Shao H

References (8)

Title : Plants of the genus Mahonia as a Potential Traditional Chinese Medicine for the Prevention and Treatment of Alzheimer's Disease - Yang_2023_Curr.Top.Med.Chem__
Author(s) : Yang S , Shao H , Chen X , Liu Q , Huang S , Huang Y
Ref : Curr Top Med Chem , : , 2023
Abstract : Alzheimer's disease (AD), a prevalent multiple neurodegenerative disease, has gained attention, particularly in the aging population. However, presently available therapies merely focus on alleviating the symptoms of AD and fail to slow disease progression significantly. Traditional Chinese medicine (TCM) has been used to ameliorate symptoms or interfere with the pathogenesis of aging-associated diseases for many years based on disease-modifying in multiple pathological roles with multi-targets, multi-systems and multi-aspects. Mahonia species as a TCM present potential for anti-inflammatory activity, antioxidant activity, anti-acetylcholinesterase activity, and anti-amyloid-beta activity that was briefly discussed in this review. They are regarded as promising drug candidates for AD therapy. The findings in this review support the use of Mahonia species as an alternative therapy source for treating AD.
ESTHER : Yang_2023_Curr.Top.Med.Chem__
PubMedSearch : Yang_2023_Curr.Top.Med.Chem__
PubMedID: 37005525

Title : Protein-mimicking nanowire-inspired electro-catalytic biosensor for probing acetylcholinesterase activity and its inhibitors - Zhang_2018_Talanta_183_258
Author(s) : Zhang Q , Hu Y , Wu D , Ma S , Wang J , Rao J , Xu L , Xu H , Shao H , Guo Z , Wang S
Ref : Talanta , 183 :258 , 2018
Abstract : A highly sensitive electrochemical biosensor based on the synthetized L-Cysteine-Ag(I) coordination polymer (L-Cys-Ag(I) CP), which looks like a protein-mimicking nanowire, was constructed to detect acetylcholinesterase (AChE) activity and screen its inhibitors. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce hydrogen peroxide (H2O2), thus L-Cys-Ag(I) CP possesses the electro-catalytic property to H2O2 reduction. Herein, the protein-mimicking nanowire-based platform was capable of investigating successive of H2O2 effectively by amperometric i-t (current-time) response, and was further applied for the turn-on electrochemical detection of AChE activity. The proposed sensor is highly sensitive (limit of detection is 0.0006 U/L) and is feasible for screening inhibitors of AChE. The model for AChE inhibition was further established and two traditional AChE inhibitors (donepezil and tacrine) were employed to verify the feasibility of the system. The IC50 of donepezil and tacrine were estimated to be 1.4nM and 3.5nM, respectively. The developed protocol provides a new and promising platform for probing AChE activity and screening its inhibitors with low cost, high sensitivity and selectivity.
ESTHER : Zhang_2018_Talanta_183_258
PubMedSearch : Zhang_2018_Talanta_183_258
PubMedID: 29567174

Title : Sesquiterpenes of agarwood from Gyrinops salicifolia - Shao_2016_Fitoterapia_113_182
Author(s) : Shao H , Mei WL , Kong FD , Dong WH , Gai CJ , Li W , Zhu GP , Dai HF
Ref : Fitoterapia , 113 :182 , 2016
Abstract : Six new sesquiterpenoids (1-6) and six known sesquiterpenoids (7-12) were isolated from agarwood originated from Gyrinops salicifolia Ridl. Most of them gave off aromatic odor, and all the compounds were isolated from this genus for the first time. The structures of 1-6 were elucidated by spectroscopic techniques (UV, IR, 1D and 2D NMR) and MS analysis, as well as by comparison with literature data. Compounds 1, 6 and 11-12 showed moderate acetylcholinesterase (AChE) inhibitory activity.
ESTHER : Shao_2016_Fitoterapia_113_182
PubMedSearch : Shao_2016_Fitoterapia_113_182
PubMedID: 27491753

Title : Biochemical Characterization of a Carboxylesterase from the Archaeon Pyrobaculum sp. 1860 and a Rational Explanation of Its Substrate Specificity and Thermostability - Shao_2014_Int.J.Mol.Sci_15_16885
Author(s) : Shao H , Xu L , Yan Y
Ref : Int J Mol Sci , 15 :16885 , 2014
Abstract : In this work, genome mining was used to identify esterase/lipase genes in the archaeon Pyrobaculum sp. 1860. A gene was cloned and functionally expressed in Escherichia coli as His-tagged protein. The recombinant enzyme (rP186_1588) was verified by western blotting and peptide mass fingerprinting. Biochemical characterization revealed that rP186_1588 exhibited optimum activity at pH 9.0 and 80 degrees C towards p-nitrophenyl acetate (Km: 0.35 mM, kcat: 11.65 s-1). Interestingly, the purified rP186_1588 exhibited high thermostability retaining 70% relative activity after incubation at 90 degrees C for 6 h. Circular dichroism results indicated that rP186_1588 showed slight structure alteration from 60 to 90 degrees C. Structural modeling showed P186_1588 possessed a typical alpha/beta hydrolase's fold with the catalytic triad consisting of Ser97, Asp147 and His172, and was further confirmed by site-directed mutagenesis. Comparative molecular simulations at different temperatures (300, 353, 373 and 473 K) revealed that its thermostability was associated with its conformational rigidity. The binding free energy analysis by MM-PBSA method revealed that the van der Waals interaction played a major role in p-NP ester binding for P186_1588. Our data provide insights into the molecular structures of this archaeal esterase, and may help to its further protein engineering for industrial applications.
ESTHER : Shao_2014_Int.J.Mol.Sci_15_16885
PubMedSearch : Shao_2014_Int.J.Mol.Sci_15_16885
PubMedID: 25250909

Title : Isolation and characterization of a thermostable esterase from a metagenomic library - Shao_2013_J.Ind.Microbiol.Biotechnol_40_1211
Author(s) : Shao H , Xu L , Yan Y
Ref : J Ind Microbiol Biotechnol , 40 :1211 , 2013
Abstract : A novel esterase gene was isolated by functional screening of a metagenomic library prepared from an activated sludge sample. The gene (est-XG2) consists of 1,506 bp with GC content of 74.8 %, and encodes a protein of 501 amino acids with a molecular mass of 53 kDa. Sequence alignment revealed that Est-XG2 shows a maximum amino acid identity (47 %) with the carboxylesterase from Thermaerobacter marianensis DSM 12885 (YP_004101478). The catalytic triad of Est-XG2 was predicted to be Ser192-Glu313-His412 with Ser192 in a conserved pentapeptide (GXSXG), and further confirmed by site-directed mutagenesis. Phylogenetic analysis suggested Est-XG2 belongs to the bacterial lipase/esterase family VII. The recombinant Est-XG2, expressed and purified from Escherichia coli, preferred to hydrolyze short and medium length p-nitrophenyl esters with the best substrate being p-nitrophenyl acetate (K m and k cat of 0.33 mM and 36.21 s(-1), respectively). The purified enzyme also had the ability to cleave sterically hindered esters of tertiary alcohols. Biochemical characterization of Est-XG2 revealed that it is a thermophilic esterase that exhibits optimum activity at pH 8.5 and 70 degrees C. Est-XG2 had moderate tolerance to organic solvents and surfactants. The unique properties of Est-XG2, high thermostability and stability in the presence of organic solvents, may render it a potential candidate for industrial applications.
ESTHER : Shao_2013_J.Ind.Microbiol.Biotechnol_40_1211
PubMedSearch : Shao_2013_J.Ind.Microbiol.Biotechnol_40_1211
PubMedID: 23934105
Gene_locus related to this paper: 9bact-s5tby8

Title : An Inhibitory Antibody against Dipeptidyl Peptidase IV Improves Glucose Tolerance in Vivo - Tang_2013_J.Biol.Chem_288_1307
Author(s) : Tang J , Majeti J , Sudom A , Xiong Y , Lu M , Liu Q , Higbee J , Zhang Y , Wang Y , Wang W , Cao P , Xia Z , Johnstone S , Min X , Yang X , Shao H , Yu T , Sharkov N , Walker N , Tu H , Shen W , Wang Z
Ref : Journal of Biological Chemistry , 288 :1307 , 2013
Abstract : Dipeptidyl peptidase IV (DPP-IV) degrades the incretin hormone glucagon-like peptide 1 (GLP-1). Small molecule DPP-IV inhibitors have been used as treatments for type 2 diabetes to improve glucose tolerance. However, each of the marketed small molecule drugs has its own limitation in terms of efficacy and side effects. To search for an alternative strategy of inhibiting DPP-IV activity, we generated a panel of tight binding inhibitory mouse monoclonal antibodies (mAbs) against rat DPP-IV. When tested in vitro, these mAbs partially inhibited the GLP-1 cleavage activity of purified enzyme and rat plasma. To understand the partial inhibition, we solved the co-crystal structure of one of the mAb Fabs (Ab1) in complex with rat DPP-IV. Although Ab1 does not bind at the active site, it partially blocks the side opening, which prevents the large substrates such as GLP-1 from accessing the active site, but not small molecules such as sitagliptin. When Ab1 was tested in vivo, it reduced plasma glucose and increased plasma GLP-1 concentration during an oral glucose tolerance test in rats. Together, we demonstrated the feasibility of using mAbs to inhibit DPP-IV activity and to improve glucose tolerance in a diabetic rat model.
ESTHER : Tang_2013_J.Biol.Chem_288_1307
PubMedSearch : Tang_2013_J.Biol.Chem_288_1307
PubMedID: 23184939
Gene_locus related to this paper: ratno-dpp4

Title : The genome sequence of the malaria mosquito Anopheles gambiae - Holt_2002_Science_298_129
Author(s) : Holt RA , Subramanian GM , Halpern A , Sutton GG , Charlab R , Nusskern DR , Wincker P , Clark AG , Ribeiro JM , Wides R , Salzberg SL , Loftus B , Yandell M , Majoros WH , Rusch DB , Lai Z , Kraft CL , Abril JF , Anthouard V , Arensburger P , Atkinson PW , Baden H , de Berardinis V , Baldwin D , Benes V , Biedler J , Blass C , Bolanos R , Boscus D , Barnstead M , Cai S , Center A , Chaturverdi K , Christophides GK , Chrystal MA , Clamp M , Cravchik A , Curwen V , Dana A , Delcher A , Dew I , Evans CA , Flanigan M , Grundschober-Freimoser A , Friedli L , Gu Z , Guan P , Guigo R , Hillenmeyer ME , Hladun SL , Hogan JR , Hong YS , Hoover J , Jaillon O , Ke Z , Kodira C , Kokoza E , Koutsos A , Letunic I , Levitsky A , Liang Y , Lin JJ , Lobo NF , Lopez JR , Malek JA , McIntosh TC , Meister S , Miller J , Mobarry C , Mongin E , Murphy SD , O'Brochta DA , Pfannkoch C , Qi R , Regier MA , Remington K , Shao H , Sharakhova MV , Sitter CD , Shetty J , Smith TJ , Strong R , Sun J , Thomasova D , Ton LQ , Topalis P , Tu Z , Unger MF , Walenz B , Wang A , Wang J , Wang M , Wang X , Woodford KJ , Wortman JR , Wu M , Yao A , Zdobnov EM , Zhang H , Zhao Q , Zhao S , Zhu SC , Zhimulev I , Coluzzi M , della Torre A , Roth CW , Louis C , Kalush F , Mural RJ , Myers EW , Adams MD , Smith HO , Broder S , Gardner MJ , Fraser CM , Birney E , Bork P , Brey PT , Venter JC , Weissenbach J , Kafatos FC , Collins FH , Hoffman SL
Ref : Science , 298 :129 , 2002
Abstract : Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
ESTHER : Holt_2002_Science_298_129
PubMedSearch : Holt_2002_Science_298_129
PubMedID: 12364791
Gene_locus related to this paper: anoga-a0nb77 , anoga-a0nbp6 , anoga-a0neb7 , anoga-a0nei9 , anoga-a0nej0 , anoga-a0ngj1 , anoga-a7ut12 , anoga-a7uuz9 , anoga-ACHE1 , anoga-ACHE2 , anoga-agCG44620 , anoga-agCG44666 , anoga-agCG45273 , anoga-agCG45279 , anoga-agCG45511 , anoga-agCG46741 , anoga-agCG47651 , anoga-agCG47655 , anoga-agCG47661 , anoga-agCG47690 , anoga-agCG48797 , anoga-AGCG49362 , anoga-agCG49462 , anoga-agCG49870 , anoga-agCG49872 , anoga-agCG49876 , anoga-agCG50851 , anoga-agCG51879 , anoga-agCG52383 , anoga-agCG54954 , anoga-AGCG55021 , anoga-agCG55401 , anoga-agCG55408 , anoga-agCG56978 , anoga-ebiG239 , anoga-ebiG2660 , anoga-ebiG5718 , anoga-ebiG5974 , anoga-ebiG8504 , anoga-ebiG8742 , anoga-glita , anoga-nrtac , anoga-q5tpv0 , anoga-Q5TVS6 , anoga-q7pm39 , anoga-q7ppw9 , anoga-q7pq17 , anoga-Q7PQT0 , anoga-q7q8m4 , anoga-q7q626 , anoga-q7qa14 , anoga-q7qa52 , anoga-q7qal7 , anoga-q7qbj0 , anoga-f5hl20 , anoga-q7qkh2 , anoga-a0a1s4h1y7 , anoga-q7q887

Title : Grafting of genetically modified human fetal fibroblasts to produce human butyrylcholinesterase in mice - Shao_1999_Chem.Biol.Interact_119-120_361
Author(s) : Shao H , Huang YZ , Wang D , Zhang H , Sun MJ
Ref : Chemico-Biological Interactions , 119-120 :361 , 1999
Abstract : Human diploid fibroblast cultures were established from fetal skin tissue. Enzymic dissociation yielded cultures of higher growth capacity of fibroblasts than those prepared by mechanical dissociation followed by spontaneous outgrowth of cells. Transfer of recombinant human butyrylcholinesterase (BChE, EC gene into primary human fibroblasts was achieved successfully using lipofection and retrovirus-mediated transfection. The analysis of drug-resistant colonies suggested the presence of the transcripted BChE mRNA in the cytoplasm of transfected cells. The secreted BChE protein in culture medium was assayed for enzyme activity using butyrylthiocholine as substrate. The genetically modified fibroblasts were mixed with rat tail collagen and transplanted subcutaneously and intraperitoneally to mice. Immunoreactive human BChE appeared in the plasma from the transplanted mice. reaching the top level at day 13. It was not present any longer in most of the mice 20 days later.
ESTHER : Shao_1999_Chem.Biol.Interact_119-120_361
PubMedSearch : Shao_1999_Chem.Biol.Interact_119-120_361
PubMedID: 10421472