Multiple Ras proteins, including N-Ras, depend on a palmitoylation/depalmitoylation cycle to regulate their subcellular trafficking and oncogenicity. General lipase inhibitors such as Palmostatin M (Palm M) block N-Ras depalmitoylation, but lack specificity and target several enzymes displaying depalmitoylase activity. Here, we describe ABD957, a potent and selective covalent inhibitor of the ABHD17 family of depalmitoylases, and show that this compound impairs N-Ras depalmitoylation in human acute myeloid leukemia (AML) cells. ABD957 produced partial effects on N-Ras palmitoylation compared with Palm M, but was much more selective across the proteome, reflecting a plasma membrane-delineated action on dynamically palmitoylated proteins. Finally, ABD957 impaired N-Ras signaling and the growth of NRAS-mutant AML cells in a manner that synergizes with MAP kinase kinase (MEK) inhibition. Our findings uncover a surprisingly restricted role for ABHD17 enzymes as regulators of the N-Ras palmitoylation cycle and suggest that ABHD17 inhibitors may have value as targeted therapies for NRAS-mutant cancers.
        
Title: Recent advances in multitarget-directed ligands targeting G-protein-coupled receptors Ma H, Huang B, Zhang Y Ref: Drug Discov Today, 25:1682, 2020 : PubMed
Mounting evidence indicates that single-target drugs might be inadequate to achieve satisfactory therapeutic effects on complex diseases. Recently, increasing attention has been paid to developing drugs that can manipulate multiple targets to generate beneficial effects through potential synergy. G-protein-coupled receptors (GPCRs) become desirable targets for developing multitarget-directed ligands (MTDLs) because of their crucial roles in the pathophysiology of various human diseases and the accessibility of druggable sites at the cell surface. Herein, we review the most recent advances in the development of GPCR-targeted MTDLs in treating complex diseases, and discuss their potential therapeutic strategies to reveal current trends and shed insights into the utility of GPCR-targeted MTDLs for future drug design and development.
Self-associating split fluorescent proteins (FPs) are split FPs whose two fragments spontaneously associate to form a functional FP. They have been widely used for labeling proteins, scaffolding protein assembly and detecting cell-cell contacts. Recently developments have expanded the palette of self-associating split FPs beyond the original split GFP1-10/11. However, these new ones have suffered from suboptimal fluorescence signal after complementation. Here, by investigating the complementation process, we have demonstrated two approaches to improve split FPs: assistance through SpyTag/SpyCatcher interaction and directed evolution. The latter has yielded two split sfCherry3 variants with substantially enhanced overall brightness, facilitating the tagging of endogenous proteins by gene editing. Based on sfCherry3, we have further developed a new red-colored trans-synaptic marker called Neuroligin-1 sfCherry3 Linker Across Synaptic Partners (NLG-1 CLASP) for multiplexed visualization of neuronal synapses in living C. elegans, demonstrating its broad applications.
Most neutralizing antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV) target the receptor-binding domain (RBD) of the spike glycoprotein and block its binding to the cellular receptor dipeptidyl peptidase 4 (DPP4). The epitopes and mechanisms of mAbs targeting non-RBD regions have not been well characterized yet. Here we report the monoclonal antibody 7D10 that binds to the N-terminal domain (NTD) of the spike glycoprotein and inhibits the cell entry of MERS-CoV with high potency. Structure determination and mutagenesis experiments reveal the epitope and critical residues on the NTD for 7D10 binding and neutralization. Further experiments indicate that the neutralization by 7D10 is not solely dependent on the inhibition of DPP4 binding, but also acts after viral cell attachment, inhibiting the pre-fusion to post-fusion conformational change of the spike. These properties give 7D10 a wide neutralization breadth and help explain its synergistic effects with several RBD-targeting antibodies.
OBJECTIVES: To identify and characterize specific esterases from S. mutans with degradative activity toward methacrylate-based resin monomers. METHODS: Out of several putative esterases, an esterase encoded in an Open Reading Frame as SMU_118c (The National Center for Biotechnology Information, NCBI), was found to have true hydrolase activities. SMU_118c was cloned, expressed, purified and further characterized for its respective hydrolytic activity towards ester-containing nitrophenyl substrates and the universal resin monomers bis-phenyl-glycidyl-dimethacrylate (bisGMA) and triethyleneglycol dimethacrylate (TEGDMA) at neutral (7.0) or cariogenic (5.5) pH. Mass spectrometry (MS) was used to verify the expression of SMU_118c protein in S. mutans UA159. RESULTS: Similar to the whole cell activity of S. mutans, SMU_118c showed the highest affinity toward para-nitrophenyl acetate (pNPA) and para-nitrophenyl butyrate (pNPB) vs. ortho-nitrophenyl butyrate (oNPB) and butyrylthiocholine iodide (BTC) (p<0.05). The esterase retained 60% of its activity after 21days and hydrolyzed bisGMA at a higher rate than TEGDMA at both neutral and cariogenic pH (p<0.001), similarly to the predominant human salivary esterase degradative activity. MS confirmed that SMU_118c is an intracellular protein in S. mutans UA159 and expressed under pathogenic (pH 5.5) growth conditions. SIGNIFICANCE: The similarity in the activity profile to the whole S. mutans bacterial cell, the stability over time at cariogenic pH, the preference to hydrolyze bisGMA and confirmed expression profile suggest that SMU_118c could be a significant contributor to the whole bacterial degradative activity of S. mutans toward the degradation of resin composites, adhesives and the restoration-tooth interface, potentially accelerating restoration's failure. STATEMENT OF SIGNIFICANCE: The current study builds upon our highly-cited previous study by Bourbia et al., (JDR, 2013) that reported on that the cariogenic bacterium, S. mutans has esterase-like activities that enable the bacterium to degrade dental composites and adhesives. The current submission is the first to report on the isolation and characterization of the specific esterase activity (SMU_118c) from S. mutans that is a significant contributor to the whole bacterial degradative activity toward the hydrolysis of dental resins. This activity compromises the restoration-tooth interface, increases interfacial bacterial microleakage (Kermanshahi et al., JDR 2010), potentially contributing to the pathogenesis of recurrent caries around resin composite restorations. This represent a significant contribution to the field of biomaterials and their clinical performance.
Tea, one of the world's most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to approximately 0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred approximately 30 to 40 and approximately 90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties.
We report herein the design and synthesis of a series of 11 novel tacrine-1,2,3-triazole derivatives via a Cu(i)-catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) reaction. The newly synthesized compounds were evaluated for their inhibition activity against Electrophorus electricus acetylcholinesterase (AChE) and horse serum butyrylcholinesterase (BChE) as potential drug targets for Alzheimer's disease (AD). Among the designed compounds, compound 8a2 exhibited potent inhibition against AChE and BChE with IC50 values of 4.89 muM and 3.61 muM, respectively. Further structure-activity relationship (SAR) and molecular modeling studies may provide valuable insights into the design of better tacrine-triazole analogues with potential therapeutic applications for AD.
        
Title: Carboxylesterase Precursor (EST-1) Mediated the Fungicide Jinggangmycin-Suppressed Reproduction of Sogatella furcifera (Hemiptera: Delphacidae) Ge LQ, Huang B, Jiang YP, Gu HT, Xia T, Yang GQ, Liu F, Wu JC Ref: J Econ Entomol, 110:2199, 2017 : PubMed
The jinggangmycin (JGM) is a widely used fungicide for controlling the rice sheath blight, Rhizoctonia solani, in China. Previous experiments under lab conditions showed that JGM foliar spray suppressed Sogatella furcifera (Horvath) reproduction. However, the molecular mechanisms of JGM-driven changes in S. furcifera reproduction are unclear. Therefore, we selected carboxylesterase precursor (EST-1) as a target gene for silencing by RNAi based on gene expression profiles. The present results demonstrated that JGM and control + dsSfEST-1 treatments significantly reduced the number of eggs laid (down by 58% and 54%, respectively), oviposition period (down by 57% and 38%, respectively), and longevity (down by 32% and 38%, respectively) in adult females compared with untreated controls, while no pronounced differences in the preoviposition period were observed. Meanwhile, the dietary control + dsSfEST-1 treatment also severely impeded protein synthesis, specifically soluble ovarian protein content (down by 20% and 24%, respectively) and soluble sugar content (down by 42% and 35%, respectively), which led to stunted growth and reduced body weight in adult females. We thereby speculate that downregulated SfEST-1 expression may be one molecular mechanism underlying JGM-driven reproduction in S. furcifera.
Donepezil hydrochloride is a reversible acetyl cholinesterase inhibitor approved for Alzheimer disease treatment. As an alternate therapy, a donepezil hydrochloride transdermal patch is in development. Recommended nonclinical safety studies include a 3-month Good Laboratory Practice (GLP) dose-range finding (DRF) study prior to conducting the 2-year dermal carcinogenicity study in rats. Demonstration of systemic exposure is necessary to interpret the in vivo data. Previous nonclinical reports supporting oral dosing have utilized liquid chromatography tandem mass spectrometry (LC/MS/MS) to quantify donepezil concentrations in plasma. Smaller species with limited blood volumes do not allow serial sampling to derive the full pharmacokinetic profile from a single animal. Therefore, the option of another analytical method requiring decreased sample volumes is desirable as it would decrease the required number of animals while obtaining the complete profile. The dried blood spot (DBS) technique allows drug level measurement from a few microliters; however, the method is still not widely utilized in GLP studies. Because donepezil plasma levels are known by the oral route, DBS was used to bridge the previous oral data and to support a 13-week GLP DRF study for repeated topical application in rats, comparing oral administration with 4 topical formulations. The DBS method was validated and demonstrated robustness and reproducibility for application to the DRF study. The assay results were comparable to a previously reported plasma LC/MS/MS assay-derived pharmacokinetic profile and provided justification for selection of the topical formulation and dose levels for the subsequent dermal carcinogenicity study.
The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.
A gene encoding a sterol ester-synthesizing enzyme was identified in Arabidopsis. The cDNA of the Arabidopsis gene At1g04010 (AtPSAT) was overexpressed in Arabidopsis behind the cauliflower mosaic virus 35S promoter. Microsomal membranes from the leaves of overexpresser lines catalyzed the transacylation of acyl groups from phosphatidylethanolamine to sterols. This activity correlated with the expression level of the AtPSAT gene, thus demonstrating that this gene encodes a phospholipid:sterol acyltransferase (PSAT). Properties of the AtPSAT were examined in microsomal fractions from the tissues of an overexpresser. The enzyme did not utilize neutral lipids, had the highest activity with phosphatidylethanolamine, had a 5-fold preference for the sn-2 position, and utilized both saturated and unsaturated fatty acids. Various sterols and sterol intermediates, including triterpenic precursors, were acylated by the PSAT, whereas other triterpenes were not. Sterol selectivity studies showed that the enzyme is activated by end product sterols and that sterol intermediates are preferentially acylated by the activated enzyme. This indicates that PSAT both regulates the pool of free sterols as well as limits the amount of free sterol intermediates in the membranes. Two T-DNA insertion mutants in the AtPSAT gene, with strongly reduced (but still measurable) levels of sterol esters in their tissues, had no detectable PSAT activity in the microsomal fractions, suggesting that Arabidopsis possess other enzyme(s) capable of acylating sterols. The AtPSAT is the only intracellular enzyme found so far that catalyzes an acyl-CoA-independent sterol ester formation. Thus, PSAT has a similar physiological function in plant cells as the unrelated acyl-CoA:sterol acyltransferase has in animal cells.
A new pathway for triacylglycerol biosynthesis involving a phospholipid:diacylglycerol acyltransferase (PDAT) was recently described (Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S, [2000] Proc Natl Acad Sci USA 97: 6487-6492). The LRO1 gene that encodes the PDAT was identified in yeast (Saccharomyces cerevisiae) and shown to have homology with animal lecithin:cholesterol acyltransferase. A search of the Arabidopsis genome database identified the protein encoded by the At5g13640 gene as the closest homolog to the yeast PDAT (28% amino acid identity). The cDNA of At5g13640 (AtPDAT gene) was overexpressed in Arabidopsis behind the cauliflower mosaic virus promoter. Microsomal preparations of roots and leaves from overexpressers had PDAT activities that correlated with expression levels of the gene, thus demonstrating that this gene encoded PDAT (AtPDAT). The AtPDAT utilized different phospholipids as acyl donor and accepted acyl groups ranging from C10 to C22. The rate of activity was highly dependent on acyl composition with highest activities for acyl groups containing several double bonds, epoxy, or hydroxy groups. The enzyme utilized both sn-positions of phosphatidylcholine but had a 3-fold preference for the sn-2 position. The fatty acid and lipid composition as well as the amounts of lipids per fresh weight in Arabidopsis plants overexpressing AtPDAT were not significantly different from the wild type. Microsomal preparations of roots from a T-DNA insertion mutant in the AtPDAT gene had barely detectable capacity to transfer acyl groups from phospholipids to added diacylglycerols. However, these microsomes were still able to carry out triacylglycerol synthesis by a diacylglycerol:diacylglycerol acyltransferase reaction at the same rate as microsomal preparations from wild type.
        
Title: Arachidonic acid as a possible negative feedback inhibitor of nicotinic acetylcholine receptors on neurons Vijayaraghavan S, Huang B, Blumenthal EM, Berg DK Ref: Journal of Neuroscience, 15:3679, 1995 : PubMed
Neuronal acetylcholine receptors, being highly permeable to calcium, are likely to regulate calcium-dependent events in neurons. Arachidonic acid is a membrane-permeant second messenger that can be released from membrane phospholipids by phospholipases in a calcium-dependent manner. We show here that activation of neuronal acetylcholine receptors triggers release of 3H-arachidonic acid in a calcium-dependent manner from neurons preloaded with the fatty acid. Moreover, low concentrations of arachidonic acid reversibly inhibit the receptors and act most efficiently on receptors likely to have the highest permeability to calcium, namely receptors containing alpha 7 subunits. Low concentrations of arachidonic acid also reversibly inhibit alpha 7-containing receptors expressed in Xenopus oocytes following injection of alpha 7 cRNA. The oocyte results indicate following injection of alpha 7 cRNA. The oocyte results indicate that the inhibition is a feature of the receptors rather than a consequence of neuron-specific machinery. The inhibition is not mediated by specific metabolites of arachidonic acid because the effects can be mimicked by other fatty acids; their effectiveness correlates with their content of double bonds. In contrast to arachidonic effects on calcium currents, inhibition of neuronal nicotinic receptors by the fatty acid cannot be prevented by blocking production of free radicals or by inhibiting protein kinase C. An alternative mechanism is that arachidonic acid binds directly to the receptors or perturbs the local environment in such a manner as to constrain receptor function.(ABSTRACT TRUNCATED AT 250 WORDS)