Meinertzhagen IA , Necula S , Nonaka M , Putnam N , Rash S , Saiga H , Satake M , Terry A , Yamada L , Wang HG , Awazu S , Azumi K , Boore J , Branno M , Chin-Bow S , DeSantis R , Doyle S , Francino P , Keys DN , Haga S , Hayashi H , Hino K , Imai KS , Inaba K , Kano S , Kobayashi K , Kobayashi M , Lee BI , Makabe KW , Manohar C , Matassi G , Medina M , Mochizuki Y , Mount S , Morishita T , Miura S , Nakayama A , Nishizaka S , Nomoto H , Ohta F , Oishi K , Rigoutsos I , Sano M , Sasaki A , Sasakura Y , Shoguchi E , Shin-I T , Spagnuolo A , Stainier D , Suzuki MM , Tassy O , Takatori N , Tokuoka M , Yagi K , Yoshizaki F , Wada S , Zhang C , Hyatt PD , Larimer F , Detter C , Doggett N , Glavina T , Hawkins T , Richardson P , Lucas S , Kohara Y , Levine M , Satoh N , Rokhsar DS
Ref : Science , 298 :2157 , 2002
Abstract : The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
ESTHER : Dehal_2002_Science_298_2157
PubMedSearch : Dehal_2002_Science_298_2157
PubMedID: 12481130
Gene_locus related to this paper: cioin-141645 , cioin-147959 , cioin-150181 , cioin-154370 , cioin-ACHE1 , cioin-ACHE2 , cioin-cxest , cioin-f6qcp0 , cioin-f6r8z1 , cioin-f6u176 , cioin-f6vac9 , cioin-f6x584 , cioin-f6xa69 , cioin-f6y403 , cioin-h2xqb4 , cioin-H2XTI0 , cioin-F6T1M3 , cioin-H2XUP7 , cioin-CIN.7233 , cioin-F6V269 , cioin-Cin16330 , cioin-h2xua2 , cioin-f6vaa5 , cioin-f6v9x6 , cioin-f6swc9 , cioin-f7amz2 , cioin-f6s021 , cioin-h2xxq9 , cioin-h2xne6 , cioin-f6ynr2

Title : A cDNA resource from the basal chordate Ciona intestinalis -
Author(s) : Satou Y , Yamada L , Mochizuki Y , Takatori N , Kawashima T , Sasaki A , Hamaguchi M , Awazu S , Yagi K , Sasakura Y , Nakayama A , Ishikawa H , Inaba K , Satoh N
Ref : Genesis , 33 :153 , 2002
PubMedID: 12203911
Gene_locus related to this paper: cioin-141645 , cioin-147959 , cioin-150181 , cioin-154370 , cioin-ACHE1 , cioin-ACHE2 , cioin-cxest , cioin-F6V269

Title : Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium - Kawashima_2000_Proc.Natl.Acad.Sci.U.S.A_97_14257
Author(s) : Kawashima T , Amano N , Koike H , Makino S , Higuchi S , Kawashima-Ohya Y , Watanabe K , Yamazaki M , Kanehori K , Kawamoto T , Nunoshiba T , Yamamoto Y , Aramaki H , Makino K , Suzuki M
Ref : Proc Natl Acad Sci U S A , 97 :14257 , 2000
Abstract : The complete genomic sequence of the archaeon Thermoplasma volcanium, possessing optimum growth temperature (OGT) of 60 degrees C, is reported. By systematically comparing this genomic sequence with the other known genomic sequences of archaea, all possessing higher OGT, a number of strong correlations have been identified between characteristics of genomic organization and the OGT. With increasing OGT, in the genomic DNA, frequency of clustering purines and pyrimidines into separate dinucleotides rises (e.g., by often forming AA and TT, whereas avoiding TA and AT). Proteins coded in a genome are divided into two distinct subpopulations possessing isoelectric points in different ranges (i.e., acidic and basic), and with increasing OGT the size of the basic subpopulation becomes larger. At the metabolic level, genes coding for enzymes mediating pathways for synthesizing some coenzymes, such as heme, start missing. These findings provide insights into the design of individual genomic components, as well as principles for coordinating changes in these designs for the adaptation to new environments.
ESTHER : Kawashima_2000_Proc.Natl.Acad.Sci.U.S.A_97_14257
PubMedSearch : Kawashima_2000_Proc.Natl.Acad.Sci.U.S.A_97_14257
PubMedID: 11121031
Gene_locus related to this paper: thevo-pip , thevo-TV0085 , thevo-TV0549 , thevo-TV0908 , thevo-TV1447 , thevo-TVG0742213 , thevo-TVG0965471 , thevo-TVG1026250 , thevo-TVG1221180 , thevo-TVG1473494