Kodira C

References (9)

Title : The bonobo genome compared with the chimpanzee and human genomes - Prufer_2012_Nature_486_527
Author(s) : Prufer K , Munch K , Hellmann I , Akagi K , Miller JR , Walenz B , Koren S , Sutton G , Kodira C , Winer R , Knight JR , Mullikin JC , Meader SJ , Ponting CP , Lunter G , Higashino S , Hobolth A , Dutheil J , Karakoc E , Alkan C , Sajjadian S , Catacchio CR , Ventura M , Marques-Bonet T , Eichler EE , Andre C , Atencia R , Mugisha L , Junhold J , Patterson N , Siebauer M , Good JM , Fischer A , Ptak SE , Lachmann M , Symer DE , Mailund T , Schierup MH , Andres AM , Kelso J , Paabo S
Ref : Nature , 486 :527 , 2012
Abstract : Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.
ESTHER : Prufer_2012_Nature_486_527
PubMedSearch : Prufer_2012_Nature_486_527
PubMedID: 22722832
Gene_locus related to this paper: panpa-a0a2r8z5s1 , panpa-a0a2r8zh05 , panpa-a0a2r9a219 , panpa-a0a2r9cp60 , panpa-a0a2r8zm37 , panpa-a0a2r8ztc4 , panpa-a0a2r9b1a7 , panpa-a0a2r9bxk5 , panpa-a0a2r8zr38 , panpa-a0a2r8zvr0 , panpa-a0a2r9bln0 , panpa-a0a2r9acy6 , panpa-a0a2r8ztx2 , panpa-a0a2r9clu7 , panpa-a0a2r9c6z8 , panpa-a0a2r9cay0 , panpa-a0a2r9aqi9 , panpa-a0a2r9aqr5 , panpa-a0a2r9bpf0 , panpa-a0a2r9cj39

Title : Directed sequencing and annotation of three Dicentrarchus labrax L. chromosomes by applying Sanger- and pyrosequencing technologies on pooled DNA of comparatively mapped BAC clones - Kuhl_2011_Genomics_98_202
Author(s) : Kuhl H , Tine M , Beck A , Timmermann B , Kodira C , Reinhardt R
Ref : Genomics , 98 :202 , 2011
Abstract : Dicentrarchus labrax is one of the major marine aquaculture species in the European Union. In this study, we have developed a directed-sequencing strategy to sequence three sea bass chromosomes and compared results with other teleosts. Three BAC DNA pools were created from sea bass BAC clones that mapped to stickleback chromosomes/groups V, XVII and XXI. The pools were sequenced to 17-39x coverage by pyrosequencing. Data assembly was supported by Sanger reads and mate pair data and resulted in superscaffolds of 13.2 Mb, 17.5 Mb and 13.7 Mb respectively. Annotation features of the superscaffolds include 1477 genes. We analyzed size change of exon, intron and intergenic sequence between teleost species and deduced a simple model for the evolution of genome composition in teleost lineage. Combination of second generation sequencing technologies, Sanger sequencing and genome partitioning strategies allows "high-quality draft assemblies" of chromosome-sized superscaffolds, which are crucial for the prediction and annotation of complete genes.
ESTHER : Kuhl_2011_Genomics_98_202
PubMedSearch : Kuhl_2011_Genomics_98_202
PubMedID: 21693181
Gene_locus related to this paper: dicla-e6zfs4 , dicla-e6zeu4 , dicla-e6zir2 , dicla-e6zik3

Title : Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea - Amselem_2011_PLoS.Genet_7_e1002230
Author(s) : Amselem J , Cuomo CA , van Kan JA , Viaud M , Benito EP , Couloux A , Coutinho PM , de Vries RP , Dyer PS , Fillinger S , Fournier E , Gout L , Hahn M , Kohn L , Lapalu N , Plummer KM , Pradier JM , Quevillon E , Sharon A , Simon A , ten Have A , Tudzynski B , Tudzynski P , Wincker P , Andrew M , Anthouard V , Beever RE , Beffa R , Benoit I , Bouzid O , Brault B , Chen Z , Choquer M , Collemare J , Cotton P , Danchin EG , Da Silva C , Gautier A , Giraud C , Giraud T , Gonzalez C , Grossetete S , Guldener U , Henrissat B , Howlett BJ , Kodira C , Kretschmer M , Lappartient A , Leroch M , Levis C , Mauceli E , Neuveglise C , Oeser B , Pearson M , Poulain J , Poussereau N , Quesneville H , Rascle C , Schumacher J , Segurens B , Sexton A , Silva E , Sirven C , Soanes DM , Talbot NJ , Templeton M , Yandava C , Yarden O , Zeng Q , Rollins JA , Lebrun MH , Dickman M
Ref : PLoS Genet , 7 :e1002230 , 2011
Abstract : Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.
ESTHER : Amselem_2011_PLoS.Genet_7_e1002230
PubMedSearch : Amselem_2011_PLoS.Genet_7_e1002230
PubMedID: 21876677
Gene_locus related to this paper: botci-cutas , botci-q6rki2 , botf4-g2y7k8 , botfb-dapb , botfu-g2xyd8 , botfu-g2ynh8 , scls1-a7e814 , scls1-a7edc9 , scls1-a7edh1 , scls1-a7emm0 , scls1-a7eti8 , scls1-a7eu48 , scls1-a7f208 , scls1-dapb , botf4-g2xqp7 , scls1-a7eqq8 , botf4-g2xqc6 , scls1-a7ebs4 , botf4-g2xn51 , scls1-a7f5m9 , botf4-g2xti4 , botf4-g2xtu7 , botf4-g2yfp1 , scls1-a7f534 , botf4-g2yys3 , scls1-a7erz9 , botf4-g2y037 , botf4-g2y0e1 , scls1-a7f706 , scls1-a7ewt6 , botf4-g2yuj6 , botf1-m7u3d1 , botf1-m7u430 , botf1-m7tei8 , botf1-m7u0w9 , botf1-m7tij6 , botf1-m7u819 , botf1-m7u6d8 , botf1-m7tzd4 , botf1-m7tqd7 , botf1-m7tyz9 , botf1-m7unl9 , botf1-m7u429 , botf1-m7u4s5 , botf1-m7ul92 , botf1-m7tx42 , botf1-m7u9h4 , botf1-m7u187 , botf1-m7uz64 , botf1-m7u4q4 , botf1-m7u2f6 , botf1-m7tt59 , botf1-m7v3h2 , botf1-m7u6c9 , botf1-m7tud9 , botf1-m7u309 , scls1-a7et87 , botf4-g2ylt4 , scls1-a7f5a0 , scls1-a7f900 , botf4-g2yib9 , scls1-a7f3m9 , scls1-a7er46 , botf4-g2y3y4 , botf4-g2xyy5 , botf1-m7uct5 , scls1-a7ea78 , scls1-kex1 , scls1-cbpya , botfb-cbpya , scls1-a7ecx1

Title : Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus) - Stajich_2010_Proc.Natl.Acad.Sci.U.S.A_107_11889
Author(s) : Stajich JE , Wilke SK , Ahren D , Au CH , Birren BW , Borodovsky M , Burns C , Canback B , Casselton LA , Cheng CK , Deng J , Dietrich FS , Fargo DC , Farman ML , Gathman AC , Goldberg J , Guigo R , Hoegger PJ , Hooker JB , Huggins A , James TY , Kamada T , Kilaru S , Kodira C , Kues U , Kupfer D , Kwan HS , Lomsadze A , Li W , Lilly WW , Ma LJ , Mackey AJ , Manning G , Martin F , Muraguchi H , Natvig DO , Palmerini H , Ramesh MA , Rehmeyer CJ , Roe BA , Shenoy N , Stanke M , Ter-Hovhannisyan V , Tunlid A , Velagapudi R , Vision TJ , Zeng Q , Zolan ME , Pukkila PJ
Ref : Proc Natl Acad Sci U S A , 107 :11889 , 2010
Abstract : The mushroom Coprinopsis cinerea is a classic experimental model for multicellular development in fungi because it grows on defined media, completes its life cycle in 2 weeks, produces some 10(8) synchronized meiocytes, and can be manipulated at all stages in development by mutation and transformation. The 37-megabase genome of C. cinerea was sequenced and assembled into 13 chromosomes. Meiotic recombination rates vary greatly along the chromosomes, and retrotransposons are absent in large regions of the genome with low levels of meiotic recombination. Single-copy genes with identifiable orthologs in other basidiomycetes are predominant in low-recombination regions of the chromosome. In contrast, paralogous multicopy genes are found in the highly recombining regions, including a large family of protein kinases (FunK1) unique to multicellular fungi. Analyses of P450 and hydrophobin gene families confirmed that local gene duplications drive the expansions of paralogous copies and the expansions occur in independent lineages of Agaricomycotina fungi. Gene-expression patterns from microarrays were used to dissect the transcriptional program of dikaryon formation (mating). Several members of the FunK1 kinase family are differentially regulated during sexual morphogenesis, and coordinate regulation of adjacent duplications is rare. The genomes of C. cinerea and Laccaria bicolor, a symbiotic basidiomycete, share extensive regions of synteny. The largest syntenic blocks occur in regions with low meiotic recombination rates, no transposable elements, and tight gene spacing, where orthologous single-copy genes are overrepresented. The chromosome assembly of C. cinerea is an essential resource in understanding the evolution of multicellularity in the fungi.
ESTHER : Stajich_2010_Proc.Natl.Acad.Sci.U.S.A_107_11889
PubMedSearch : Stajich_2010_Proc.Natl.Acad.Sci.U.S.A_107_11889
PubMedID: 20547848
Gene_locus related to this paper: copc7-a8n2b8 , copc7-a8n3e0 , copc7-a8n3e1 , copc7-a8n6a5 , copc7-a8n8h4 , copc7-a8n702 , copc7-a8n941 , copc7-a8nkc7 , copc7-a8nll5 , copc7-a8nll6 , copc7-a8nqf4 , copc7-a8nqg3 , copc7-a8nqv8 , copc7-a8nvb5 , copc7-a8nwm2 , copc7-a8nz18 , copc7-a8p0p4 , copc7-d6rlx1 , copc7-d6rnh7 , copc7-kex1 , copci-b9u444 , copc7-a8nb05 , copc7-a8nha0 , copci-b9u443 , copc7-a8nq30 , copc7-a8nh79 , copc7-d6rm78 , copc7-a8nzs7 , copc7-axe1

Title : Evolution of pathogenicity and sexual reproduction in eight Candida genomes - Butler_2009_Nature_459_657
Author(s) : Butler G , Rasmussen MD , Lin MF , Santos MA , Sakthikumar S , Munro CA , Rheinbay E , Grabherr M , Forche A , Reedy JL , Agrafioti I , Arnaud MB , Bates S , Brown AJ , Brunke S , Costanzo MC , Fitzpatrick DA , de Groot PW , Harris D , Hoyer LL , Hube B , Klis FM , Kodira C , Lennard N , Logue ME , Martin R , Neiman AM , Nikolaou E , Quail MA , Quinn J , Santos MC , Schmitzberger FF , Sherlock G , Shah P , Silverstein KA , Skrzypek MS , Soll D , Staggs R , Stansfield I , Stumpf MP , Sudbery PE , Srikantha T , Zeng Q , Berman J , Berriman M , Heitman J , Gow NA , Lorenz MC , Birren BW , Kellis M , Cuomo CA
Ref : Nature , 459 :657 , 2009
Abstract : Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.
ESTHER : Butler_2009_Nature_459_657
PubMedSearch : Butler_2009_Nature_459_657
PubMedID: 19465905
Gene_locus related to this paper: canal-ATG15 , canal-bna7 , canal-c4yl13 , canal-LIP1 , canal-LIP2 , canal-LIP3 , canal-LIP4 , canal-LIP5 , canal-LIP6 , canal-LIP7 , canal-LIP8 , canal-LIP9 , canal-LIP10 , canal-ppme1 , canal-q5a0c9 , canal-q5a2i9 , canal-q5a042 , canal-q5ad17 , canal-q5aeu3 , canal-q5afp8 , canal-q5ag57 , canal-q5ai09 , canal-q5ai12 , canal-q5ajt3 , canal-q5akz5 , canal-q5apu4 , canal-q59l46 , canal-q59m48 , canal-q59nw6 , canal-q59u61 , canal-q59u64 , canal-q59vp0 , canal-q59y97 , canaw-c4ykb1 , canaw-c4yrn6 , canaw-c4yrn9 , canaw-c4yrr3 , canaw-c4yrv3 , canaw-c4ys26 , cantt-c5m3d7 , cantt-c5m3y5 , cantt-c5m4x0 , cantt-c5m5e8 , cantt-c5m5w2 , cantt-c5m8s7 , cantt-c5m9c2 , cantt-c5m465 , cantt-c5m751 , cantt-c5m793 , cantt-c5m893 , cantt-c5ma78 , cantt-c5mag0 , cantt-c5mbb8 , cantt-c5mc53 , cantt-c5md87 , cantt-c5mdy3 , cantt-c5mey7 , cantt-c5mfg0 , cantt-c5mfh8 , cantt-c5mg56 , cantt-c5mgj0 , cantt-c5mh75 , cantt-c5mh80 , cantt-c5mh89 , cantt-c5mhh0 , cantt-c5mhn5 , cantt-c5mij5 , cantt-c5min7 , clal4-c4xvt8 , clal4-c4xwy4 , clal4-c4xy03 , clal4-c4xyx9 , clal4-c4xzz1 , clal4-c4y3e1 , clal4-c4y4f2 , clal4-c4y4w8 , clal4-c4y5j4 , clal4-c4y5j9 , clal4-c4y7z7 , clal4-c4y8q1 , clal4-c4y035 , clal4-c4y481 , clal4-c4y538 , clal4-c4y898 , clal4-c4yas2 , clal4-c4yba6 , clal4-c4yba7 , clal4-c4yc85 , lodel-a5drz3 , lodel-a5ds97 , lodel-a5dsc0 , lodel-a5duu4 , lodel-a5duy7 , lodel-a5dv03 , lodel-a5dv46 , lodel-a5dw16 , lodel-a5dwv7 , lodel-a5dww6 , lodel-a5dxf3 , lodel-a5e0z5 , lodel-a5e1c1 , lodel-a5e1l4 , lodel-a5e1p3 , lodel-a5e2s1 , lodel-a5e2t8 , lodel-a5e2v2 , lodel-a5e4u8 , lodel-a5e5a9 , lodel-a5e5k1 , lodel-a5e5z7 , lodel-a5e6w1 , lodel-a5e028 , lodel-atg15 , lodel-kex1 , picgu-a5d9u2 , picgu-a5dav0 , picgu-a5dbk0 , picgu-a5dc45 , picgu-a5dc73 , picgu-a5dc74 , picgu-a5dc75 , picgu-a5ddt8 , picgu-a5dev7 , picgu-a5dh90 , picgu-a5dhe3 , picgu-a5di38 , picgu-a5dj06 , picgu-a5dkd8 , picgu-a5dle9 , picgu-a5dlj5 , picgu-a5dm19 , picgu-a5dn92 , picgu-a5dnr3 , picgu-a5dnt6 , picgu-a5dqu5 , picgu-a5dr14 , picgu-a5drl3 , picgu-atg15 , picgu-bna7 , picgu-a5d9q3 , picgu-a5dag9 , clal4-c4y5a2 , clal4-c4y0l0 , cantt-c5mcb1 , clal4-c4y8j2 , cantt-c5m494 , clals-a0a202gac7 , canal-hda1 , picgu-a5dks8 , lodel-a5drs6 , canpc-g8bbk1 , cantt-kex1 , clal4-kex1 , picgu-kex1

Title : Dynamics of Pseudomonas aeruginosa genome evolution - Mathee_2008_Proc.Natl.Acad.Sci.U.S.A_105_3100
Author(s) : Mathee K , Narasimhan G , Valdes C , Qiu X , Matewish JM , Koehrsen M , Rokas A , Yandava CN , Engels R , Zeng E , Olavarietta R , Doud M , Smith RS , Montgomery P , White JR , Godfrey PA , Kodira C , Birren B , Galagan JE , Lory S
Ref : Proc Natl Acad Sci U S A , 105 :3100 , 2008
Abstract : One of the hallmarks of the Gram-negative bacterium Pseudomonas aeruginosa is its ability to thrive in diverse environments that includes humans with a variety of debilitating diseases or immune deficiencies. Here we report the complete sequence and comparative analysis of the genomes of two representative P. aeruginosa strains isolated from cystic fibrosis (CF) patients whose genetic disorder predisposes them to infections by this pathogen. The comparison of the genomes of the two CF strains with those of other P. aeruginosa presents a picture of a mosaic genome, consisting of a conserved core component, interrupted in each strain by combinations of specific blocks of genes. These strain-specific segments of the genome are found in limited chromosomal locations, referred to as regions of genomic plasticity. The ability of P. aeruginosa to shape its genomic composition to favor survival in the widest range of environmental reservoirs, with corresponding enhancement of its metabolic capacity is supported by the identification of a genomic island in one of the sequenced CF isolates, encoding enzymes capable of degrading terpenoids produced by trees. This work suggests that niche adaptation is a major evolutionary force influencing the composition of bacterial genomes. Unlike genome reduction seen in host-adapted bacterial pathogens, the genetic capacity of P. aeruginosa is determined by the ability of individual strains to acquire or discard genomic segments, giving rise to strains with customized genomic repertoires. Consequently, this organism can survive in a wide range of environmental reservoirs that can serve as sources of the infecting organisms.
ESTHER : Mathee_2008_Proc.Natl.Acad.Sci.U.S.A_105_3100
PubMedSearch : Mathee_2008_Proc.Natl.Acad.Sci.U.S.A_105_3100
PubMedID: 18287045
Gene_locus related to this paper: pseae-a3kt39 , pseae-a3l6v1 , pseae-clipa , pseae-CPO , pseae-llipa , pseae-metx , pseae-PA0201 , pseae-PA0231 , pseae-PA0308 , pseae-PA0368 , pseae-PA0480 , pseae-PA0502 , pseae-PA0543 , pseae-PA0599 , pseae-PA1166 , pseae-PA1239 , pseae-PA1291 , pseae-PA1304 , pseae-PA1510 , pseae-PA1558 , pseae-PA1597 , pseae-PA1990 , pseae-PA2086 , pseae-PA2098 , pseae-PA2302 , pseae-PA2425 , pseae-PA2451 , pseae-PA2540 , pseae-PA2682 , pseae-PA2689 , pseae-PA2745 , pseae-PA2764 , pseae-PA2927 , pseae-PA2934 , pseae-PA2949 , pseae-PA3132 , pseae-PA3301 , pseae-PA3324 , pseae-PA3327 , pseae-PA3429 , pseae-PA3586 , pseae-PA3628 , pseae-PA3695 , pseae-PA3859 , pseae-PA3994 , pseae-PA4152 , pseae-PA4968 , pseae-PA5080 , pseae-PHAC2 , pseae-phaD , pseae-phag , pseae-PVDD , pseae-Q8G8C7 , pseae-Q8G8T6 , pseae-Q9APW4 , pseae-rhla , pseae-q9i252

Title : Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum - Hane_2007_Plant.Cell_19_3347
Author(s) : Hane JK , Lowe RG , Solomon PS , Tan KC , Schoch CL , Spatafora JW , Crous PW , Kodira C , Birren BW , Galagan JE , Torriani SF , McDonald BA , Oliver RP
Ref : Plant Cell , 19 :3347 , 2007
Abstract : Stagonospora nodorum is a major necrotrophic fungal pathogen of wheat (Triticum aestivum) and a member of the Dothideomycetes, a large fungal taxon that includes many important plant pathogens affecting all major crop plant families. Here, we report the acquisition and initial analysis of a draft genome sequence for this fungus. The assembly comprises 37,164,227 bp of nuclear DNA contained in 107 scaffolds. The circular mitochondrial genome comprises 49,761 bp encoding 46 genes, including four that are intron encoded. The nuclear genome assembly contains 26 classes of repetitive DNA, comprising 4.5% of the genome. Some of the repeats show evidence of repeat-induced point mutations consistent with a frequent sexual cycle. ESTs and gene prediction models support a minimum of 10,762 nuclear genes. Extensive orthology was found between the polyketide synthase family in S. nodorum and Cochliobolus heterostrophus, suggesting an ancient origin and conserved functions for these genes. A striking feature of the gene catalog was the large number of genes predicted to encode secreted proteins; the majority has no meaningful similarity to any other known genes. It is likely that genes for host-specific toxins, in addition to ToxA, will be found among this group. ESTs obtained from axenic mycelium grown on oleate (chosen to mimic early infection) and late-stage lesions sporulating on wheat leaves were obtained. Statistical analysis shows that transcripts encoding proteins involved in protein synthesis and in the production of extracellular proteases, cellulases, and xylanases predominate in the infection library. This suggests that the fungus is dependant on the degradation of wheat macromolecular constituents to provide the carbon skeletons and energy for the synthesis of proteins and other components destined for the developing pycnidiospores.
ESTHER : Hane_2007_Plant.Cell_19_3347
PubMedSearch : Hane_2007_Plant.Cell_19_3347
PubMedID: 18024570
Gene_locus related to this paper: phano-at151 , phano-bst1 , phano-dapb , phano-q0tw42 , phano-q0txi3 , phano-q0tzh6 , phano-q0u0b1 , phano-q0u0e9 , phano-q0u0t5 , phano-q0u1e7 , phano-q0u1v1 , phano-q0u1x4 , phano-q0u2m9 , phano-q0u2y5 , phano-q0u3i1 , phano-q0u5t8 , phano-q0u8z8 , phano-q0u382 , phano-q0u622 , phano-q0u753 , phano-q0uac8 , phano-q0ucn2 , phano-q0udp4 , phano-q0udr2 , phano-q0uem1 , phano-q0uet5 , phano-q0ufs1 , phano-q0ug08 , phano-q0ugf2 , phano-q0uha0 , phano-q0ui22 , phano-q0ukj9 , phano-q0unt6 , phano-q0upq4 , phano-q0uq74 , phano-q0uq76 , phano-q0urz6 , phano-q0uua1 , phano-q0uuc4 , phano-q0uuc6 , phano-q0uup2 , phano-q0uv86 , phano-q0uwb7 , phano-q0uyc1 , phano-q0uyf1 , phano-q0uyi9 , phano-q0v0y6 , phano-q0v1c5 , phano-q0v1s1 , phano-q0v2i6 , phano-q0v4x4 , phano-q0v5x9 , phano-q0v6t6 , phano-q0v6w1 , phano-q0v7e6 , phano-q0v615 , phano-q0uru8 , phano-q0txx8 , phano-q0u4u8 , phano-q0v3l0 , phano-q0ua76 , phano-q0ty51 , phano-q0twk1 , phano-q0v263 , phano-q0uh92 , phano-q0uxx8 , phano-q0v697 , phano-q0ug10 , phano-q0v5u8 , phano-q0u1s8 , phano-q0uy34 , phano-q0twn7 , phano-elca , phano-cbpya , phano-kex1 , phano-q0v778

Title : Genome sequence of Aedes aegypti, a major arbovirus vector - Nene_2007_Science_316_1718
Author(s) : Nene V , Wortman JR , Lawson D , Haas B , Kodira C , Tu ZJ , Loftus B , Xi Z , Megy K , Grabherr M , Ren Q , Zdobnov EM , Lobo NF , Campbell KS , Brown SE , Bonaldo MF , Zhu J , Sinkins SP , Hogenkamp DG , Amedeo P , Arensburger P , Atkinson PW , Bidwell S , Biedler J , Birney E , Bruggner RV , Costas J , Coy MR , Crabtree J , Crawford M , Debruyn B , Decaprio D , Eiglmeier K , Eisenstadt E , El-Dorry H , Gelbart WM , Gomes SL , Hammond M , Hannick LI , Hogan JR , Holmes MH , Jaffe D , Johnston JS , Kennedy RC , Koo H , Kravitz S , Kriventseva EV , Kulp D , LaButti K , Lee E , Li S , Lovin DD , Mao C , Mauceli E , Menck CF , Miller JR , Montgomery P , Mori A , Nascimento AL , Naveira HF , Nusbaum C , O'Leary S , Orvis J , Pertea M , Quesneville H , Reidenbach KR , Rogers YH , Roth CW , Schneider JR , Schatz M , Shumway M , Stanke M , Stinson EO , Tubio JM , Vanzee JP , Verjovski-Almeida S , Werner D , White O , Wyder S , Zeng Q , Zhao Q , Zhao Y , Hill CA , Raikhel AS , Soares MB , Knudson DL , Lee NH , Galagan J , Salzberg SL , Paulsen IT , Dimopoulos G , Collins FH , Birren B , Fraser-Liggett CM , Severson DW
Ref : Science , 316 :1718 , 2007
Abstract : We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
ESTHER : Nene_2007_Science_316_1718
PubMedSearch : Nene_2007_Science_316_1718
PubMedID: 17510324
Gene_locus related to this paper: aedae-ACHE , aedae-ACHE1 , aedae-glita , aedae-q0iea6 , aedae-q0iev6 , aedae-q0ifn6 , aedae-q0ifn8 , aedae-q0ifn9 , aedae-q0ifp0 , aedae-q0ig41 , aedae-q1dgl0 , aedae-q1dh03 , aedae-q1dh19 , aedae-q1hqe6 , aedae-Q8ITU8 , aedae-Q8MMJ6 , aedae-Q8T9V6 , aedae-q16e91 , aedae-q16f04 , aedae-q16f25 , aedae-q16f26 , aedae-q16f28 , aedae-q16f29 , aedae-q16f30 , aedae-q16gq5 , aedae-q16iq5 , aedae-q16je0 , aedae-q16je1 , aedae-q16je2 , aedae-q16ks8 , aedae-q16lf2 , aedae-q16lv6 , aedae-q16m61 , aedae-q16mc1 , aedae-q16mc6 , aedae-q16mc7 , aedae-q16md1 , aedae-q16ms7 , aedae-q16nk5 , aedae-q16rl5 , aedae-q16rz9 , aedae-q16si8 , aedae-q16t49 , aedae-q16wf1 , aedae-q16x18 , aedae-q16xp8 , aedae-q16xu6 , aedae-q16xw5 , aedae-q16xw6 , aedae-q16y04 , aedae-q16y05 , aedae-q16y06 , aedae-q16y07 , aedae-q16y39 , aedae-q16y40 , aedae-q16yg4 , aedae-q16z03 , aedae-q17aa7 , aedae-q17av1 , aedae-q17av2 , aedae-q17av3 , aedae-q17av4 , aedae-q17b28 , aedae-q17b29 , aedae-q17b30 , aedae-q17b31 , aedae-q17b32 , aedae-q17bm3 , aedae-q17bm4 , aedae-q17bv7 , aedae-q17c44 , aedae-q17cz1 , aedae-q17d32 , aedae-q17g39 , aedae-q17g40 , aedae-q17g41 , aedae-q17g42 , aedae-q17g43 , aedae-q17g44 , aedae-q17gb8 , aedae-q17gr3 , aedae-q17if7 , aedae-q17if9 , aedae-q17ig1 , aedae-q17ig2 , aedae-q17is4 , aedae-q17l09 , aedae-q17m26 , aedae-q17mg9 , aedae-q17mv4 , aedae-q17mv5 , aedae-q17mv6 , aedae-q17mv7 , aedae-q17mw8 , aedae-q17mw9 , aedae-q17nw5 , aedae-q17nx5 , aedae-q17pa4 , aedae-q17q69 , aedae-q170k7 , aedae-q171y4 , aedae-q172e0 , aedae-q176i8 , aedae-q176j0 , aedae-q177k1 , aedae-q177k2 , aedae-q177l9 , aedae-j9hic3 , aedae-q179r9 , aedae-u483 , aedae-j9hj23 , aedae-q17d68 , aedae-q177c7 , aedae-q0ifp1 , aedae-a0a1s4fx83 , aedae-a0a1s4g2m0 , aedae-q1hr49

Title : The genome sequence of the malaria mosquito Anopheles gambiae - Holt_2002_Science_298_129
Author(s) : Holt RA , Subramanian GM , Halpern A , Sutton GG , Charlab R , Nusskern DR , Wincker P , Clark AG , Ribeiro JM , Wides R , Salzberg SL , Loftus B , Yandell M , Majoros WH , Rusch DB , Lai Z , Kraft CL , Abril JF , Anthouard V , Arensburger P , Atkinson PW , Baden H , de Berardinis V , Baldwin D , Benes V , Biedler J , Blass C , Bolanos R , Boscus D , Barnstead M , Cai S , Center A , Chaturverdi K , Christophides GK , Chrystal MA , Clamp M , Cravchik A , Curwen V , Dana A , Delcher A , Dew I , Evans CA , Flanigan M , Grundschober-Freimoser A , Friedli L , Gu Z , Guan P , Guigo R , Hillenmeyer ME , Hladun SL , Hogan JR , Hong YS , Hoover J , Jaillon O , Ke Z , Kodira C , Kokoza E , Koutsos A , Letunic I , Levitsky A , Liang Y , Lin JJ , Lobo NF , Lopez JR , Malek JA , McIntosh TC , Meister S , Miller J , Mobarry C , Mongin E , Murphy SD , O'Brochta DA , Pfannkoch C , Qi R , Regier MA , Remington K , Shao H , Sharakhova MV , Sitter CD , Shetty J , Smith TJ , Strong R , Sun J , Thomasova D , Ton LQ , Topalis P , Tu Z , Unger MF , Walenz B , Wang A , Wang J , Wang M , Wang X , Woodford KJ , Wortman JR , Wu M , Yao A , Zdobnov EM , Zhang H , Zhao Q , Zhao S , Zhu SC , Zhimulev I , Coluzzi M , della Torre A , Roth CW , Louis C , Kalush F , Mural RJ , Myers EW , Adams MD , Smith HO , Broder S , Gardner MJ , Fraser CM , Birney E , Bork P , Brey PT , Venter JC , Weissenbach J , Kafatos FC , Collins FH , Hoffman SL
Ref : Science , 298 :129 , 2002
Abstract : Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
ESTHER : Holt_2002_Science_298_129
PubMedSearch : Holt_2002_Science_298_129
PubMedID: 12364791
Gene_locus related to this paper: anoga-a0nb77 , anoga-a0nbp6 , anoga-a0neb7 , anoga-a0nei9 , anoga-a0nej0 , anoga-a0ngj1 , anoga-a7ut12 , anoga-a7uuz9 , anoga-ACHE1 , anoga-ACHE2 , anoga-agCG44620 , anoga-agCG44666 , anoga-agCG45273 , anoga-agCG45279 , anoga-agCG45511 , anoga-agCG46741 , anoga-agCG47651 , anoga-agCG47655 , anoga-agCG47661 , anoga-agCG47690 , anoga-agCG48797 , anoga-AGCG49362 , anoga-agCG49462 , anoga-agCG49870 , anoga-agCG49872 , anoga-agCG49876 , anoga-agCG50851 , anoga-agCG51879 , anoga-agCG52383 , anoga-agCG54954 , anoga-AGCG55021 , anoga-agCG55401 , anoga-agCG55408 , anoga-agCG56978 , anoga-ebiG239 , anoga-ebiG2660 , anoga-ebiG5718 , anoga-ebiG5974 , anoga-ebiG8504 , anoga-ebiG8742 , anoga-glita , anoga-nrtac , anoga-q5tpv0 , anoga-Q5TVS6 , anoga-q7pm39 , anoga-q7ppw9 , anoga-q7pq17 , anoga-Q7PQT0 , anoga-q7q8m4 , anoga-q7q626 , anoga-q7qa14 , anoga-q7qa52 , anoga-q7qal7 , anoga-q7qbj0 , anoga-f5hl20 , anoga-q7qkh2 , anoga-a0a1s4h1y7 , anoga-q7q887