Nakai S

References (5)

Title : Divergent structures of carbazole degradative car operons isolated from gram-negative bacteria - Inoue_2004_Biosci.Biotechnol.Biochem_68_1467
Author(s) : Inoue K , Widada J , Nakai S , Endoh T , Urata M , Ashikawa Y , Shintani M , Saiki Y , Yoshida T , Habe H , Omori T , Nojiri H
Ref : Biosci Biotechnol Biochem , 68 :1467 , 2004
Abstract : Southern hybridization analysis of the genomes from the newly-isolated 10 carbazole (CAR)-utilizing bacteria revealed that 8 of the isolates carried gene clusters homologous to the CAR-catabolic car operon of Pseudomonas resinovorans strain CA10. Sequencing analysis showed that two car operons and the neighboring regions of Pseudomonas sp. strain K23 are nearly identical to that of strain CA10. In contrast to strains CA10 and K23, carEF genes did not exist downstream of the car gene cluster of Janthinobacterium sp. strain J3. In the car gene clusters, strains CA10, K23 and J3 have Rieske-type ferredoxin as a component of carbazole dioxygenase, although Sphingomonas sp. strain KA1 possesses a putidaredoxin-type ferredoxin. We confirmed that this putidaredoxin-type ferredoxin CarAc can function as an electron mediator to CarAa of strain KA1. In the upstream regions of the carJ3 and carKA1 gene clusters, ORFs whose deduced amino acid sequences showed homology to GntR-family transcriptional regulators were identified.
ESTHER : Inoue_2004_Biosci.Biotechnol.Biochem_68_1467
PubMedSearch : Inoue_2004_Biosci.Biotechnol.Biochem_68_1467
PubMedID: 15277751
Gene_locus related to this paper: 9sphn-q0kj70 , 9sphn-q0kjk5 , 9sphn-q0kjm1 , 9sphn-q0kjt3 , 9sphn-q2pfa3

Title : Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CA10 - Nojiri_2001_J.Bacteriol_183_3663
Author(s) : Nojiri H , Sekiguchi H , Maeda K , Urata M , Nakai S , Yoshida T , Habe H , Omori T
Ref : Journal of Bacteriology , 183 :3663 , 2001
Abstract : The nucleotide sequences of the 27,939-bp-long upstream and 9,448-bp-long downstream regions of the carAaAaBaBbCAc(ORF7)Ad genes of carbazole-degrading Pseudomonas sp. strain CA10 were determined. Thirty-two open reading frames (ORFs) were identified, and the car gene cluster was consequently revealed to consist of 10 genes (carAaAaBaBbCAcAdDFE) encoding the enzymes for the three-step conversion of carbazole to anthranilate and the degradation of 2-hydroxypenta-2,4-dienoate. The high identities (68 to 83%) with the enzymes involved in 3-(3-hydroxyphenyl)propionic acid degradation were observed only for CarFE. This observation, together with the fact that two ORFs are inserted between carD and carFE, makes it quite likely that the carFE genes were recruited from another locus. In the 21-kb region upstream from carAa, aromatic-ring-hydroxylating dioxygenase genes (ORF26, ORF27, and ORF28) were found. Inductive expression in carbazole-grown cells and the results of homology searching indicate that these genes encode the anthranilate 1,2-dioxygenase involved in carbazole degradation. Therefore, these ORFs were designated antABC. Four homologous insertion sequences, IS5car1 to IS5car4, were identified in the neighboring regions of car and ant genes. IS5car2 and IS5car3 constituted the putative composite transposon containing antABC. One-ended transposition of IS5car2 together with the 5' portion of antA into the region immediately upstream of carAa had resulted in the formation of IS5car1 and ORF9. In addition to the insertion sequence-dependent recombination, gene duplications and presumed gene fusion were observed. In conclusion, through the above gene rearrangement, the novel genetic structure of the car gene cluster has been constructed. In addition, it was also revealed that the car and ant gene clusters are located on the megaplasmid pCAR1.
ESTHER : Nojiri_2001_J.Bacteriol_183_3663
PubMedSearch : Nojiri_2001_J.Bacteriol_183_3663
PubMedID: 11371531
Gene_locus related to this paper: psesp-Q9AQN6 , psest-bpdF

Title : The complete genome sequence of the gram-positive bacterium Bacillus subtilis - Kunst_1997_Nature_390_249
Author(s) : Kunst F , Ogasawara N , Moszer I , Albertini AM , Alloni G , Azevedo V , Bertero MG , Bessieres P , Bolotin A , Borchert S , Borriss R , Boursier L , Brans A , Braun M , Brignell SC , Bron S , Brouillet S , Bruschi CV , Caldwell B , Capuano V , Carter NM , Choi SK , Cordani JJ , Connerton IF , Cummings NJ , Daniel RA , Denziot F , Devine KM , Dusterhoft A , Ehrlich SD , Emmerson PT , Entian KD , Errington J , Fabret C , Ferrari E , Foulger D , Fritz C , Fujita M , Fujita Y , Fuma S , Galizzi A , Galleron N , Ghim SY , Glaser P , Goffeau A , Golightly EJ , Grandi G , Guiseppi G , Guy BJ , Haga K , Haiech J , Harwood CR , Henaut A , Hilbert H , Holsappel S , Hosono S , Hullo MF , Itaya M , Jones L , Joris B , Karamata D , Kasahara Y , Klaerr-Blanchard M , Klein C , Kobayashi Y , Koetter P , Koningstein G , Krogh S , Kumano M , Kurita K , Lapidus A , Lardinois S , Lauber J , Lazarevic V , Lee SM , Levine A , Liu H , Masuda S , Mauel C , Medigue C , Medina N , Mellado RP , Mizuno M , Moestl D , Nakai S , Noback M , Noone D , O'Reilly M , Ogawa K , Ogiwara A , Oudega B , Park SH , Parro V , Pohl TM , Portelle D , Porwollik S , Prescott AM , Presecan E , Pujic P , Purnelle B , Rapoport G , Rey M , Reynolds S , Rieger M , Rivolta C , Rocha E , Roche B , Rose M , Sadaie Y , Sato T , Scanlan E , Schleich S , Schroeter R , Scoffone F , Sekiguchi J , Sekowska A , Seror SJ , Serror P , Shin BS , Soldo B , Sorokin A , Tacconi E , Takagi T , Takahashi H , Takemaru K , Takeuchi M , Tamakoshi A , Tanaka T , Terpstra P , Togoni A , Tosato V , Uchiyama S , Vandebol M , Vannier F , Vassarotti A , Viari A , Wambutt R , Wedler H , Weitzenegger T , Winters P , Wipat A , Yamamoto H , Yamane K , Yasumoto K , Yata K , Yoshida K , Yoshikawa HF , Zumstein E , Yoshikawa H , Danchin A
Ref : Nature , 390 :249 , 1997
Abstract : Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
ESTHER : Kunst_1997_Nature_390_249
PubMedSearch : Kunst_1997_Nature_390_249
PubMedID: 9384377
Gene_locus related to this paper: bacsu-CAH , bacsu-cbxnp , bacsu-lip , bacsu-LIPB , bacsu-PKSR , bacsu-pnbae , bacsu-PPSE , bacsu-srf4 , bacsu-srfac , bacsu-YBAC , bacsu-YBDG , bacsu-ybfk , bacsu-ycgS , bacsu-yczh , bacsu-YDEN , bacsu-ydjp , bacsu-yfhM , bacsu-yisY , bacsu-YITV , bacsu-yjau , bacsu-YJCH , bacsu-MHQD , bacsu-yqjl , bacsu-yqkd , bacsu-YRAK , bacsu-YTAP , bacsu-YTMA , bacsu-YTPA , bacsu-ytxm , bacsu-yugF , bacsu-YUII , bacsu-YUKL , bacsu-YVAK , bacsu-YvaM , bacsu-RsbQ

Title : Sequence analysis of the groESL-cotA region of the Bacillus subtilis genome, containing the restriction\/modification system genes - Kasahara_1997_DNA.Res_4_335
Author(s) : Kasahara Y , Nakai S , Ogasawara N , Yata K , Sadaie Y
Ref : DNA Research , 4 :335 , 1997
Abstract : We have determined a 35-kb sequence of the groESL-gutR-cotA (45 degrees-52 degrees) region of the Bacillus subtilis genome. In addition to the groESL, gutRB and cotA genes reported previously, we have newly identified 24 ORFs including gutA and fruC genes, encoding glucitol permease and fructokinase, respectively. The inherent restriction/modification system genes, hsdMR and hsdMM, were mapped between groESL and gutRB, and we have identified two open reading frames (ORFs) encoding 5-methylcytosine forming DNA methyl transferase and an operon probably encoding a restriction enzyme complex. The unusual genome structure of few ORFs and lower GC content around the restriction/modification genes strongly suggests that the region originated from a bacteriophage integrated during evolution.
ESTHER : Kasahara_1997_DNA.Res_4_335
PubMedSearch : Kasahara_1997_DNA.Res_4_335
PubMedID: 9455482
Gene_locus related to this paper: bacsu-ydjp

Title : Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. -
Author(s) : Ogasawara N , Nakai S , Yoshikawa H
Ref : DNA Research , 1 :1 , 1994
PubMedID: 7584024