Greenblatt HM


Full name : Greenblatt Harry M

First name : Harry M

Mail : Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100

Zip Code :

City :

Country : Israel

Email :

Phone :

Fax :

Website :

Directory :

References (24)

Title : Structure of Recombinant Human Carboxylesterase 1 Isolated from Whole Cabbage Looper Larvae - Greenblatt_2012_Acta.Crystallogr.Sect.F.Struct.Biol.Cryst.Commun_F68_269
Author(s) : Greenblatt HM , Otto TC , Kirkpatrick MG , Kovaleva E , Brown S , Buchman G , Cerasoli DM , Sussman JL
Ref : Acta Crystallographica Sect F Struct Biol Cryst Commun , F68 :269 , 2012
Abstract : The use of whole insect larvae as a source of recombinant proteins offers a more cost-effective method of producing large quantities of human proteins than conventional cell-culture approaches. Human carboxylesterase 1 has been produced in and isolated from whole Trichoplusia ni larvae. The recombinant protein was crystallized and its structure was solved to 2.2 resolution. The results indicate that the larvae-produced enzyme is essentially identical to that isolated from cultured Sf21 cells, supporting the use of this expression system to produce recombinant enzymes for crystallization studies.
ESTHER : Greenblatt_2012_Acta.Crystallogr.Sect.F.Struct.Biol.Cryst.Commun_F68_269
PubMedSearch : Greenblatt_2012_Acta.Crystallogr.Sect.F.Struct.Biol.Cryst.Commun_F68_269
PubMedID: 22442219
Gene_locus related to this paper: human-CES1

Title : The crystal structure of a complex of acetylcholinesterase with a bis-(-)-nor-meptazinol derivative reveals disruption of the catalytic triad - Paz_2009_J.Med.Chem_52_2543
Author(s) : Paz A , Xie Q , Greenblatt HM , Fu W , Tang Y , Silman I , Qiu Z , Sussman JL
Ref : Journal of Medicinal Chemistry , 52 :2543 , 2009
Abstract : A bis-(-)-nor-meptazinol derivative in which the two meptazinol rings are linked by a nonamethylene spacer is a novel acetylcholinesterase inhibitor that inhibits both catalytic activity and Abeta peptide aggregation. The crystal structure of its complex with Torpedo californica acetylcholinesterase was determined to 2.7 A resolution. The ligand spans the active-site gorge, with one nor-meptazinol moiety bound at the "anionic" subsite of the active site, disrupting the catalytic triad by forming a hydrogen bond with His440N(epsilon2), which is hydrogen-bonded to Ser200O(gamma) in the native enzyme. The second nor-meptazinol binds at the peripheral "anionic" site at the gorge entrance. A number of GOLD models of the complex, using both native TcAChE and the protein template from the crystal structure of the bis-(-)-nor-meptazinol/TcAChE complex, bear higher similarity to the X-ray structure than a previous model obtained using the mouse enzyme structure. These findings may facilitate rational design of new meptazinol-based acetylcholinesterase inhibitors.
ESTHER : Paz_2009_J.Med.Chem_52_2543
PubMedSearch : Paz_2009_J.Med.Chem_52_2543
PubMedID: 19326912
Gene_locus related to this paper: torca-ACHE

Title : Crystallographic snapshots of nonaged and aged conjugates of soman with acetylcholinesterase, and of a ternary complex of the aged conjugate with pralidoxime - Sanson_2009_J.Med.Chem_52_7593
Author(s) : Sanson B , Nachon F , Colletier JP , Froment MT , Toker L , Greenblatt HM , Sussman JL , Ashani Y , Masson P , Silman I , Weik M
Ref : Journal of Medicinal Chemistry , 52 :7593 , 2009
Abstract : Organophosphate compounds (OP) are potent inhibitors of acetylcholinesterases (AChEs) and can cause lethal poisoning in humans. Inhibition of AChEs by the OP soman involves phosphonylation of the catalytic serine, and subsequent dealkylation produces a form known as the "aged" enzyme. The nonaged form can be reactivated to a certain extent by nucleophiles, such as pralidoxime (2-PAM), whereas aged forms of OP-inhibited AChEs are totally resistant to reactivation. Here, we solved the X-ray crystal structures of AChE from Torpedo californica (TcAChE) conjugated with soman before and after aging. The absolute configuration of the soman stereoisomer adduct in the nonaged conjugate is P(S)C(R). A structural reorientation of the catalytic His440 side chain was observed during the aging process. Furthermore, the crystal structure of the ternary complex of the aged conjugate with 2-PAM revealed that the orientation of the oxime function does not permit nucleophilic attack on the phosphorus atom, thus providing a plausible explanation for its failure to reactivate the aged soman/AChE conjugate. Together, these three crystal structures provide an experimental basis for the design of new reactivators.
ESTHER : Sanson_2009_J.Med.Chem_52_7593
PubMedSearch : Sanson_2009_J.Med.Chem_52_7593
PubMedID: 19642642
Gene_locus related to this paper: torca-ACHE

Title : Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge - Rydberg_2006_J.Med.Chem_49_5491
Author(s) : Rydberg EH , Brumshtein B , Greenblatt HM , Wong DM , Shaya D , Williams LD , Carlier PR , Pang YP , Silman I , Sussman JL
Ref : Journal of Medicinal Chemistry , 49 :5491 , 2006
Abstract : The X-ray crystal structures were solved for complexes with Torpedo californica acetylcholinesterase of two bivalent tacrine derivative compounds in which the two tacrine rings were separated by 5- and 7-carbon spacers. The derivative with the 7-carbon spacer spans the length of the active-site gorge, making sandwich interactions with aromatic residues both in the catalytic anionic site (Trp84 and Phe330) at the bottom of the gorge and at the peripheral anionic site near its mouth (Tyr70 and Trp279). The derivative with the 5-carbon spacer interacts in a similar manner at the bottom of the gorge, but the shorter tether precludes a sandwich interaction at the peripheral anionic site. Although the upper tacrine group does interact with Trp279, it displaces the phenyl residue of Phe331, thus causing a major rearrangement in the Trp279-Ser291 loop. The ability of this inhibitor to induce large-scale structural changes in the active-site gorge of acetylcholinesterase has significant implications for structure-based drug design because such conformational changes in the target enzyme are difficult to predict and to model.
ESTHER : Rydberg_2006_J.Med.Chem_49_5491
PubMedSearch : Rydberg_2006_J.Med.Chem_49_5491
PubMedID: 16942022
Gene_locus related to this paper: torca-ACHE

Title : Structural insights into substrate traffic and inhibition in acetylcholinesterase - Colletier_2006_EMBO.J_25_2746
Author(s) : Colletier JP , Fournier D , Greenblatt HM , Stojan J , Sussman JL , Zaccai G , Silman I , Weik M
Ref : EMBO Journal , 25 :2746 , 2006
Abstract : Acetylcholinesterase (AChE) terminates nerve-impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter, acetylcholine. Substrate traffic in AChE involves at least two binding sites, the catalytic and peripheral anionic sites, which have been suggested to be allosterically related and involved in substrate inhibition. Here, we present the crystal structures of Torpedo californica AChE complexed with the substrate acetylthiocholine, the product thiocholine and a nonhydrolysable substrate analogue. These structures provide a series of static snapshots of the substrate en route to the active site and identify, for the first time, binding of substrate and product at both the peripheral and active sites. Furthermore, they provide structural insight into substrate inhibition in AChE at two different substrate concentrations. Our structural data indicate that substrate inhibition at moderate substrate concentration is due to choline exit being hindered by a substrate molecule bound at the peripheral site. At the higher concentration, substrate inhibition arises from prevention of exit of acetate due to binding of two substrate molecules within the active-site gorge.
ESTHER : Colletier_2006_EMBO.J_25_2746
PubMedSearch : Colletier_2006_EMBO.J_25_2746
PubMedID: 16763558
Gene_locus related to this paper: torca-ACHE

Title : Crystal packing mediates enantioselective ligand recognition at the peripheral site of acetylcholinesterase - Haviv_2005_J.Am.Chem.Soc_127_11029
Author(s) : Haviv H , Wong DM , Greenblatt HM , Carlier PR , Pang YP , Silman I , Sussman JL
Ref : Journal of the American Chemical Society , 127 :11029 , 2005
Abstract : Recently, alkylene-linked heterodimers of tacrine (1) and 5-amino-5,6,7,8-tetrahydroquinolinone (2, hupyridone) were shown to exhibit higher acetylcholinesterase (AChE) inhibition than either monomeric 1 or 2. Such inhibitors are potential drug candidates for ameliorating the cognitive decrements in early Alzheimer patients. In an attempt to understand the inhibition mechanism of one such dimer, (RS)-(+/-)-N-9-(1,2,3,4-tetrahydroacridinyl)-N'-5-[5,6,7,8-tetrahydro-2'(1'H)-qui nolinonyl]-1,10-diaminodecane [(RS)-(+/-)-3] bisoxalate, the racemate was soaked in trigonal Torpedo californica AChE (TcAChE) crystals, and the X-ray structure of the resulting complex was solved to 2.30 A resolution. Its structure revealed the 1 unit bound to the "anionic" subsite of the active site, near the bottom of the active-site gorge, as seen for the 1/TcAChE complex. Interestingly, only the (R)-enantiomer of the 2 unit was seen in the peripheral "anionic" site (PAS) at the top of the gorge, and was hydrogen-bonded to the side chains of residues belonging to an adjacent, symmetry-related AChE molecule covering the gorge entrance. When the same racemate was soaked in orthorhombic crystals of TcAChE, in which the entrance to the gorge is more exposed, the crystal structure of the corresponding complex revealed no substantial enantiomeric selectivity. This observation suggests that the apparent enantiomeric selectivity of trigonal crystals of TcAChE for (R)-3 is mainly due to crystal packing, resulting in preferential binding of one enantiomeric inhibitor both to its "host" enzyme and to its neighbor in the asymmetric unit, rather than to steric constraints imposed by the geometry of the active-site gorge.
ESTHER : Haviv_2005_J.Am.Chem.Soc_127_11029
PubMedSearch : Haviv_2005_J.Am.Chem.Soc_127_11029
PubMedID: 16076210
Gene_locus related to this paper: torca-ACHE

Title : Poster (74) Structural studies on torpedo californica acetylcholinesterase in complex with a substrate analogue -
Author(s) : Colletier JP , Fournier D , Greenblatt HM , Sussman JL , Zaccai G , Silman I , Weik M
Ref : In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects , (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina :359 , 2004

Title : The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design - Greenblatt_2004_J.Am.Chem.Soc_126_15405
Author(s) : Greenblatt HM , Guillou C , Guenard D , Argaman A , Botti SA , Badet B , Thal C , Silman I , Sussman JL
Ref : Journal of the American Chemical Society , 126 :15405 , 2004
Abstract : Bifunctional derivatives of the alkaloid galanthamine, designed to interact with both the active site of the enzyme acetylcholinesterase (AChE) and its peripheral cation binding site, have been assayed with Torpedo californica AChE (TcAChE), and the three-dimensional structures of their complexes with the enzyme have been solved by X-ray crystallography. Differences were noted between the IC(50) values obtained for TcAChE and those for Electrophorus electricus AChE. These differences are ascribed to sequence differences in one or two residues lining the active-site gorge of the enzyme. The binding of one of the inhibitors disrupts the native conformation of one wall of the gorge, formed by the loop Trp279-Phe290. It is proposed that flexibility of this loop may permit the binding of inhibitors such as galanthamine, which are too bulky to penetrate the narrow neck of the gorge formed by Tyr121 and Phe330 as seen in the crystal structure.
ESTHER : Greenblatt_2004_J.Am.Chem.Soc_126_15405
PubMedSearch : Greenblatt_2004_J.Am.Chem.Soc_126_15405
PubMedID: 15563167
Gene_locus related to this paper: torca-ACHE

Title : Poster (47) Conformational plasticity of acetylcholinesterase -
Author(s) : Silman I , Greenblatt HM , Zeev-Ben-Mordehai T , Sussman JL
Ref : In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects , (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina :346 , 2004

Title : Acetylcholinesterase: a multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer's disease - Greenblatt_2003_J.Mol.Neurosci_20_369
Author(s) : Greenblatt HM , Dvir H , Silman I , Sussman JL
Ref : Journal of Molecular Neuroscience , 20 :369 , 2003
Abstract : The structure of Torpedo californica acetylcholinesterase is examined in complex with several inhibitors that are either in use or under development for treating Alzheimer's disease. The noncovalent inhibitors vary greatly in their structures and bind to different sites of the enzyme, offering many different starting points for future drug design.
ESTHER : Greenblatt_2003_J.Mol.Neurosci_20_369
PubMedSearch : Greenblatt_2003_J.Mol.Neurosci_20_369
PubMedID: 14501022

Title : Acetylcholinesterase Complexed with Bivalent Ligands Related to Huperzine A: Experimental Evidence for Species-Dependent Protein-Ligand Complementarity - Wong_2003_J.Am.Chem.Soc_125_363
Author(s) : Wong DM , Greenblatt HM , Dvir H , Carlier PR , Han YF , Pang YP , Silman I , Sussman JL
Ref : J Am Chem Soc , 125 :363 , 2003
Abstract : Acetylcholinesterase (AChE) inhibitors improve the cognitive abilities of Alzheimer patients. (-)-Huperzine A [(-)-HupA], an alkaloid isolated from the club moss, Huperzia serrata, is one such inhibitor, but the search for more potent and selective drugs continues. Recently, alkylene-linked dimers of 5-amino-5,6,7,8-tetrahydroquinolinone (hupyridone, 1a), a fragment of HupA, were shown to serve as more potent inhibitors of AChE than (-)-HupA and monomeric 1a. We soaked two such dimers, (S,S)-(-)-bis(10)-hupyridone [(S,S)-(-)-2a] and (S,S)-(-)-bis(12)-hupyridone [(S,S)-(-)-2b] containing, respectively, 10 and 12 methylenes in the spacer, into trigonal TcAChE crystals, and solved the X-ray structures of the resulting complexes using the difference Fourier technique, both to 2.15 A resolution. The structures revealed one HupA-like 1a unit bound to the "anionic" subsite of the active-site, near the bottom of the active-site gorge, adjacent to Trp84, as seen for the TcAChE/(-)-HupA complex, and the second 1a unit near Trp279 in the "peripheral" anionic site at the top of the gorge, both bivalent molecules thus spanning the active-site gorge. The results confirm that the increased affinity of the dimeric HupA analogues for AChE is conferred by binding to the two "anionic" sites of the enzyme. Inhibition data show that (-)-2a binds to TcAChE approximately 6-7- and > 170-fold more tightly than (-)-2b and (-)-HupA, respectively. In contrast, previous data for rat AChE show that (-)-2b binds approximately 3- and approximately 2-fold more tightly than (-)-2a and (-)-HupA, respectively. Structural comparison of TcAChE with rat AChE, as represented by the closely related mouse AChE structure (1maa.pdb), reveals a narrower gorge for rat AChE, a perpendicular alignment of the Tyr337 ring to the gorge axis, and its conformational rigidity, as a result of hydrogen bonding between its hydroxyl group and that of Tyr341, relative to TcAChE Phe330. These structural differences in the active-site gorge explain the switch in inhibitory potency of (-)-2a and 2b and the larger dimer/(-)-HupA potency ratios observed for TcAChE relative to rat AChE. The results offer new insights into factors affecting protein-ligand complementarity within the gorge and should assist the further development of improved AChE inhibitors.
ESTHER : Wong_2003_J.Am.Chem.Soc_125_363
PubMedSearch : Wong_2003_J.Am.Chem.Soc_125_363
PubMedID: 12517147
Gene_locus related to this paper: torca-ACHE

Title : A structure-based design approach to the development of novel, reversible AChE inhibitors - Doucet-Personeni_2001_J.Med.Chem_44_3203
Author(s) : Doucet-Personeni C , Bentley PD , Fletcher RJ , Kinkaid A , Kryger G , Pirard B , Taylor A , Taylor R , Taylor J , Viner R , Silman I , Sussman JL , Greenblatt HM , Lewis T
Ref : Journal of Medicinal Chemistry , 44 :3203 , 2001
Abstract : Chimeras of tacrine and m-(N,N,N-Trimethylammonio)trifluoroacetophenone (1) were designed as novel, reversible inhibitors of acetylcholinesterase. On the basis of the X-ray structure of the apoenzyme, a molecular modeling study determined the favored attachment positions on the 4-aminoquinoline ring (position 3 and the 4-amino nitrogen) and the favored lengths of a polymethylene link between the two moieties (respectively 5-6 and 4-5 sp(3) atoms). Seven compounds matching these criteria were synthesized, and their inhibitory potencies were determined to be in the low nanomolar range. Activity data for close analogues lacking some of the postulated key features showed that our predictions were correct. In addition, a subsequent crystal structure of acetylcholinesterase complexed with the most active compound 27 was in good agreement with our model. The design strategy is therefore validated and can now be developed further.
ESTHER : Doucet-Personeni_2001_J.Med.Chem_44_3203
PubMedSearch : Doucet-Personeni_2001_J.Med.Chem_44_3203
PubMedID: 11563919
Gene_locus related to this paper: torca-ACHE

Title : Structure of acetylcholinesterase complexed with (-)-galanthamine at 2.3 A resolution - Greenblatt_1999_FEBS.Lett_463_321
Author(s) : Greenblatt HM , Kryger G , Lewis T , Silman I , Sussman JL
Ref : FEBS Letters , 463 :321 , 1999
Abstract : (-)-Galanthamine (GAL), an alkaloid from the flower, the common snowdrop (Galanthus nivalis), shows anticholinesterase activity. This property has made GAL the target of research as to its effectiveness in the treatment of Alzheimer's disease. We have solved the X-ray crystal structure of GAL bound in the active site of Torpedo californica acetylcholinesterase (TcAChE) to 2.3 A resolution. The inhibitor binds at the base of the active site gorge of TcAChE, interacting with both the choline-binding site (Trp-84) and the acyl-binding pocket (Phe-288, Phe-290). The tertiary amine group of GAL does not interact closely with Trp-84; rather, the double bond of its cyclohexene ring stacks against the indole ring. The tertiary amine appears to make a non-conventional hydrogen bond, via its N-methyl group, to Asp-72, near the top of the gorge. The hydroxyl group of the inhibitor makes a strong hydrogen bond (2.7 A) with Glu-199. The relatively tight binding of GAL to TcAChE appears to arise from a number of moderate to weak interactions with the protein, coupled to a low entropy cost for binding due to the rigid nature of the inhibitor.
ESTHER : Greenblatt_1999_FEBS.Lett_463_321
PubMedSearch : Greenblatt_1999_FEBS.Lett_463_321
PubMedID: 10606746
Gene_locus related to this paper: torca-ACHE

Title : Effect of mutations within the peripheral anionic site on the stability of acetylcholinesterase - Morel_1999_Mol.Pharmacol_55_982
Author(s) : Morel N , Bon S , Greenblatt HM , Van Belle D , Wodak SJ , Sussman JL , Massoulie J , Silman I
Ref : Molecular Pharmacology , 55 :982 , 1999
Abstract : Torpedo acetylcholinesterase is irreversibly inactivated by modifying a buried free cysteine, Cys231, with sulfhydryl reagents. The stability of the enzyme, as monitored by measuring the rate of inactivation, was reduced by mutating a leucine, Leu282, to a smaller amino acid residue. Leu282 is located within the "peripheral" anionic site, at the entrance to the active-site gorge. Thus, loss of activity was due to the increased reactivity of Cys231. This was paralleled by an increased susceptibility to thermal denaturation, which was shown to be due to a large decrease in the activation enthalpy. Similar results were obtained when either of two other residues in contact with Leu282 in Torpedo acetylcholinesterase, Trp279 and Ser291, was replaced by an amino acid with a smaller side chain. We studied the effects of various ligands specific for either the active or peripheral sites on both thermal inactivation and on inactivation by 4,4'-dithiodipyridine. The wild-type and mutated enzymes could be either protected or sensitized. In some cases, opposite effects of the same ligand were observed for chemical modification and thermal denaturation. The mutated residues are within a conserved loop, W279-S291, at the top of the active-site gorge, that contributes to the peripheral anionic site. Theoretical analysis showed that Torpedo acetylcholinesterase consists of two structural domains, each comprising one contiguous polypeptide segment. The W279-S291 loop, located in the first domain, makes multiple contacts with the second domain across the active-site gorge. We postulate that the mutations to residues with smaller side chains destabilize the conserved loop, thus disrupting cross-gorge interactions and, ultimately, the entire structure.
ESTHER : Morel_1999_Mol.Pharmacol_55_982
PubMedSearch : Morel_1999_Mol.Pharmacol_55_982
PubMedID: 10347238

Title : Crystal structures of aged phosphonylated acetylcholinesterase: nerve agent reaction products at the atomic level - Millard_1999_Biochemistry_38_7032
Author(s) : Millard CB , Kryger G , Ordentlich A , Greenblatt HM , Harel M , Raves ML , Segall Y , Barak D , Shafferman A , Silman I , Sussman JL
Ref : Biochemistry , 38 :7032 , 1999
Abstract : Organophosphorus acid anhydride (OP) nerve agents are potent inhibitors which rapidly phosphonylate acetylcholinesterase (AChE) and then may undergo an internal dealkylation reaction (called "aging") to produce an OP-enzyme conjugate that cannot be reactivated. To understand the basis for irreversible inhibition, we solved the structures of aged conjugates obtained by reaction of Torpedo californica AChE (TcAChE) with diisopropylphosphorofluoridate (DFP), O-isopropylmethylphosponofluoridate (sarin), or O-pinacolylmethylphosphonofluoridate (soman) by X-ray crystallography to 2.3, 2.6, or 2.2 A resolution, respectively. The highest positive difference density peak corresponded to the OP phosphorus and was located within covalent bonding distance of the active-site serine (S200) in each structure. The OP-oxygen atoms were within hydrogen-bonding distance of four potential donors from catalytic subsites of the enzyme, suggesting that electrostatic forces significantly stabilize the aged enzyme. The active sites of aged sarin- and soman-TcAChE were essentially identical and provided structural models for the negatively charged, tetrahedral intermediate that occurs during deacylation with the natural substrate, acetylcholine. Phosphorylation with DFP caused an unexpected movement in the main chain of a loop that includes residues F288 and F290 of the TcAChE acyl pocket. This is the first major conformational change reported in the active site of any AChE-ligand complex, and it offers a structural explanation for the substrate selectivity of AChE.
ESTHER : Millard_1999_Biochemistry_38_7032
PubMedSearch : Millard_1999_Biochemistry_38_7032
PubMedID: 10353814
Gene_locus related to this paper: torca-ACHE

Title : A preliminary comparison of structural models for catalytic intermediates of acetylcholinesterase - Silman_1999_Chem.Biol.Interact_119-120_43
Author(s) : Silman I , Millard CB , Ordentlich A , Greenblatt HM , Harel M , Barak D , Shafferman A , Sussman JL
Ref : Chemico-Biological Interactions , 119-120 :43 , 1999
Abstract : Determination of the three dimensional structure of Torpedo Californica acetylcholinesterase (TcAChE) provided an experimental tool for directly visualizing interaction of AChE with cholinesterase inhibitors of fundamental, pharmacological and toxicological interest. The structure revealed that the active site is located near the bottom of a deep and narrow gorge lined with 14 conserved aromatic amino acids. The structure of a complex of TcAChE with the powerful 'transition state analog' inhibitor, TMTFA, suggested that its orientation in the experimentally determined structure was very similar to that proposed for the natural substrate, acetylcholine, by manual docking. The array of enzyme-ligand interactions visualized in the TMFTA complex also are expected to envelope the unstable TI that forms with acetylcholine during acylation, and to sequester it from solvent. In our most recent studies, the crystal structures of several 'aged' conjugates of TcAChE obtained with OP nerve agents have been solved and compared with that of the native enzyme. The methylphosphonylated-enzyme obtained by reaction with soman provides a useful structural analog for the TI that forms during deacylation after the reaction of TcAChE with acetylcholine. By comparing these structures, we conclude that the same 'oxyanion hole' residues, as well as the aromatic side chains constituting the 'acyl pocket', participate in acylation (TMTFA-AChE) and deacylation (OP-AChE), and that AChE can accommodate both TIs at the bottom of the gorge without major conformational movements.
ESTHER : Silman_1999_Chem.Biol.Interact_119-120_43
PubMedSearch : Silman_1999_Chem.Biol.Interact_119-120_43
PubMedID: 10421437
Gene_locus related to this paper: torca-ACHE

Title : Crystal Structures of Aged Phosphorylated and Phosphonylated Torpedo Californica Acetylcholinesterase -
Author(s) : Millard CB , Kryger G , Ordentlich A , Harel M , Raves ML , Greenblatt HM , Segall Y , Barak D , Shafferman A , Silman I , Sussman JL
Ref : In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases , (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp. :454 , 1998

Title : Crystal structure of Aged phosphorylated and phosphonylated Torpedo Californica Acetylcholinesterase -
Author(s) : Millard CB , Kryger G , Ordentlich A , Harel M , Raves ML , Greenblatt HM , Segall Y , Barak D , Shafferman A , Silman I , Sussman JL
Ref : In Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases , (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp. :425 , 1998
Gene_locus related to this paper: torca-ACHE

Title : Carboxypeptidase A: native, zinc-removed and mercury-replaced forms - Greenblatt_1998_Acta.Crystallogr.D.Biol.Crystallogr_54_289
Author(s) : Greenblatt HM , Feinberg H , Tucker PA , Shoham G
Ref : Acta Crystallographica D Biol Crystallogr , 54 :289 , 1998
Abstract : The crystal structure of the zinc-containing exopeptidase bovine carboxypeptidase A (CPA) has been refined to high resolution, based on a data set collected from a single crystal, incorporating new sequence information based on cloning of the bovine gene. In addition, new refined structures are available for the zinc-removed form of the enzyme, apo-CPA, as well as the mercury-replaced form, Hg-CPA. The native structure reveals that the zinc-bound water molecule does not appear to more loosely bound than the rest of the zinc ligands, at least when B-factor values are considered. Nor is there any evidence for a secondary location of this water molecule. The apo-enzyme structure does not show any density in the place of the removed zinc ion. The only significant change appears to be a chi2 rotation of one zinc histidine ligand to form an ion-pair interaction with a glutamic acid side chain. The structure of Hg-CPA reveals a solvent Tris molecule bound to the mercury cation, as well as an unidentified cation bound to Glu270. The location of this citation agrees with previous proposals for the binding side of inhibitory zinc. These observations may explain some of the differences in kinetics observed in metal- replaced CPA.
ESTHER : Greenblatt_1998_Acta.Crystallogr.D.Biol.Crystallogr_54_289
PubMedSearch : Greenblatt_1998_Acta.Crystallogr.D.Biol.Crystallogr_54_289
PubMedID: 9867434

Title : Crystal Structures of Complexes of E2020-Related Compounds with Torpedo Californica Acetylcholinesterase -
Author(s) : Greenblatt HM , Kryger G , Harel M , Lewis T , Taylor J , Silman I , Sussman JL
Ref : In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases , (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp. :371-371 , 1998

Title : Alternative Crystal Forms of Torpedo Californica Acetylcholinesterase -
Author(s) : Raves ML , Greenblatt HM , Kryger G , Nicolas A , Ravelli RB , Harel M , Kroon J , Silman I , Sussman JL
Ref : In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases , (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp. :372 , 1998

Title : Crystal Structures of Aged Phosphorylated and Phosphonylated Torpedo Californica Acetylcholinesterase -
Author(s) : Millard CB , Kryger G , Ordentlich A , Harel M , Raves ML , Greenblatt HM , Segall Y , Barak D , Shafferman A , Silman I , Sussman JL
Ref : In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases , (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp. :425 , 1998

Title : Streptomyces griseus aminopeptidase: X-ray crystallographic structure at 1.75 A resolution - Greenblatt_1997_J.Mol.Biol_265_620
Author(s) : Greenblatt HM , Almog O , Maras B , Spungin-Bialik A , Barra D , Blumberg S , Shoham G
Ref : Journal of Molecular Biology , 265 :620 , 1997
Abstract : The X-ray crystal structure of the enzyme Streptomyces griseus aminopeptidase (SGAP) has been determined in its double zinc form to 1.75 A resolution, in its apo-enzyme from (zinc removed) to 2.1 A resolution, and as a mercury replaced derivative to 2.1 A resolution. The structure solution was achieved by single isomorphous replacement with phasing from anomalous scattering (SIRAS), followed by density modification with histogram matching. The protein consists of a central beta-sheet made up of eight parallel and antiparallel strands, surrounded by helices on either side. The active site is located at the carbonyl ends of two middle strands of the beta-sheet region. Two sections of the chain that could not be traced were Glu196 to Arg202, which borders the active site, and the final seven C-terminal residues starting with Gly278. The active site contains two zinc cations, each with similar ligands, at a distance of 3.6 A from each other. An unknown molecule appears to be bound to both zinc ions in the active site at partial occupancy and has been modelled as a phosphate ion. A calcium binding site has also been identified, consistent with the observations that calcium modulates the activity of the enzyme, and increases its heat stability. The mechanism by which the calcium cation modulates enzyme activity is not apparent, since the location of the calcium binding site is approximately 25 A distant from the active site zinc ions. Comparison of the structure of SGAP to other known aminopeptidases shows that the enzyme is most similar to Aeromonas proteolytica aminopeptidase (AAP). Both enzymes share a similar topology, although the overall sequence identity is very low (24% in aligned regions). The coordination of the two active site zinc cations in SGAP resembles that of AAP. These two microbial enzymes differ from bovine lens leucine aminopeptidase (LAP) in both overall structure and in coordination of the two zinc ions.
ESTHER : Greenblatt_1997_J.Mol.Biol_265_620
PubMedSearch : Greenblatt_1997_J.Mol.Biol_265_620
PubMedID: 9048953

Title : Aminopeptidase from Streptomyces griseus: primary structure and comparison with other zinc-containing aminopeptidases - Maras_1996_Eur.J.Biochem_236_843
Author(s) : Maras B , Greenblatt HM , Shoham G , Spungin-Bialik A , Blumberg S , Barra D
Ref : European Journal of Biochemistry , 236 :843 , 1996
Abstract : The aminopeptidase from Streptomyces griseus is a calcium-activated metalloenzyme, which contains 2 mol tightly bound zinc/mol protein. This aminopeptidase rapidly hydrolyzes peptide bonds formed by N-terminal hydrophobic amino acids, such as leucine, methionine and phenylalanine. We have determined the complete primary structure of the protein, which contains 284 amino acid residues, yielding a molecular mass of 29723 Da. A search in the Swiss-Prot database for sequence similarities revealed a low degree of identity (26-34%) to Saccharomyces cerevisiae aminopeptidase Y, Aeromonas proteolytica aminopeptidase, and a hypothetical 49.5-kDa protein from Bacillus subtilis, which is supposed to belong to the aminopeptidase Y family. In all these proteins, the residues that are known to be involved in zinc coordination are conserved.
ESTHER : Maras_1996_Eur.J.Biochem_236_843
PubMedSearch : Maras_1996_Eur.J.Biochem_236_843
PubMedID: 8665903