Bao Z

References (7)

Title : Identification, characterization and expression analyses of cholinesterases genes in Yesso scallop (Patinopecten yessoensis) reveal molecular function allocation in responses to ocean acidification - Xing_2020_Aquat.Toxicol_231_105736
Author(s) : Xing Q , Liao H , Peng C , Zheng G , Yang Z , Wang J , Lu W , Huang X , Bao Z
Ref : Aquat Toxicol , 231 :105736 , 2020
Abstract : Cholinesterases are key enzymes in central and peripheral cholinergic nerve system functioning on nerve impulse transmission in animals. Though cholinesterases have been identified in most vertebrates, the knowledge about the variable numbers and multiple functions of the genes is still quite meagre in invertebrates, especially in scallops. In this study, the complete cholinesterase (ChE) family members have been systematically characterized in Yesso scallop (Patinopecten yessoensis) via whole-genome scanning through in silico analysis. Ten ChE family members in the genome of Yesso scallop (designated PyChEs) were identified and potentially acted to be the largest number of ChE in the reported species to date. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of these genes. The expression profiles of PyChEs were determined in all developmental stages, in healthy adult tissues, and in mantles under low pH stress (pH 6.5 and 7.5). Spatiotemporal expression suggested the ubiquitous functional roles of PyChEs in all stages of development, as well as general and tissue-specific functions in scallop tissues. Regulation expressions revealed diverse up- and down-regulated expression patterns at most time points, suggesting different functional specialization of gene superfamily members in response to ocean acidification (OA). Evidences in gene number, phylogenetic relationships and expression patterns of PyChEs revealed that functional innovations and differentiations after gene duplication may result in altered functional constraints among PyChEs gene clusters. Collectively, our results provide the potential clues that the selection pressures coming from the environment were the potential inducement leading to function allocation of ChE family members in scallop.
ESTHER : Xing_2020_Aquat.Toxicol_231_105736
PubMedSearch : Xing_2020_Aquat.Toxicol_231_105736
PubMedID: 33422860
Gene_locus related to this paper: mizye-a0a210qls6 , mizye-a0a210qis3 , mizye-a0a210qg00 , mizye-a0a210r5n9 , mizye-a0a210qbv2 , mizye-a0a210pu25 , mizye-a0a210ptr6 , mizye-a0a210ptv1 , mizye-a0a210ptq0 , mizye-P021348901.2

Title : Scallop genome provides insights into evolution of bilaterian karyotype and development - Wang_2017_Nat.Ecol.Evol_1_120
Author(s) : Wang S , Zhang J , Jiao W , Li J , Xun X , Sun Y , Guo X , Huan P , Dong B , Zhang L , Hu X , Sun X , Wang J , Zhao C , Wang Y , Wang D , Huang X , Wang R , Lv J , Li Y , Zhang Z , Liu B , Lu W , Hui Y , Liang J , Zhou Z , Hou R , Li X , Liu Y , Li H , Ning X , Lin Y , Zhao L , Xing Q , Dou J , Mao J , Guo H , Dou H , Li T , Mu C , Jiang W , Fu Q , Fu X , Miao Y , Liu J , Yu Q , Li R , Liao H , Kong Y , Jiang Z , Chourrout D , Bao Z
Ref : Nat Ecol Evol , 1 :120 , 2017
Abstract : Reconstructing the genomes of bilaterian ancestors is central to our understanding of animal evolution, where knowledge from ancient and/or slow-evolving bilaterian lineages is critical. Here we report a high-quality, chromosome-anchored reference genome for the scallop Patinopecten yessoensis, a bivalve mollusc that has a slow-evolving genome with many ancestral features. Chromosome-based macrosynteny analysis reveals a striking correspondence between the 19 scallop chromosomes and the 17 presumed ancestral bilaterian linkage groups at a level of conservation previously unseen, suggesting that the scallop may have a karyotype close to that of the bilaterian ancestor. Scallop Hox gene expression follows a new mode of subcluster temporal co-linearity that is possibly ancestral and may provide great potential in supporting diverse bilaterian body plans. Transcriptome analysis of scallop mantle eyes finds unexpected diversity in phototransduction cascades and a potentially ancient Pax2/5/8-dependent pathway for noncephalic eyes. The outstanding preservation of ancestral karyotype and developmental control makes the scallop genome a valuable resource for understanding early bilaterian evolution and biology.
ESTHER : Wang_2017_Nat.Ecol.Evol_1_120
PubMedSearch : Wang_2017_Nat.Ecol.Evol_1_120
PubMedID: 28812685
Gene_locus related to this paper: mizye-a0a210qls6 , mizye-a0a210qis3 , mizye-a0a210qg00 , mizye-a0a210ped6 , mizye-a0a210q4h5 , mizye-a0a210q4h9 , mizye-a0a210q4j1 , mizye-a0a210qf86 , mizye-a0a210q332 , mizye-a0a210pqn0 , mizye-a0a210q7t5 , mizye-a0a210pij5 , mizye-a0a210qyk8 , mizye-a0a210pwl7 , mizye-a0a210q8u5 , mizye-a0a210r5n9 , mizye-a0a210qbv2 , mizye-a0a210pu25 , mizye-a0a210pek1 , mizye-a0a210pul3 , mizye-a0a210pum3 , mizye-a0a210ptr6 , mizye-a0a210ptq5 , mizye-a0a210ptc4.1 , mizye-a0a210ptc4.2 , mizye-a0a210ptv1 , mizye-a0a210ptv7 , mizye-a0a210qgl6 , mizye-a0a210qg90 , mizye-a0a210ptq0 , mizye-a0a210qg72 , mizye-a0a210ptb1 , mizye-a0a210pjd3 , mizye-a0a210qg92 , mizye-a0a210q8v2 , mizye-a0a210qg93 , mizye-a0a210q160.1 , mizye-a0a210q160.2 , mizye-a0a210qes4 , mizye-a0a210pk25 , mizye-a0a210q1b8 , mizye-a0a210q110 , mizye-a0a210r503 , mizye-P021348901.1 , mizye-P021348901.2

Title : The neurovascular protective effects of huperzine a on d-galactose-induced inflammatory damage in the rat hippocampus - Ruan_2014_Gerontology_60_424
Author(s) : Ruan Q , Hu X , Ao H , Ma H , Gao Z , Liu F , Kong D , Bao Z , Yu Z
Ref : Gerontology , 60 :424 , 2014
Abstract : BACKGROUND: Chronic administration of D-galactose (D-gal) results in oxidative stress and chronic inflammatory aging. Age-related changes in the brain result in neurovascular damage and blood-brain barrier (BBB) dysfunction. However, little is known regarding D-gal-induced neurovascular damage, as well as the protective effects of huperzine A. OBJECTIVE: The purpose of this study was to utilize a D-gal-induced rat model to investigate the activation of neurovascular inflammatory damage and apoptosis in the rat hippocampus and to understand whether huperzine A alleviates D-gal-induced neuronal and vascular inflammatory injury.
METHODS: Aging rats were treated with D-gal (300 mg/kg s.c. for 8 weeks), were coadministered D-gal and huperzine A (D-gal 300 mg/kg and huperzine A 0.1 mg/kg s.c. for 8 weeks) or served as the saline-treated control group rats (same volume of saline given subcutaneously for 8 weeks). Changes in hippocampal morphology and biomarkers of inflammatory damage were analyzed.
RESULTS: Our study revealed that chronic administration of D-gal resulted in the activation of glia and vascular endothelial cells and upregulation of mRNA and protein levels of cell-associated adhesion molecules and inflammatory cytokines via nuclear factor (NF)-kappaB inhibitor degradation and NF-kappaB nuclear translocation. The inflammatory injury caused significant BBB dysfunction, decreased density of tight junctions (TJs) and apoptosis in the rat hippocampus. Coadministration of huperzine A not only markedly inhibited the D-gal-induced increase in acetylcholinesterase (AChE) activity, but also alleviated D-gal-induced neurovascular damage by inhibiting D-gal-induced NF-kappaB activation, improving cerebrovascular function and suppressing the D-gal-induced decrease in the density and protein levels of TJs and cell apoptosis.
CONCLUSIONS: Our findings provided evidence that D-gal induced a proinflammatory phenotype mediated by NF-kappaB in the rat hippocampus. Moreover, huperzine A suppressed D-gal-induced neurovascular damage and BBB dysfunction, partly by preventing NF-kappaB nuclear translocation. The inhibiting effect of huperzine A on AChE activity might play an important role in attenuating D-gal-induced inflammatory damage. (c) 2014 S. Karger AG, Basel.
ESTHER : Ruan_2014_Gerontology_60_424
PubMedSearch : Ruan_2014_Gerontology_60_424
PubMedID: 24969491

Title : The anti-inflamm-aging and hepatoprotective effects of huperzine A in D-galactose-treated rats - Ruan_2013_Mech.Ageing.Dev_134_89
Author(s) : Ruan Q , Liu F , Gao Z , Kong D , Hu X , Shi D , Bao Z , Yu Z
Ref : Mech Ageing Dev , 134 :89 , 2013
Abstract : Oxidative stress contributes to a chronic inflammatory process referred to as "inflamm-aging". Acetylcholinesterase inhibitors (AChEI) can enhance cholinergic transmission and act as anti-inflammatory agents via immunocompetent cells expressing alpha-7 acetylcholine receptors (AChR). The present study explores the possible role of huperzine A, a reversible and selective AChEI, against D-gal-induced oxidative damage, cell toxicity and inflamm-aging in rat livers. In two-month-old rats with normal liver function, an 8-week administration of D-gal (300 mg/kg subcutaneously (s.c.) injected), significantly increased hepatic impairment, ROS generation and oxidative damage, hepatic senescence, nuclear factor-kappa B (NF-kappaB) activation and inflammatory responses. An 8-week co-administration of both D-gal (300 mg/kg s.c.) and huperzine A (0.1 mg/kg s.c.) not only significantly decreased hepatic function impairment, ROS generation, oxidative damage, but also suppressed inflamm-aging by inhibiting hepatic replicative senescence, AChE activity, IkappaBalpha degradation, NF-kappaB p65 nuclear translocation and inflammatory responses. The expression levels of pro-inflammatory cytokine mRNA and proteins, such as TNFalpha, IL-1beta and IL-6 decrease significantly, and the protein levels of the anti-inflammatory cytokine IL-10 display an obvious increase. These findings indicated that D-gal-induced hepatic injury and inflamm-aging in the rat liver was associated with the development of a pro-inflammatory phenotype in this organ. D-gal induced damage-associated molecular patterns (DAMPs) because oxidative damages might play an important role in D-gal-induced hepatic sterile inflammation. Huperzine A exhibited protective effects against D-gal-induced hepatotoxicity and inflamm-aging by inhibiting AChE activity and via the activation of the cholinergic anti-inflammatory pathway. The huperzine A mechanism might be involved in the inhibition of DAMPs-mediated NF-kappaB nuclear localization and activation.
ESTHER : Ruan_2013_Mech.Ageing.Dev_134_89
PubMedSearch : Ruan_2013_Mech.Ageing.Dev_134_89
PubMedID: 23313706

Title : Complete genome sequence of Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs - Okubo_2012_Microbes.Environ_27_306
Author(s) : Okubo T , Tsukui T , Maita H , Okamoto S , Oshima K , Fujisawa T , Saito A , Futamata H , Hattori R , Shimomura Y , Haruta S , Morimoto S , Wang Y , Sakai Y , Hattori M , Aizawa S , Nagashima KV , Masuda S , Hattori T , Yamashita A , Bao Z , Hayatsu M , Kajiya-Kanegae H , Yoshinaga I , Sakamoto K , Toyota K , Nakao M , Kohara M , Anda M , Niwa R , Jung-Hwan P , Sameshima-Saito R , Tokuda S , Yamamoto S , Yokoyama T , Akutsu T , Nakamura Y , Nakahira-Yanaka Y , Takada Hoshino Y , Hirakawa H , Mitsui H , Terasawa K , Itakura M , Sato S , Ikeda-Ohtsubo W , Sakakura N , Kaminuma E , Minamisawa K
Ref : Microbes Environ , 27 :306 , 2012
Abstract : Bradyrhizobium sp. S23321 is an oligotrophic bacterium isolated from paddy field soil. Although S23321 is phylogenetically close to Bradyrhizobium japonicum USDA110, a legume symbiont, it is unable to induce root nodules in siratro, a legume often used for testing Nod factor-dependent nodulation. The genome of S23321 is a single circular chromosome, 7,231,841 bp in length, with an average GC content of 64.3%. The genome contains 6,898 potential protein-encoding genes, one set of rRNA genes, and 45 tRNA genes. Comparison of the genome structure between S23321 and USDA110 showed strong colinearity; however, the symbiosis islands present in USDA110 were absent in S23321, whose genome lacked a chaperonin gene cluster (groELS3) for symbiosis regulation found in USDA110. A comparison of sequences around the tRNA-Val gene strongly suggested that S23321 contains an ancestral-type genome that precedes the acquisition of a symbiosis island by horizontal gene transfer. Although S23321 contains a nif (nitrogen fixation) gene cluster, the organization, homology, and phylogeny of the genes in this cluster were more similar to those of photosynthetic bradyrhizobia ORS278 and BTAi1 than to those on the symbiosis island of USDA110. In addition, we found genes encoding a complete photosynthetic system, many ABC transporters for amino acids and oligopeptides, two types (polar and lateral) of flagella, multiple respiratory chains, and a system for lignin monomer catabolism in the S23321 genome. These features suggest that S23321 is able to adapt to a wide range of environments, probably including low-nutrient conditions, with multiple survival strategies in soil and rhizosphere.
ESTHER : Okubo_2012_Microbes.Environ_27_306
PubMedSearch : Okubo_2012_Microbes.Environ_27_306
PubMedID: 22452844
Gene_locus related to this paper: 9brad-i0g2u8 , 9brad-i0gf89 , braja-pcaD , 9brad-i0fzh8 , 9brad-i0gfv2 , 9brad-i0g2y4

Title : Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution - Hillier_2004_Nature_432_695
Author(s) : Hillier LW , Miller W , Birney E , Warren W , Hardison RC , Ponting CP , Bork P , Burt DW , Groenen MA , Delany ME , Dodgson JB , Chinwalla AT , Cliften PF , Clifton SW , Delehaunty KD , Fronick C , Fulton RS , Graves TA , Kremitzki C , Layman D , Magrini V , McPherson JD , Miner TL , Minx P , Nash WE , Nhan MN , Nelson JO , Oddy LG , Pohl CS , Randall-Maher J , Smith SM , Wallis JW , Yang SP , Romanov MN , Rondelli CM , Paton B , Smith J , Morrice D , Daniels L , Tempest HG , Robertson L , Masabanda JS , Griffin DK , Vignal A , Fillon V , Jacobbson L , Kerje S , Andersson L , Crooijmans RP , Aerts J , van der Poel JJ , Ellegren H , Caldwell RB , Hubbard SJ , Grafham DV , Kierzek AM , McLaren SR , Overton IM , Arakawa H , Beattie KJ , Bezzubov Y , Boardman PE , Bonfield JK , Croning MD , Davies RM , Francis MD , Humphray SJ , Scott CE , Taylor RG , Tickle C , Brown WR , Rogers J , Buerstedde JM , Wilson SA , Stubbs L , Ovcharenko I , Gordon L , Lucas S , Miller MM , Inoko H , Shiina T , Kaufman J , Salomonsen J , Skjoedt K , Ka-Shu Wong G , Wang J , Liu B , Yu J , Yang H , Nefedov M , Koriabine M , deJong PJ , Goodstadt L , Webber C , Dickens NJ , Letunic I , Suyama M , Torrents D , von Mering C , Zdobnov EM , Makova K , Nekrutenko A , Elnitski L , Eswara P , King DC , Yang S , Tyekucheva S , Radakrishnan A , Harris RS , Chiaromonte F , Taylor J , He J , Rijnkels M , Griffiths-Jones S , Ureta-Vidal A , Hoffman MM , Severin J , Searle SM , Law AS , Speed D , Waddington D , Cheng Z , Tuzun E , Eichler E , Bao Z , Flicek P , Shteynberg DD , Brent MR , Bye JM , Huckle EJ , Chatterji S , Dewey C , Pachter L , Kouranov A , Mourelatos Z , Hatzigeorgiou AG , Paterson AH , Ivarie R , Brandstrom M , Axelsson E , Backstrom N , Berlin S , Webster MT , Pourquie O , Reymond A , Ucla C , Antonarakis SE , Long M , Emerson JJ , Betran E , Dupanloup I , Kaessmann H , Hinrichs AS , Bejerano G , Furey TS , Harte RA , Raney B , Siepel A , Kent WJ , Haussler D , Eyras E , Castelo R , Abril JF , Castellano S , Camara F , Parra G , Guigo R , Bourque G , Tesler G , Pevzner PA , Smit A , Fulton LA , Mardis ER , Wilson RK
Ref : Nature , 432 :695 , 2004
Abstract : We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
ESTHER : Hillier_2004_Nature_432_695
PubMedSearch : Hillier_2004_Nature_432_695
PubMedID: 15592404
Gene_locus related to this paper: chick-a0a1d5pmd9 , chick-b3tzb3 , chick-BCHE , chick-cb043 , chick-d3wgl5 , chick-e1bsm0 , chick-e1bvq6 , chick-e1bwz0 , chick-e1bwz1 , chick-e1byn1 , chick-e1bz81 , chick-e1c0z8 , chick-e1c7p7 , chick-f1nby4 , chick-f1ncz8 , chick-f1ndp3 , chick-f1nep4 , chick-f1nj68 , chick-f1njg6 , chick-f1njk4 , chick-f1njs4 , chick-f1njs5 , chick-f1nk87 , chick-f1nmx9 , chick-f1ntp8 , chick-f1nvg7 , chick-f1nwf2 , chick-f1p1l1 , chick-f1p3j5 , chick-f1p4c6 , chick-f1p508 , chick-fas , chick-h9l0k6 , chick-nlgn1 , chick-NLGN3 , chick-q5f3h8 , chick-q5zhm0 , chick-q5zi81 , chick-q5zij5 , chick-q5zin0 , chick-thyro , chick-f1nrq2 , chick-e1byd4 , chick-e1c2h6 , chick-a0a1d5pk92 , chick-a0a1d5pzg7 , chick-f1nbc2 , chick-f1nf25 , chick-f1nly5 , chick-f1p4h5 , chick-f1nzi7 , chick-f1p5k3 , chick-f1nm35 , chick-a0a1d5pl11 , chick-a0a1d5pj73 , chick-f1nxu6 , chick-a0a1d5nwc0 , chick-e1bxs8 , chick-f1p2g7 , chick-f1nd96

Title : The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics - Stein_2003_PLoS.Biol_1_E45
Author(s) : Stein LD , Bao Z , Blasiar D , Blumenthal T , Brent MR , Chen N , Chinwalla A , Clarke L , Clee C , Coghlan A , Coulson A , D'Eustachio P , Fitch DH , Fulton LA , Fulton RE , Griffiths-Jones S , Harris TW , Hillier LW , Kamath R , Kuwabara PE , Mardis ER , Marra MA , Miner TL , Minx P , Mullikin JC , Plumb RW , Rogers J , Schein JE , Sohrmann M , Spieth J , Stajich JE , Wei C , Willey D , Wilson RK , Durbin R , Waterston RH
Ref : PLoS Biol , 1 :E45 , 2003
Abstract : The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.
ESTHER : Stein_2003_PLoS.Biol_1_E45
PubMedSearch : Stein_2003_PLoS.Biol_1_E45
PubMedID: 14624247
Gene_locus related to this paper: caebr-a8wl70 , caebr-a8wm66 , caebr-a8wny7 , caebr-a8wpj6 , caebr-a8wpy7.1 , caebr-a8wq91 , caebr-a8wr10 , caebr-A8WSQ5 , caebr-a8wta1 , caebr-A8WTU9 , caebr-a8wux6 , caebr-A8WX49 , caebr-a8wxx0 , caebr-a8wyd4 , caebr-a8wye8 , caebr-a8wz10 , caebr-a8wz31.1 , caebr-a8wz31.2 , caebr-a8wz31.4 , caebr-a8wzp9 , caebr-a8wzr9.1 , caebr-a8wzr9.2 , caebr-a8wzs0 , caebr-a8wzs1 , caebr-a8x0r9 , caebr-a8x0z5 , caebr-a8x1l6 , caebr-a8x1r6 , caebr-a8x3t6 , caebr-a8x4h0 , caebr-a8x4u8 , caebr-a8x4w8 , caebr-a8x5l4 , caebr-a8x5l5 , caebr-a8x5r5 , caebr-a8x5s6 , caebr-a8x5t4 , caebr-a8x6s0 , caebr-a8x6s1 , caebr-a8x7d1 , caebr-a8x7h0 , caebr-a8x7v6 , caebr-A8X8P2 , caebr-a8x8q5 , caebr-a8x8y6 , caebr-a8x9s4 , caebr-a8x324.1 , caebr-a8x324.2 , caebr-a8x622 , caebr-a8xac7 , caebr-a8xag5 , caebr-a8xb07 , caebr-a8xb88 , caebr-a8xby0 , caebr-a8xdz0 , caebr-a8xf42 , caebr-a8xfd1 , caebr-a8xfe6 , caebr-a8xgi0 , caebr-a8xgz4 , caebr-a8xgz5 , caebr-a8xh38 , caebr-a8xhp8 , caebr-a8xhx9 , caebr-a8xjw4 , caebr-a8xk02 , caebr-a8xk46 , caebr-a8xk76 , caebr-a8xke1 , caebr-A8XLQ2 , caebr-a8xns2.1 , caebr-a8xns2.2 , caebr-a8xq21 , caebr-a8xub3 , caebr-a8xuc2 , caebr-a8xuc8 , caebr-a8xug3 , caebr-a8xuh6 , caebr-a8xui4 , caebr-a8xui5 , caebr-a8xui6 , caebr-a8xui7 , caebr-a8xum8 , caebr-a8y0h0.1 , caebr-a8y0h0.2 , caebr-a8y0h1.1 , caebr-a8y0h1.2 , caebr-a8y1b5 , caebr-a8y1r7 , caebr-a8y2v4 , caebr-a8y3e3 , caebr-a8y3i5 , caebr-a8y3j9 , caebr-a8y4p9 , caebr-a8y100 , caebr-a8y101 , caebr-ACHE1 , caebr-ACHE2 , caebr-ACHE3 , caebr-ACHE4 , caebr-b6ii84 , caebr-G01D9.5 , caebr-ges1e , caebr-a8y4l4 , caebr-A8Y1T9 , caebr-A8Y168 , caebr-A8Y0Z5 , caebr-A8XYQ5 , caebr-A8XXK4 , caebr-A8XWZ8 , caebr-A8XUF0 , caebr-A8XUB6 , caebr-A8XSV2 , caebr-A8XJ37 , caebr-A8XG15 , caebr-A8XFE8 , caebr-A8XEY7 , caebr-A8XEU8 , caebr-A8XDT6 , caebr-A8XDV3 , caebr-A8XDQ3 , caebr-A8XDK8 , caebr-A8XBW4 , caebr-A8XAG3 , caebr-A8X8H5 , caebr-A8X6Z9 , caebr-A8X6H9 , caebr-A8X629 , caebr-A8X438 , caebr-A8X4G2 , caebr-A8X4H8 , caebr-A8X4W2 , caebr-A8X3P4 , caebr-A8X3R1 , caebr-A8X2Z4 , caebr-A8X0N2 , caebr-A8X0B3 , caebr-A8WW80 , caebr-U483 , caebr-A8XPH6 , caebr-A8XNJ0 , caebr-A8XNA2 , caebr-A8XLP0 , caebr-A8XK33 , caebr-A8WTK6 , caebr-A8WU44 , caebr-A8WPJ2 , caebr-A8WNE5 , caebr-A8WMB3 , caebr-a8x1r2