Jones L

References (8)

Title : Suspected adverse drug reactions of the type 2 antidiabetic drug class dipeptidyl-peptidase IV inhibitors (DPP4i): Can polypharmacology help explain? - Jones_2022_Pharmacol.Res.Perspect_10_e01029
Author(s) : Jones L , Jones AM
Ref : Pharmacol Res Perspect , 10 :e01029 , 2022
Abstract : To interpret the relationship between the polypharmacology of dipeptidyl-peptidase IV inhibitors (DPP4i) and their suspected adverse drug reaction (ADR) profiles using a national registry. A retrospective investigation into the suspected ADR profile of four licensed DPP4i in the United Kingdom using the National MHRA Yellow Card Scheme and OpenPrescribing databases. Experimental data from the ChEMBL database alongside physiochemical (PC) and pharmacokinetic (PK) profiles were extracted and interpreted. DPP4i show limited polypharmacology alongside low suspected ADR rates. We found a minimal statistical difference between the unique ADR profiles ascribed to the DPP4i except for total ADRs ((2) ; ps< .05). Alogliptin consistently showed the highest suspected ADR rate per 1 000 000 items prescribed. Saxagliptin showed the lowest suspected ADR rate across all organ classes but did not reach statistical difference ((2) ; ps> .05). We confirmed the Phase III clinical trial data that showed gastrointestinal and skin reactions are the most reported ADRs across the DPP4i class and postulated underlying mechanisms for this based on possible drug interactions. The main pharmacological mechanism behind the ADRs is attributed to interactions with DPP4 activity and/or structure homolog (DASH) proteins which augment the immune-inflammatory modulation of DPP4.
ESTHER : Jones_2022_Pharmacol.Res.Perspect_10_e01029
PubMedSearch : Jones_2022_Pharmacol.Res.Perspect_10_e01029
PubMedID: 36468400

Title : Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator - Jones_2014_BMC.Genomics_15_1081
Author(s) : Jones L , Riaz S , Morales-Cruz A , Amrine KC , McGuire B , Gubler WD , Walker MA , Cantu D
Ref : BMC Genomics , 15 :1081 , 2014
Abstract : BACKGROUND: Powdery mildew, caused by the obligate biotrophic fungus Erysiphe necator, is an economically important disease of grapevines worldwide. Large quantities of fungicides are used for its control, accelerating the incidence of fungicide-resistance. Copy number variations (CNVs) are unbalanced changes in the structure of the genome that have been associated with complex traits. In addition to providing the first description of the large and highly repetitive genome of E. necator, this study describes the impact of genomic structural variation on fungicide resistance in Erysiphe necator.
RESULTS: A shotgun approach was applied to sequence and assemble the genome of five E. necator isolates, and RNA-seq and comparative genomics were used to predict and annotate protein-coding genes. Our results show that the E. necator genome is exceptionally large and repetitive and suggest that transposable elements are responsible for genome expansion. Frequent structural variations were found between isolates and included copy number variation in EnCYP51, the target of the commonly used sterol demethylase inhibitor (DMI) fungicides. A panel of 89 additional E. necator isolates collected from diverse vineyard sites was screened for copy number variation in the EnCYP51 gene and for presence/absence of a point mutation (Y136F) known to result in higher fungicide tolerance. We show that an increase in EnCYP51 copy number is significantly more likely to be detected in isolates collected from fungicide-treated vineyards. Increased EnCYP51 copy numbers were detected with the Y136F allele, suggesting that an increase in copy number becomes advantageous only after the fungicide-tolerant allele is acquired. We also show that EnCYP51 copy number influences expression in a gene-dose dependent manner and correlates with fungal growth in the presence of a DMI fungicide.
CONCLUSIONS: Taken together our results show that CNV can be adaptive in the development of resistance to fungicides by providing increasing quantitative protection in a gene-dosage dependent manner. The results of this work not only demonstrate the effectiveness of using genomics to dissect complex traits in organisms with very limited molecular information, but also may have broader implications for understanding genomic dynamics in response to strong selective pressure in other pathogens with similar genome architectures.
ESTHER : Jones_2014_BMC.Genomics_15_1081
PubMedSearch : Jones_2014_BMC.Genomics_15_1081
PubMedID: 25487071
Gene_locus related to this paper: uncne-a0a0b1p2d9 , uncne-a0a0b1p3w4 , uncne-a0a0b1p5k9 , uncne-a0a0b1p6l7 , uncne-a0a0b1paa3 , uncne-a0a0b1paq1 , uncne-a0a0b1pdn4 , uncne-a0a0b1pfi7 , uncne-a0a0b1nw37 , uncne-a0a0b1p8b8

Title : Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups - Bialek-Davenet_2014_Emerg.Infect.Dis_20_1812
Author(s) : Bialek-Davenet S , Criscuolo A , Ailloud F , Passet V , Jones L , Delannoy-Vieillard AS , Garin B , Le Hello S , Arlet G , Nicolas-Chanoine MH , Decre D , Brisse S
Ref : Emerg Infect Dis , 20 :1812 , 2014
Abstract : Multidrug-resistant and highly virulent Klebsiella pneumoniae isolates are emerging, but the clonal groups (CGs) corresponding to these high-risk strains have remained imprecisely defined. We aimed to identify K. pneumoniae CGs on the basis of genome-wide sequence variation and to provide a simple bioinformatics tool to extract virulence and resistance gene data from genomic data. We sequenced 48 K. pneumoniae isolates, mostly of serotypes K1 and K2, and compared the genomes with 119 publicly available genomes. A total of 694 highly conserved genes were included in a core-genome multilocus sequence typing scheme, and cluster analysis of the data enabled precise definition of globally distributed hypervirulent and multidrug-resistant CGs. In addition, we created a freely accessible database, BIGSdb-Kp, to enable rapid extraction of medically and epidemiologically relevant information from genomic sequences of K. pneumoniae. Although drug-resistant and virulent K. pneumoniae populations were largely nonoverlapping, isolates with combined virulence and resistance features were detected.
ESTHER : Bialek-Davenet_2014_Emerg.Infect.Dis_20_1812
PubMedSearch : Bialek-Davenet_2014_Emerg.Infect.Dis_20_1812
PubMedID: 25341126
Gene_locus related to this paper: klep7-a6t799

Title : Genome-wide association study of major recurrent depression in the U.K. population - Lewis_2010_Am.J.Psychiatry_167_949
Author(s) : Lewis CM , Ng MY , Butler AW , Cohen-Woods S , Uher R , Pirlo K , Weale ME , Schosser A , Paredes UM , Rivera M , Craddock N , Owen MJ , Jones L , Jones I , Korszun A , Aitchison KJ , Shi J , Quinn JP , Mackenzie A , Vollenweider P , Waeber G , Heath S , Lathrop M , Muglia P , Barnes MR , Whittaker JC , Tozzi F , Holsboer F , Preisig M , Farmer AE , Breen G , Craig IW , McGuffin P
Ref : Am J Psychiatry , 167 :949 , 2010
Abstract : OBJECTIVE: Studies of major depression in twins and families have shown moderate to high heritability, but extensive molecular studies have failed to identify susceptibility genes convincingly. To detect genetic variants contributing to major depression, the authors performed a genome-wide association study using 1,636 cases of depression ascertained in the U.K. and 1,594 comparison subjects screened negative for psychiatric disorders. METHOD: Cases were collected from 1) a case-control study of recurrent depression (the Depression Case Control [DeCC] study; N=1346), 2) an affected sibling pair linkage study of recurrent depression (probands from the Depression Network [DeNT] study; N=332), and 3) a pharmacogenetic study (the Genome-Based Therapeutic Drugs for Depression [GENDEP] study; N=88). Depression cases and comparison subjects were genotyped at Centre National de Genotypage on the Illumina Human610-Quad BeadChip. After applying stringent quality control criteria for missing genotypes, departure from Hardy-Weinberg equilibrium, and low minor allele frequency, the authors tested for association to depression using logistic regression, correcting for population ancestry. RESULTS: Single nucleotide polymorphisms (SNPs) in BICC1 achieved suggestive evidence for association, which strengthened after imputation of ungenotyped markers, and in analysis of female depression cases. A meta-analysis of U.K. data with previously published results from studies in Munich and Lausanne showed some evidence for association near neuroligin 1 (NLGN1) on chromosome 3, but did not support findings at BICC1. CONCLUSIONS: This study identifies several signals for association worthy of further investigation but, as in previous genome-wide studies, suggests that individual gene contributions to depression are likely to have only minor effects, and very large pooled analyses will be required to identify them.
ESTHER : Lewis_2010_Am.J.Psychiatry_167_949
PubMedSearch : Lewis_2010_Am.J.Psychiatry_167_949
PubMedID: 20516156

Title : A single nucleotide polymorphism in CHAT influences response to acetylcholinesterase inhibitors in Alzheimer's disease - Harold_2006_Pharmacogenet.Genomics_16_75
Author(s) : Harold D , Macgregor S , Patterson CE , Hollingworth P , Moore P , Owen MJ , Williams J , O'Donovan M , Passmore P , McIlroy S , Jones L
Ref : Pharmacogenet Genomics , 16 :75 , 2006
Abstract : BACKGROUND: Alzheimer's disease (AD) is a devastating neurodegeneration with a characteristic deficit in cholinergic neurotransmission. Treatment with acetylcholinesterase (AChE) inhibitors aims to reverse this deficit and does ameliorate the decline in cognition in some AD patients, although response is variable. OBJECTIVE: To examine whether sequence variation in the gene encoding choline acetyltransferase (CHAT), which encodes the major catalytic enzyme of the cholinergic pathway, predicts response to AChE inhibitors.
METHODS: Alzheimer's disease patients (121) were treated with cholinesterase inhibitors and the effect of treatment on cognition was measured using the Mini Mental State Examination (MMSE). Six polymorphisms in CHAT were analysed for association with change in MMSE score.
RESULTS: After correction for multiple testing, we found one SNP, rs733722, in a promoter region of CHAT, is associated with response of AD patients to cholinesterase inhibitors (P = 0.03) and accounts for 6% of the variance in response to AChE inhibitors. CONCLUSION: Rs733722 represents a putative marker of response to AChE inhibitors in AD patients.
ESTHER : Harold_2006_Pharmacogenet.Genomics_16_75
PubMedSearch : Harold_2006_Pharmacogenet.Genomics_16_75
PubMedID: 16424819

Title : The genome sequence of Schizosaccharomyces pombe - Wood_2002_Nature_415_871
Author(s) : Wood V , Gwilliam R , Rajandream MA , Lyne M , Lyne R , Stewart A , Sgouros J , Peat N , Hayles J , Baker S , Basham D , Bowman S , Brooks K , Brown D , Brown S , Chillingworth T , Churcher C , Collins M , Connor R , Cronin A , Davis P , Feltwell T , Fraser A , Gentles S , Goble A , Hamlin N , Harris D , Hidalgo J , Hodgson G , Holroyd S , Hornsby T , Howarth S , Huckle EJ , Hunt S , Jagels K , James K , Jones L , Jones M , Leather S , McDonald S , McLean J , Mooney P , Moule S , Mungall K , Murphy L , Niblett D , Odell C , Oliver K , O'Neil S , Pearson D , Quail MA , Rabbinowitsch E , Rutherford K , Rutter S , Saunders D , Seeger K , Sharp S , Skelton J , Simmonds M , Squares R , Squares S , Stevens K , Taylor K , Taylor RG , Tivey A , Walsh S , Warren T , Whitehead S , Woodward J , Volckaert G , Aert R , Robben J , Grymonprez B , Weltjens I , Vanstreels E , Rieger M , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Dusterhoft A , Fritzc C , Holzer E , Moestl D , Hilbert H , Borzym K , Langer I , Beck A , Lehrach H , Reinhardt R , Pohl TM , Eger P , Zimmermann W , Wedler H , Wambutt R , Purnelle B , Goffeau A , Cadieu E , Dreano S , Gloux S , Lelaure V , Mottier S , Galibert F , Aves SJ , Xiang Z , Hunt C , Moore K , Hurst SM , Lucas M , Rochet M , Gaillardin C , Tallada VA , Garzon A , Thode G , Daga RR , Cruzado L , Jimenez J , Sanchez M , del Rey F , Benito J , Dominguez A , Revuelta JL , Moreno S , Armstrong J , Forsburg SL , Cerutti L , Lowe T , McCombie WR , Paulsen I , Potashkin J , Shpakovski GV , Ussery D , Barrell BG , Nurse P
Ref : Nature , 415 :871 , 2002
Abstract : We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.
ESTHER : Wood_2002_Nature_415_871
PubMedSearch : Wood_2002_Nature_415_871
PubMedID: 11859360
Gene_locus related to this paper: schpo-APTH1 , schpo-be46 , schpo-BST1 , schpo-C2E11.08 , schpo-C14C4.15C , schpo-C22H12.03 , schpo-C23C4.16C , schpo-C57A10.08C , schpo-dyr , schpo-este1 , schpo-KEX1 , schpo-PCY1 , schpo-pdat , schpo-PLG7 , schpo-ppme1 , schpo-q9c0y8 , schpo-SPAC4A8.06C , schpo-C22A12.06C , schpo-SPAC977.15 , schpo-SPAPB1A11.02 , schpo-SPBC14C8.15 , schpo-SPBC530.12C , schpo-SPBC1711.12 , schpo-SPBPB2B2.02 , schpo-SPCC5E4.05C , schpo-SPCC417.12 , schpo-SPCC1672.09 , schpo-yb4e , schpo-yblh , schpo-ydw6 , schpo-ye7a , schpo-ye63 , schpo-ye88 , schpo-yeld , schpo-yk68 , schpo-clr3 , schpo-ykv6

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome IV - Jacq_1997_Nature_387_75
Author(s) : Jacq C , Alt-Morbe J , Andre B , Arnold W , Bahr A , Ballesta JP , Bargues M , Baron L , Becker A , Biteau N , Blocker H , Blugeon C , Boskovic J , Brandt P , Bruckner M , Buitrago MJ , Coster F , Delaveau T , del Rey F , Dujon B , Eide LG , Garcia-Cantalejo JM , Goffeau A , Gomez-Peris AC , Granotier C , Hanemann V , Hankeln T , Hoheisel JD , Jager W , Jimenez A , Jonniaux JL , Kramer C , Kuster H , Laamanen P , Legros Y , Louis E , Muller-Rieker S , Monnet A , Moro M , Muller-Auer S , Nussbaumer B , Paricio N , Paulin L , Perea J , Perez-Alonso M , Perez-Ortin JE , Pohl TM , Prydz H , Purnelle B , Rasmussen SW , Remacha M , Revuelta JL , Rieger M , Salom D , Saluz HP , Saiz JE , Saren AM , Schafer M , Scharfe M , Schmidt ER , Schneider C , Scholler P , Schwarz S , Soler-Mira A , Urrestarazu LA , Verhasselt P , Vissers S , Voet M , Volckaert G , Wagner G , Wambutt R , Wedler E , Wedler H , Wolfl S , Harris DE , Bowman S , Brown D , Churcher CM , Connor R , Dedman K , Gentles S , Hamlin N , Hunt S , Jones L , McDonald S , Murphy L , Niblett D , Odell C , Oliver K , Rajandream MA , Richards C , Shore L , Walsh SV , Barrell BG , Dietrich FS , Mulligan J , Allen E , Araujo R , Aviles E , Berno A , Carpenter J , Chen E , Cherry JM , Chung E , Duncan M , Hunicke-Smith S , Hyman R , Komp C , Lashkari D , Lew H , Lin D , Mosedale D , Nakahara K , Namath A , Oefner P , Oh C , Petel FX , Roberts D , Schramm S , Schroeder M , Shogren T , Shroff N , Winant A , Yelton M , Botstein D , Davis RW , Johnston M , Hillier L , Riles L , Albermann K , Hani J , Heumann K , Kleine K , Mewes HW , Zollner A , Zaccaria P
Ref : Nature , 387 :75 , 1997
Abstract : The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome IV has been determined. Apart from chromosome XII, which contains the 1-2 Mb rDNA cluster, chromosome IV is the longest S. cerevisiae chromosome. It was split into three parts, which were sequenced by a consortium from the European Community, the Sanger Centre, and groups from St Louis and Stanford in the United States. The sequence of 1,531,974 base pairs contains 796 predicted or known genes, 318 (39.9%) of which have been previously identified. Of the 478 new genes, 225 (28.3%) are homologous to previously identified genes and 253 (32%) have unknown functions or correspond to spurious open reading frames (ORFs). On average there is one gene approximately every two kilobases. Superimposed on alternating regional variations in G+C composition, there is a large central domain with a lower G+C content that contains all the yeast transposon (Ty) elements and most of the tRNA genes. Chromosome IV shares with chromosomes II, V, XII, XIII and XV some long clustered duplications which partly explain its origin.
ESTHER : Jacq_1997_Nature_387_75
PubMedSearch : Jacq_1997_Nature_387_75
PubMedID: 9169867
Gene_locus related to this paper: yeast-dlhh , yeast-ECM18 , yeast-YDL109C , yeast-YDR428C , yeast-YDR444W

Title : The complete genome sequence of the gram-positive bacterium Bacillus subtilis - Kunst_1997_Nature_390_249
Author(s) : Kunst F , Ogasawara N , Moszer I , Albertini AM , Alloni G , Azevedo V , Bertero MG , Bessieres P , Bolotin A , Borchert S , Borriss R , Boursier L , Brans A , Braun M , Brignell SC , Bron S , Brouillet S , Bruschi CV , Caldwell B , Capuano V , Carter NM , Choi SK , Cordani JJ , Connerton IF , Cummings NJ , Daniel RA , Denziot F , Devine KM , Dusterhoft A , Ehrlich SD , Emmerson PT , Entian KD , Errington J , Fabret C , Ferrari E , Foulger D , Fritz C , Fujita M , Fujita Y , Fuma S , Galizzi A , Galleron N , Ghim SY , Glaser P , Goffeau A , Golightly EJ , Grandi G , Guiseppi G , Guy BJ , Haga K , Haiech J , Harwood CR , Henaut A , Hilbert H , Holsappel S , Hosono S , Hullo MF , Itaya M , Jones L , Joris B , Karamata D , Kasahara Y , Klaerr-Blanchard M , Klein C , Kobayashi Y , Koetter P , Koningstein G , Krogh S , Kumano M , Kurita K , Lapidus A , Lardinois S , Lauber J , Lazarevic V , Lee SM , Levine A , Liu H , Masuda S , Mauel C , Medigue C , Medina N , Mellado RP , Mizuno M , Moestl D , Nakai S , Noback M , Noone D , O'Reilly M , Ogawa K , Ogiwara A , Oudega B , Park SH , Parro V , Pohl TM , Portelle D , Porwollik S , Prescott AM , Presecan E , Pujic P , Purnelle B , Rapoport G , Rey M , Reynolds S , Rieger M , Rivolta C , Rocha E , Roche B , Rose M , Sadaie Y , Sato T , Scanlan E , Schleich S , Schroeter R , Scoffone F , Sekiguchi J , Sekowska A , Seror SJ , Serror P , Shin BS , Soldo B , Sorokin A , Tacconi E , Takagi T , Takahashi H , Takemaru K , Takeuchi M , Tamakoshi A , Tanaka T , Terpstra P , Togoni A , Tosato V , Uchiyama S , Vandebol M , Vannier F , Vassarotti A , Viari A , Wambutt R , Wedler H , Weitzenegger T , Winters P , Wipat A , Yamamoto H , Yamane K , Yasumoto K , Yata K , Yoshida K , Yoshikawa HF , Zumstein E , Yoshikawa H , Danchin A
Ref : Nature , 390 :249 , 1997
Abstract : Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
ESTHER : Kunst_1997_Nature_390_249
PubMedSearch : Kunst_1997_Nature_390_249
PubMedID: 9384377
Gene_locus related to this paper: bacsu-CAH , bacsu-cbxnp , bacsu-lip , bacsu-LIPB , bacsu-PKSR , bacsu-pnbae , bacsu-PPSE , bacsu-srf4 , bacsu-srfac , bacsu-YBAC , bacsu-YBDG , bacsu-ybfk , bacsu-ycgS , bacsu-yczh , bacsu-YDEN , bacsu-ydjp , bacsu-yfhM , bacsu-yisY , bacsu-YITV , bacsu-yjau , bacsu-YJCH , bacsu-MHQD , bacsu-yqjl , bacsu-yqkd , bacsu-YRAK , bacsu-YTAP , bacsu-YTMA , bacsu-YTPA , bacsu-ytxm , bacsu-yugF , bacsu-YUII , bacsu-YUKL , bacsu-YVAK , bacsu-YvaM , bacsu-RsbQ