(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Fungi: NE > Dikarya: NE > Ascomycota: NE > saccharomyceta: NE > Pezizomycotina: NE > leotiomyceta: NE > Eurotiomycetes: NE > Eurotiomycetidae: NE > Eurotiales: NE > Aspergillaceae: NE > Aspergillus: NE > Aspergillus fumigatus: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Aspergillus fumigatus Af293: N, E.
Aspergillus fumigatus A1163: N, E.
Molecular evidence
Database
No mutation 1 structure: 6IDY: Crystal structure of Aspergillus fumigatus lipase B No kinetic
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MRWSSLLKAAVLYRAILSPLVSGAVIPRGAVPVASDLSLVSILSSAANDS SIESEARSIASLIASEIVSKIGKTEFSRSTKDAKSVQEAFDKIQSIFADG TPDFLKMTREILTVGLIPADIVSFLNGYLNLDLNSIHNRNPSPKGQAIYP VKAPGDARYSVAENALRAAIHIPASFGYGKNGKKPVILVPGTATPAGTTY YFNFGKLGSAADADVVWLNIPQASLNDVQINSEYVAYAINYISAISESNV AVLSWSQGGLDTQWALKYWPSTRKVVDDFIAISPDFHGTVMRSLVCPWLA ALACTPSLWQQGWNTEFIRTLRGGGGDSAYVPTTTIYSTFDEIVQPMSGS QASAILSDSRAVGVSNNHLQTICGGKPAGGVYTHEGVLYNPLAWALAVDA LSHDGPGDPSRLDLDVVCGRVLPPQLGLDDLLGTEGLLLIALAEVLAYKP KTFGEPAIASYAH
Fungal lipases are efficient and environment-friendly biocatalysts for many industrially relevant processes. One of the most widely applied lipases in the manufacturing industry is Candida antarctica lipase B (CALB). Here, we report the biochemical and structural characterization of a novel CALB-like lipase from an important human pathogen-Aspergillus fumigatus (AFLB), which has high sn-1,3-specificity toward triolein. AFLB crystal structure displays a CALB-like catalytic domain and hosts a unique tightly closed 'lid' domain that contains a disulfide bridge, as well as an extra N-terminal subdomain composed of residues 1-128 (including the helix alpha1-alpha5 located above the active site). To gain insight into the function of this novel lid and N-terminal subdomain, we constructed and characterized a series of mutants in these two domains. Deleting the protruding bulk lid's residues, replacing the bulk and tight lid with a small and loose lid from CALB, or breaking the disulfide bridge increased the affinity of CALB for glyceride substrates and improved its catalytic activity, along with the loss of enzyme fold stability and thermostability. N-terminal truncation mutants revealed that the N-terminal peptide (residues 1-59) is a strong inhibitor of AFLB binding to lipid films. This peptide thus limits AFLB's penetration power and specific activity, revealing a unique enzyme activity regulatory mechanism. Our findings on the functional and structural properties of AFLB provide a better understanding of the functions of the CALB-like lipases and pave the way for its future protein engineering. DATABASE: Structural data are available in the Protein Data Bank under the accession numbers 6IDY.
We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated "gene dumps" and, perhaps, simultaneously, as "gene factories".
Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.