Kunst F

References (6)

Title : From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later - Barbe_2009_Microbiology_155_1758
Author(s) : Barbe V , Cruveiller S , Kunst F , Lenoble P , Meurice G , Sekowska A , Vallenet D , Wang T , Moszer I , Medigue C , Danchin A
Ref : Microbiology , 155 :1758 , 2009
Abstract : Comparative genomics is the cornerstone of identification of gene functions. The immense number of living organisms precludes experimental identification of functions except in a handful of model organisms. The bacterial domain is split into large branches, among which the Firmicutes occupy a considerable space. Bacillus subtilis has been the model of Firmicutes for decades and its genome has been a reference for more than 10 years. Sequencing the genome involved more than 30 laboratories, with different expertises, in a attempt to make the most of the experimental information that could be associated with the sequence. This had the expected drawback that the sequencing expertise was quite varied among the groups involved, especially at a time when sequencing genomes was extremely hard work. The recent development of very efficient, fast and accurate sequencing techniques, in parallel with the development of high-level annotation platforms, motivated the present resequencing work. The updated sequence has been reannotated in agreement with the UniProt protein knowledge base, keeping in perspective the split between the paleome (genes necessary for sustaining and perpetuating life) and the cenome (genes required for occupation of a niche, suggesting here that B. subtilis is an epiphyte). This should permit investigators to make reliable inferences to prepare validation experiments in a variety of domains of bacterial growth and development as well as build up accurate phylogenies.
ESTHER : Barbe_2009_Microbiology_155_1758
PubMedSearch : Barbe_2009_Microbiology_155_1758
PubMedID: 19383706

Title : Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity - Cazalet_2004_Nat.Genet_36_1165
Author(s) : Cazalet C , Rusniok C , Bruggemann H , Zidane N , Magnier A , Ma L , Tichit M , Jarraud S , Bouchier C , Vandenesch F , Kunst F , Etienne J , Glaser P , Buchrieser C
Ref : Nat Genet , 36 :1165 , 2004
Abstract : Legionella pneumophila, the causative agent of Legionnaires' disease, replicates as an intracellular parasite of amoebae and persists in the environment as a free-living microbe. Here we have analyzed the complete genome sequences of L. pneumophila Paris (3,503,610 bp, 3,077 genes), an endemic strain that is predominant in France, and Lens (3,345,687 bp, 2,932 genes), an epidemic strain responsible for a major outbreak of disease in France. The L. pneumophila genomes show marked plasticity, with three different plasmids and with about 13% of the sequence differing between the two strains. Only strain Paris contains a type V secretion system, and its Lvh type IV secretion system is encoded by a 36-kb region that is either carried on a multicopy plasmid or integrated into the chromosome. Genetic mobility may enhance the versatility of L. pneumophila. Numerous genes encode eukaryotic-like proteins or motifs that are predicted to modulate host cell functions to the pathogen's advantage. The genome thus reflects the history and lifestyle of L. pneumophila, a human pathogen of macrophages that coevolved with fresh-water amoebae.
ESTHER : Cazalet_2004_Nat.Genet_36_1165
PubMedSearch : Cazalet_2004_Nat.Genet_36_1165
PubMedID: 15467720
Gene_locus related to this paper: legph-q5zsu4 , legpa-q5ws33 , legpa-q5ws59 , legpa-q5ws67 , legpa-q5ws68 , legpa-q5x2c0 , legpa-q5x2r4 , legpa-q5x2s1 , legpa-q5x3a5 , legpa-q5x3d6 , legpa-q5x3j6 , legpa-q5x4r4 , legpa-q5x4t1 , legpa-q5x5b2 , legpa-q5x5z2 , legpa-q5x7f5 , legpa-q5x8e6 , legpa-q5x8m4 , legpa-q5x322 , legpa-q5x405 , legpa-q5x424 , legpa-q5x473 , legpa-q5x590 , legpa-q5x611 , legpa-q5x819 , legpc-a5iar0 , legph-q5zv00 , legph-q5zwi2 , legpl-q5wtd3 , legpl-q5wua5 , legpl-q5wur2 , legpl-q5wvw9 , legpn-Q8KU34 , legpn-Q8RNQ1 , legpn-SBPA , legpn-i7i328 , legpl-q5wsw9

Title : The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens - Duchaud_2003_Nat.Biotechnol_21_1307
Author(s) : Duchaud E , Rusniok C , Frangeul L , Buchrieser C , Givaudan A , Taourit S , Bocs S , Boursaux-Eude C , Chandler M , Charles JF , Dassa E , Derose R , Derzelle S , Freyssinet G , Gaudriault S , Medigue C , Lanois A , Powell K , Siguier P , Vincent R , Wingate V , Zouine M , Glaser P , Boemare N , Danchin A , Kunst F
Ref : Nat Biotechnol , 21 :1307 , 2003
Abstract : Photorhabdus luminescens is a symbiont of nematodes and a broad-spectrum insect pathogen. The complete genome sequence of strain TT01 is 5,688,987 base pairs (bp) long and contains 4,839 predicted protein-coding genes. Strikingly, it encodes a large number of adhesins, toxins, hemolysins, proteases and lipases, and contains a wide array of antibiotic synthesizing genes. These proteins are likely to play a role in the elimination of competitors, host colonization, invasion and bioconversion of the insect cadaver, making P. luminescens a promising model for the study of symbiosis and host-pathogen interactions. Comparison with the genomes of related bacteria reveals the acquisition of virulence factors by extensive horizontal transfer and provides clues about the evolution of an insect pathogen. Moreover, newly identified insecticidal proteins may be effective alternatives for the control of insect pests.
ESTHER : Duchaud_2003_Nat.Biotechnol_21_1307
PubMedSearch : Duchaud_2003_Nat.Biotechnol_21_1307
PubMedID: 14528314
Gene_locus related to this paper: pholl-q7maz3 , pholl-q7mb82 , pholl-q7mza3 , pholl-q7mzf6 , pholl-q7n0d9 , pholl-q7n2c6 , pholl-q7n2f0 , pholl-q7n2f7 , pholl-q7n2k4 , pholl-q7n3k0 , pholl-q7n3p5 , pholl-q7n3s1 , pholl-q7n4k8 , pholl-q7n4l0 , pholl-q7n4l7 , pholl-q7n4q6 , pholl-q7n4x6 , pholl-q7n5r3 , pholl-q7n6m7 , pholl-q7n6m8 , pholl-q7n6m9 , pholl-q7n6n0 , pholl-q7n7d3 , pholl-q7n8a5 , pholl-q7n132 , pholl-q7n239 , pholl-q7n246 , pholl-q7n258 , pholl-y1242 , pholu-BIOH , pholu-LUXD2 , pholu-PIP , pholu-PLDB , pholu-PLU0113 , pholu-PLU0399 , pholu-PLU1261 , pholu-PLU1531 , pholu-PLU1532 , pholu-PLU2160 , pholu-PLU2202 , pholu-PLU2437 , pholu-PLU3206

Title : Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease - Glaser_2002_Mol.Microbiol_45_1499
Author(s) : Glaser P , Rusniok C , Buchrieser C , Chevalier F , Frangeul L , Msadek T , Zouine M , Couve E , Lalioui L , Poyart C , Trieu-Cuot P , Kunst F
Ref : Molecular Microbiology , 45 :1499 , 2002
Abstract : Streptococcus agalactiae is a commensal bacterium colonizing the intestinal tract of a significant proportion of the human population. However, it is also a pathogen which is the leading cause of invasive infections in neonates and causes septicaemia, meningitis and pneumonia. We sequenced the genome of the serogroup III strain NEM316, responsible for a fatal case of septicaemia. The genome is 2 211 485 base pairs long and contains 2118 protein coding genes. Fifty-five per cent of the predicted genes have an ortholog in the Streptococcus pyogenes genome, representing a conserved backbone between these two streptococci. Among the genes in S. agalactiae that lack an ortholog in S. pyogenes, 50% are clustered within 14 islands. These islands contain known and putative virulence genes, mostly encoding surface proteins as well as a number of genes related to mobile elements. Some of these islands could therefore be considered as pathogenicity islands. Compared with other pathogenic streptococci, S. agalactiae shows the unique feature that pathogenicity islands may have an important role in virulence acquisition and in genetic diversity.
ESTHER : Glaser_2002_Mol.Microbiol_45_1499
PubMedSearch : Glaser_2002_Mol.Microbiol_45_1499
PubMedID: 12354221
Gene_locus related to this paper: strag-ESTA , strag-GBS0040 , strag-GBS0107 , strag-GBS0567 , strag-GBS1828 , strag-GBS1967 , strag-pepx , strag-SAG0383 , strag-SAG0785 , strag-SAG0912 , strag-SAG1040 , strag-SAG1562 , strag-SAG2132

Title : Comparative genomics of Listeria species - Glaser_2001_Science_294_849
Author(s) : Glaser P , Frangeul L , Buchrieser C , Rusniok C , Amend A , Baquero F , Berche P , Bloecker H , Brandt P , Chakraborty T , Charbit A , Chetouani F , Couve E , de Daruvar A , Dehoux P , Domann E , Dominguez-Bernal G , Duchaud E , Durant L , Dussurget O , Entian KD , Fsihi H , Portillo FG , Garrido P , Gautier L , Goebel W , Gomez-Lopez N , Hain T , Hauf J , Jackson D , Jones LM , Kaerst U , Kreft J , Kuhn M , Kunst F , Kurapkat G , Madueno E , Maitournam A , Vicente JM , Ng E , Nedjari H , Nordsiek G , Novella S , de Pablos B , Perez-Diaz JC , Purcell R , Remmel B , Rose M , Schlueter T , Simoes N , Tierrez A , Vazquez-Boland JA , Voss H , Wehland J , Cossart P
Ref : Science , 294 :849 , 2001
Abstract : Listeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and secreted proteins, transporters, and transcriptional regulators, consistent with the ability of both species to adapt to diverse environments. The presence of 270 L. monocytogenes and 149 L. innocua strain-specific genes (clustered in 100 and 63 islets, respectively) suggests that virulence in Listeria results from multiple gene acquisition and deletion events.
ESTHER : Glaser_2001_Science_294_849
PubMedSearch : Glaser_2001_Science_294_849
PubMedID: 11679669
Gene_locus related to this paper: lisin-LIN0589 , lisin-LIN0754 , lisin-LIN0850 , lisin-LIN0949 , lisin-LIN0950 , lisin-LIN0976 , lisin-LIN1094 , lisin-LIN1546 , lisin-LIN1782 , lisin-LIN2180 , lisin-LIN2214 , lisin-LIN2363 , lisin-LIN2527 , lisin-LIN2544 , lisin-LIN2547 , lisin-LIN2722 , lisin-LIN2825 , lisin-LIN2898 , lismc-c1l0d9 , lismo-LMO0110 , lismo-LMO0493 , lismo-LMO0580 , lismo-LMO0752 , lismo-LMO0760 , lismo-LMO0857 , lismo-LMO0950 , lismo-LMO0951 , lismo-LMO0977 , lismo-LMO1128 , lismo-LMO1258 , lismo-LMO1511 , lismo-LMO1674 , lismo-LMO2074 , lismo-LMO2089 , lismo-LMO2109 , lismo-LMO2262 , lismo-LMO2433 , lismo-LMO2450 , lismo-LMO2452 , lismo-LMO2453 , lismo-LMO2578 , lismo-LMO2677 , lismo-LMO2755 , lismo-metx

Title : The complete genome sequence of the gram-positive bacterium Bacillus subtilis - Kunst_1997_Nature_390_249
Author(s) : Kunst F , Ogasawara N , Moszer I , Albertini AM , Alloni G , Azevedo V , Bertero MG , Bessieres P , Bolotin A , Borchert S , Borriss R , Boursier L , Brans A , Braun M , Brignell SC , Bron S , Brouillet S , Bruschi CV , Caldwell B , Capuano V , Carter NM , Choi SK , Cordani JJ , Connerton IF , Cummings NJ , Daniel RA , Denziot F , Devine KM , Dusterhoft A , Ehrlich SD , Emmerson PT , Entian KD , Errington J , Fabret C , Ferrari E , Foulger D , Fritz C , Fujita M , Fujita Y , Fuma S , Galizzi A , Galleron N , Ghim SY , Glaser P , Goffeau A , Golightly EJ , Grandi G , Guiseppi G , Guy BJ , Haga K , Haiech J , Harwood CR , Henaut A , Hilbert H , Holsappel S , Hosono S , Hullo MF , Itaya M , Jones L , Joris B , Karamata D , Kasahara Y , Klaerr-Blanchard M , Klein C , Kobayashi Y , Koetter P , Koningstein G , Krogh S , Kumano M , Kurita K , Lapidus A , Lardinois S , Lauber J , Lazarevic V , Lee SM , Levine A , Liu H , Masuda S , Mauel C , Medigue C , Medina N , Mellado RP , Mizuno M , Moestl D , Nakai S , Noback M , Noone D , O'Reilly M , Ogawa K , Ogiwara A , Oudega B , Park SH , Parro V , Pohl TM , Portelle D , Porwollik S , Prescott AM , Presecan E , Pujic P , Purnelle B , Rapoport G , Rey M , Reynolds S , Rieger M , Rivolta C , Rocha E , Roche B , Rose M , Sadaie Y , Sato T , Scanlan E , Schleich S , Schroeter R , Scoffone F , Sekiguchi J , Sekowska A , Seror SJ , Serror P , Shin BS , Soldo B , Sorokin A , Tacconi E , Takagi T , Takahashi H , Takemaru K , Takeuchi M , Tamakoshi A , Tanaka T , Terpstra P , Togoni A , Tosato V , Uchiyama S , Vandebol M , Vannier F , Vassarotti A , Viari A , Wambutt R , Wedler H , Weitzenegger T , Winters P , Wipat A , Yamamoto H , Yamane K , Yasumoto K , Yata K , Yoshida K , Yoshikawa HF , Zumstein E , Yoshikawa H , Danchin A
Ref : Nature , 390 :249 , 1997
Abstract : Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
ESTHER : Kunst_1997_Nature_390_249
PubMedSearch : Kunst_1997_Nature_390_249
PubMedID: 9384377
Gene_locus related to this paper: bacsu-CAH , bacsu-cbxnp , bacsu-lip , bacsu-LIPB , bacsu-PKSR , bacsu-pnbae , bacsu-PPSE , bacsu-srf4 , bacsu-srfac , bacsu-YBAC , bacsu-YBDG , bacsu-ybfk , bacsu-ycgS , bacsu-yczh , bacsu-YDEN , bacsu-ydjp , bacsu-yfhM , bacsu-yisY , bacsu-YITV , bacsu-yjau , bacsu-YJCH , bacsu-MHQD , bacsu-yqjl , bacsu-yqkd , bacsu-YRAK , bacsu-YTAP , bacsu-YTMA , bacsu-YTPA , bacsu-ytxm , bacsu-yugF , bacsu-YUII , bacsu-YUKL , bacsu-YVAK , bacsu-YvaM , bacsu-RsbQ