Hawkins T

References (6)

Title : Comparative genomics of the lactic acid bacteria - Makarova_2006_Proc.Natl.Acad.Sci.U.S.A_103_15611
Author(s) : Makarova K , Slesarev A , Wolf Y , Sorokin A , Mirkin B , Koonin E , Pavlov A , Pavlova N , Karamychev V , Polouchine N , Shakhova V , Grigoriev I , Lou Y , Rohksar D , Lucas S , Huang K , Goodstein DM , Hawkins T , Plengvidhya V , Welker D , Hughes J , Goh Y , Benson A , Baldwin K , Lee JH , Diaz-Muniz I , Dosti B , Smeianov V , Wechter W , Barabote R , Lorca G , Altermann E , Barrangou R , Ganesan B , Xie Y , Rawsthorne H , Tamir D , Parker C , Breidt F , Broadbent J , Hutkins R , O'Sullivan D , Steele J , Unlu G , Saier M , Klaenhammer T , Richardson P , Kozyavkin S , Weimer B , Mills D
Ref : Proc Natl Acad Sci U S A , 103 :15611 , 2006
Abstract : Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.
ESTHER : Makarova_2006_Proc.Natl.Acad.Sci.U.S.A_103_15611
PubMedSearch : Makarova_2006_Proc.Natl.Acad.Sci.U.S.A_103_15611
PubMedID: 17030793
Gene_locus related to this paper: 9laco-c0xef2 , lacba-pepx , lacba-q03pm4 , lacba-q03sl1 , lacc3-pepx , lacc3-q03b36 , lacc3-q033u9 , lacc3-q035l1 , lacc3-q036j3 , lacc3-q036j8 , laccb-b3wcx2 , lacda-q1g8l1 , lacdb-q04b33 , lacdb-q04bn2 , lacdb-q04ci8 , lacdb-q04cw3 , lacdl-pepx , lacdl-pip , lacga-q040j4 , lacga-q040j9 , lacga-q040s2 , lacga-q042h9 , lacga-q043a3 , lacga-q043m1 , lacga-q045l3 , lacga-q046w1 , lacga-q047a5 , lacjo-q74hh0 , lacjo-q74ii3 , lacla-pepx , laclk-d2bl62 , lacls-q02y15 , lacls-q030e4 , lacls-q030p2 , lacrh-pepr , leumc-c2kjv5 , leumm-q03x93 , leumm-q03y60 , leumm-q03y71 , leumm-q03z72 , oenob-q04d10 , oenob-q04f06 , oenob-q04f19 , oenob-q04fw8 , oenob-q04ga3 , oenob-q04h47 , oenoe-a0nif9 , oenoe-a0nl98 , oenoe-d3lb54 , pedpa-pepx , pedpa-q03gh4 , pedpa-q03h47 , pedpa-q03hj2 , strt1-q5lz16 , strt1-q5lza1 , strt2-q5m420 , strtr-pepx , oenoe-k6pl10 , lacba-pip , lacca-k0n1x0 , lacpa-s2ter8 , lacpa-s2rz88 , pedpa-q03hz6 , oenob-q04dp7

Title : The sequence and analysis of duplication-rich human chromosome 16 - Martin_2004_Nature_432_988
Author(s) : Martin J , Han C , Gordon LA , Terry A , Prabhakar S , She X , Xie G , Hellsten U , Chan YM , Altherr M , Couronne O , Aerts A , Bajorek E , Black S , Blumer H , Branscomb E , Brown NC , Bruno WJ , Buckingham JM , Callen DF , Campbell CS , Campbell ML , Campbell EW , Caoile C , Challacombe JF , Chasteen LA , Chertkov O , Chi HC , Christensen M , Clark LM , Cohn JD , Denys M , Detter JC , Dickson M , Dimitrijevic-Bussod M , Escobar J , Fawcett JJ , Flowers D , Fotopulos D , Glavina T , Gomez M , Gonzales E , Goodstein D , Goodwin LA , Grady DL , Grigoriev I , Groza M , Hammon N , Hawkins T , Haydu L , Hildebrand CE , Huang W , Israni S , Jett J , Jewett PB , Kadner K , Kimball H , Kobayashi A , Krawczyk MC , Leyba T , Longmire JL , Lopez F , Lou Y , Lowry S , Ludeman T , Manohar CF , Mark GA , McMurray KL , Meincke LJ , Morgan J , Moyzis RK , Mundt MO , Munk AC , Nandkeshwar RD , Pitluck S , Pollard M , Predki P , Parson-Quintana B , Ramirez L , Rash S , Retterer J , Ricke DO , Robinson DL , Rodriguez A , Salamov A , Saunders EH , Scott D , Shough T , Stallings RL , Stalvey M , Sutherland RD , Tapia R , Tesmer JG , Thayer N , Thompson LS , Tice H , Torney DC , Tran-Gyamfi M , Tsai M , Ulanovsky LE , Ustaszewska A , Vo N , White PS , Williams AL , Wills PL , Wu JR , Wu K , Yang J , DeJong P , Bruce D , Doggett NA , Deaven L , Schmutz J , Grimwood J , Richardson P , Rokhsar DS , Eichler EE , Gilna P , Lucas SM , Myers RM , Rubin EM , Pennacchio LA
Ref : Nature , 432 :988 , 2004
Abstract : Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,670 aligned transcripts, 19 transfer RNA genes, 341 pseudogenes and three RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukaemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. Whereas the segmental duplications of chromosome 16 are enriched in the relatively gene-poor pericentromere of the p arm, some are involved in recent gene duplication and conversion events that are likely to have had an impact on the evolution of primates and human disease susceptibility.
ESTHER : Martin_2004_Nature_432_988
PubMedSearch : Martin_2004_Nature_432_988
PubMedID: 15616553
Gene_locus related to this paper: human-CES1 , human-CES2 , human-CES3 , human-CES4A , human-CES5A

Title : The DNA sequence and biology of human chromosome 19 - Grimwood_2004_Nature_428_529
Author(s) : Grimwood J , Gordon LA , Olsen A , Terry A , Schmutz J , Lamerdin J , Hellsten U , Goodstein D , Couronne O , Tran-Gyamfi M , Aerts A , Altherr M , Ashworth L , Bajorek E , Black S , Branscomb E , Caenepeel S , Carrano A , Caoile C , Chan YM , Christensen M , Cleland CA , Copeland A , Dalin E , Dehal P , Denys M , Detter JC , Escobar J , Flowers D , Fotopulos D , Garcia C , Georgescu AM , Glavina T , Gomez M , Gonzales E , Groza M , Hammon N , Hawkins T , Haydu L , Ho I , Huang W , Israni S , Jett J , Kadner K , Kimball H , Kobayashi A , Larionov V , Leem SH , Lopez F , Lou Y , Lowry S , Malfatti S , Martinez D , McCready P , Medina C , Morgan J , Nelson K , Nolan M , Ovcharenko I , Pitluck S , Pollard M , Popkie AP , Predki P , Quan G , Ramirez L , Rash S , Retterer J , Rodriguez A , Rogers S , Salamov A , Salazar A , She X , Smith D , Slezak T , Solovyev V , Thayer N , Tice H , Tsai M , Ustaszewska A , Vo N , Wagner M , Wheeler J , Wu K , Xie G , Yang J , Dubchak I , Furey TS , DeJong P , Dickson M , Gordon D , Eichler EE , Pennacchio LA , Richardson P , Stubbs L , Rokhsar DS , Myers RM , Rubin EM , Lucas SM
Ref : Nature , 428 :529 , 2004
Abstract : Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.
ESTHER : Grimwood_2004_Nature_428_529
PubMedSearch : Grimwood_2004_Nature_428_529
PubMedID: 15057824

Title : The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins - Dehal_2002_Science_298_2157
Author(s) : Dehal P , Satou Y , Campbell RK , Chapman J , Degnan B , De Tomaso A , Davidson B , Di Gregorio A , Gelpke M , Goodstein DM , Harafuji N , Hastings KE , Ho I , Hotta K , Huang W , Kawashima T , Lemaire P , Martinez D , Meinertzhagen IA , Necula S , Nonaka M , Putnam N , Rash S , Saiga H , Satake M , Terry A , Yamada L , Wang HG , Awazu S , Azumi K , Boore J , Branno M , Chin-Bow S , DeSantis R , Doyle S , Francino P , Keys DN , Haga S , Hayashi H , Hino K , Imai KS , Inaba K , Kano S , Kobayashi K , Kobayashi M , Lee BI , Makabe KW , Manohar C , Matassi G , Medina M , Mochizuki Y , Mount S , Morishita T , Miura S , Nakayama A , Nishizaka S , Nomoto H , Ohta F , Oishi K , Rigoutsos I , Sano M , Sasaki A , Sasakura Y , Shoguchi E , Shin-I T , Spagnuolo A , Stainier D , Suzuki MM , Tassy O , Takatori N , Tokuoka M , Yagi K , Yoshizaki F , Wada S , Zhang C , Hyatt PD , Larimer F , Detter C , Doggett N , Glavina T , Hawkins T , Richardson P , Lucas S , Kohara Y , Levine M , Satoh N , Rokhsar DS
Ref : Science , 298 :2157 , 2002
Abstract : The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
ESTHER : Dehal_2002_Science_298_2157
PubMedSearch : Dehal_2002_Science_298_2157
PubMedID: 12481130
Gene_locus related to this paper: cioin-141645 , cioin-147959 , cioin-150181 , cioin-154370 , cioin-ACHE1 , cioin-ACHE2 , cioin-cxest , cioin-f6qcp0 , cioin-f6r8z1 , cioin-f6u176 , cioin-f6vac9 , cioin-f6x584 , cioin-f6xa69 , cioin-f6y403 , cioin-h2xqb4 , cioin-H2XTI0 , cioin-F6T1M3 , cioin-H2XUP7 , cioin-CIN.7233 , cioin-F6V269 , cioin-Cin16330 , cioin-h2xua2 , cioin-f6vaa5 , cioin-f6v9x6 , cioin-f6swc9 , cioin-f7amz2 , cioin-f6s021 , cioin-h2xxq9 , cioin-h2xne6 , cioin-f6ynr2

Title : Draft sequencing and comparative genomics of Xylella fastidiosa strains reveal novel biological insights - Bhattacharyya_2002_Genome.Res_12_1556
Author(s) : Bhattacharyya A , Stilwagen S , Reznik G , Feil H , Feil WS , Anderson I , Bernal A , D'Souza M , Ivanova N , Kapatral V , Larsen N , Los T , Lykidis A , Selkov E, Jr. , Walunas TL , Purcell A , Edwards RA , Hawkins T , Haselkorn R , Overbeek R , Kyrpides NC , Predki PF
Ref : Genome Res , 12 :1556 , 2002
Abstract : Draft sequencing is a rapid and efficient method for determining the near-complete sequence of microbial genomes. Here we report a comparative analysis of one complete and two draft genome sequences of the phytopathogenic bacterium, Xylella fastidiosa, which causes serious disease in plants, including citrus, almond, and oleander. We present highlights of an in silico analysis based on a comparison of reconstructions of core biological subsystems. Cellular pathway reconstructions have been used to identify a small number of genes, which are likely to reside within the draft genomes but are not captured in the draft assembly. These represented only a small fraction of all genes and were predominantly large and small ribosomal subunit protein components. By using this approach, some of the inherent limitations of draft sequence can be significantly reduced. Despite the incomplete nature of the draft genomes, it is possible to identify several phage-related genes, which appear to be absent from the draft genomes and not the result of insufficient sequence sampling. This region may therefore identify potential host-specific functions. Based on this first functional reconstruction of a phytopathogenic microbe, we spotlight an unusual respiration machinery as a potential target for biological control. We also predicted and developed a new defined growth medium for Xylella.
ESTHER : Bhattacharyya_2002_Genome.Res_12_1556
PubMedSearch : Bhattacharyya_2002_Genome.Res_12_1556
PubMedID: 12368248

Title : Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes - Aparicio_2002_Science_297_1301
Author(s) : Aparicio S , Chapman J , Stupka E , Putnam N , Chia JM , Dehal P , Christoffels A , Rash S , Hoon S , Smit A , Gelpke MD , Roach J , Oh T , Ho IY , Wong M , Detter C , Verhoef F , Predki P , Tay A , Lucas S , Richardson P , Smith SF , Clark MS , Edwards YJ , Doggett N , Zharkikh A , Tavtigian SV , Pruss D , Barnstead M , Evans C , Baden H , Powell J , Glusman G , Rowen L , Hood L , Tan YH , Elgar G , Hawkins T , Venkatesh B , Rokhsar D , Brenner S
Ref : Science , 297 :1301 , 2002
Abstract : The compact genome of Fugu rubripes has been sequenced to over 95% coverage, and more than 80% of the assembly is in multigene-sized scaffolds. In this 365-megabase vertebrate genome, repetitive DNA accounts for less than one-sixth of the sequence, and gene loci occupy about one-third of the genome. As with the human genome, gene loci are not evenly distributed, but are clustered into sparse and dense regions. Some "giant" genes were observed that had average coding sequence sizes but were spread over genomic lengths significantly larger than those of their human orthologs. Although three-quarters of predicted human proteins have a strong match to Fugu, approximately a quarter of the human proteins had highly diverged from or had no pufferfish homologs, highlighting the extent of protein evolution in the 450 million years since teleosts and mammals diverged. Conserved linkages between Fugu and human genes indicate the preservation of chromosomal segments from the common vertebrate ancestor, but with considerable scrambling of gene order.
ESTHER : Aparicio_2002_Science_297_1301
PubMedSearch : Aparicio_2002_Science_297_1301
PubMedID: 12142439
Gene_locus related to this paper: fugru-2balip , fugru-2cxest , fugru-3cxest , fugru-3neur , fugru-4cxest , fugru-4neur , fugru-ACHE , fugru-ACHEE , fugru-balip , fugru-BCHE , fugru-BCHEB , fugru-BCHEC , fugru-cxest , takru-1neur , takru-2bneur , takru-3bneur , takru-h2rsj9 , takru-nlgn2a , takru-nlgn4a