Monoacylglycerol lipase (human-MGLL) selective inhibitor. Administration of JZL184 to mice was reported to cause dramatic elevation of brain 2-AG leading to several cannabinoid-related behavioral effects. Inhibits also FAAH and CES1 and a little ABHD6 Iglesias et al. Does not Inhibit Rv0183 from Mycobacterium tuberculosis (mtbMGL)
AIM: Ovarian torsion is a gynecopathology that requires emergency surgery in women. However, ischemia reperfusion injury (IRI) occurs after treatment with detorsion. This study aimed to evaluate the effects of monoacylglycerol lipase inhibitor JZL184 on ovarian IRI and ovarian reserve. METHODS: Forty-eight female Wistar albino rats were divided into six groups. Group 1: Sham, Group 2: Ischemia, Group 3: ischemia/reperfusion (IR), Group 4: IR + JZL184 4 mg/kg, Group 5: IR + JZL184 16 mg/kg, Group 6: IR + vehicle (dimethyl sulfoxide). Three hours of ischemia followed by 3 h of reperfusion. Two different doses of JZL184 (4 and 16 mg/kg) were administered intraperitoneally in Group 4 and 5, 30 min before reperfusion. Ovarian IRI and ovarian reserve were evaluated in serum and tissue by using histopathological and biochemical parameters. RESULTS: Treatment with JZL184 was associated with a significant increase in ovarian 2-arachidonoylglycerol and improved serum anti-Mullerian hormone, nhibin B, primordial follicle count, and ovarian histopathological damage score (p < 0.05). JZL184 treatment significantly decreased the level of malondialdehyde, and increased superoxide dismutase enzyme activity and glutathione (GSH) levels (p < 0.05). The increased phosphorile nuclear factor-kappaB (Phospho-NF-kappaB-p65), tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), transforming growth factor beta 1 (TGF-beta1), and TUNEL assay immunopositivity scores in ovarian I/R injury were decreased after treatment with JZL184 (p < 0.05). CONCLUSIONS: JZL184 showed significant ameliorative effects on ovarian IRI and ovarian reserve caused by IR through acting as an antioxidant, anti-inflammatory, and antiapoptotic agent. Thus, JZL184 may be a novel therapeutic agent for ovarian IRI.
The endocannabinoid system is involved in the regulation of the stress response, but the relative contribution of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) and their mechanisms have to be elucidated. In this study, we compared the effects of the pharmacological inhibition of the two major endocannabinoid-degrading enzymes [fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) for AEA and 2-AG, respectively] on stress-coping [forced swim test (FST) and tail suspension test (TST)] and anxiety-like [elevated-plus maze (EPM) and light-dark test (LDT)] behaviors in wild-type and FAAH knockout mice. In vivo microdialysis estimated the effects of FAAH and MAGL inhibition on dopamine (DA) and serotonin (5-HT) levels in the medial prefrontal cortex (mPFC) during an FST. Mice were treated with PF-3845 (FAAH inhibitor), JZL184 (MAGL inhibitor), JZL195 (dual FAAH/MAGL inhibitor) or vehicle. Our data showed that PF-3845 increased latency to immobility and decreased total immobility time in FST, but no effects were observed in TST compared with vehicle-treated wild-type mice. By contrast, JZL184 decreased latency and increased immobility in TST and FST. JZL195 in wild-type mice and JZL184 in FAAH knockout mice reproduced the same passive coping behaviors as JZL184 in wild-type mice in TST and FST. In the microdialysis experiment, FST was associated with increased DA and 5-HT levels in the mPFC. However, JZL184-treated wild-type mice displayed a significant attenuation of forced swim stress-induced DA release compared with vehicle-treated wild-type mice and PF-3845-treated wild-type mice. Finally, FAAH and/or MAGL inhibitors induced robust and consistent anxiolytic-like effects in EPM and LDT. These results suggested differences between FAAH and MAGL inhibition in stress-coping behaviors. Notably, MAGL inhibition induced a consistent avoidant coping behavior and attenuated the stress-induced mPFC DA response in FST. However, more investigation is needed to elucidate the functional association between DA and 2-AG signaling pathways, and the molecular mechanism in the regulation of passive coping strategies during inescapable stress.
Early life stress (ELS) may increase predisposition to depression. Despite extensive research, there is still a lack of knowledge of how to optimally treat depression. We aimed to establish a role for the endocannabinoid (ECB) system within the hippocampal-nucleus accumbens (NAc) network as a possible effective target in combating the pathophysiological development of depression-like behavior and neuronal alterations that are precipitated by ELS. Male and female rats were exposed to ELS during post-natal days (P) 7-14, injected with the fatty acid amide hydrolase (FAAH) inhibitor URB597 or the monoacylglycerol lipase (MAGL) inhibitor JZL184 for 2 weeks during late-adolescence (P45-60). Rats were tested starting at P90 for depressive- and anxiety-like behaviors as well as social preference and recognition; alterations in FAAH and MAGL activity; the expression of brain-derived neurotrophic factor (BDNF); and plasticity in the hippocampal-NAc pathway. FAAH and MAGL inhibitors during late-adolescence prevented: (i) the long-term effects of ELS on depression- and anxiety-like behavior and the impairment in social behavior and neuronal plasticity in males and females; (ii) ELS-induced alterations in MAGL activity in males' hippocampus and females' hippocampus and NAc; and (iii) ELS-induced alterations in BDNF in males' hippocampus and NAc and females' hippocampus. Significant correlations were observed between alterations in MAGL and BDNF levels and the behavioral phenotype. The findings suggest that alterations in MAGL activity and BDNF expression in the hippocampal-NAc network contribute to the depressive-like behavioral phenotype in ELS males and females. Moreover, the study suggests FAAH and MAGL inhibitors as potential intervention drugs for depression.
        
30 lessTitle: Inhibiting the endocannabinoid degrading enzymes FAAH and MAGL during zebrafish embryogenesis alters sensorimotor function Khara LS, Amin MR, Ali DW Ref: J Exp Biol, :, 2022 : PubMed
The endocannabinoid system (eCS) plays a critical role in a variety of homeostatic and developmental processes. Although the eCS is known to be involved in motor and sensory function, the role of endocannabinoid (eCB) signaling in sensorimotor development remains to be fully understood. In this study, the catabolic enzymes fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MAGL) were inhibited either simultaneously, or individually during the first -24 hours of zebrafish embryogenesis, and the properties of contractile events and escape responses were studied in animals ranging in age from 1 day post fertilization (dpf) to 10 weeks. This perturbation of the eCS resulted in alterations to contractile activity at 1 dpf. Inhibition of MAGL using JZL 184 and dual inhibition of FAAH/MAGL using JZL 195 decreased escape swimming activity at 2 dpf. Treatment with JZL 195 also produced alterations in the properties of the 2 dpf short latency C-start escape response. Animals treated with JZL 195 exhibited deficits in escape responses elicited by auditory/vibrational (A/V) stimuli at 5 and 6 dpf. These deficits were also present during the juvenile developmental stage (8-10-week-old fish), demonstrating a prolonged impact to sensory systems. These findings demonstrate that eCS perturbation affects sensorimotor function, and underscores the importance of eCB signaling in the development of motor and sensory processes.
AIM: Ovarian torsion is a gynecopathology that requires emergency surgery in women. However, ischemia reperfusion injury (IRI) occurs after treatment with detorsion. This study aimed to evaluate the effects of monoacylglycerol lipase inhibitor JZL184 on ovarian IRI and ovarian reserve. METHODS: Forty-eight female Wistar albino rats were divided into six groups. Group 1: Sham, Group 2: Ischemia, Group 3: ischemia/reperfusion (IR), Group 4: IR + JZL184 4 mg/kg, Group 5: IR + JZL184 16 mg/kg, Group 6: IR + vehicle (dimethyl sulfoxide). Three hours of ischemia followed by 3 h of reperfusion. Two different doses of JZL184 (4 and 16 mg/kg) were administered intraperitoneally in Group 4 and 5, 30 min before reperfusion. Ovarian IRI and ovarian reserve were evaluated in serum and tissue by using histopathological and biochemical parameters. RESULTS: Treatment with JZL184 was associated with a significant increase in ovarian 2-arachidonoylglycerol and improved serum anti-Mullerian hormone, nhibin B, primordial follicle count, and ovarian histopathological damage score (p < 0.05). JZL184 treatment significantly decreased the level of malondialdehyde, and increased superoxide dismutase enzyme activity and glutathione (GSH) levels (p < 0.05). The increased phosphorile nuclear factor-kappaB (Phospho-NF-kappaB-p65), tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), transforming growth factor beta 1 (TGF-beta1), and TUNEL assay immunopositivity scores in ovarian I/R injury were decreased after treatment with JZL184 (p < 0.05). CONCLUSIONS: JZL184 showed significant ameliorative effects on ovarian IRI and ovarian reserve caused by IR through acting as an antioxidant, anti-inflammatory, and antiapoptotic agent. Thus, JZL184 may be a novel therapeutic agent for ovarian IRI.
BACKGROUND: Endothelial dysfunction promotes atherogenesis, vascular inflammation, and thrombus formation. Reendothelialization after angioplasty is required in order to prevent stent failure. Previous studies have highlighted the role of 2-arachidonoylglycerol (2-AG) in murine experimental atherogenesis and in human coronary artery disease. However, the impact of 2-AG on endothelial repair and leukocyte-endothelial cell adhesion is still unknown. METHODS: Endothelial repair was studied in two treatment groups of wildtype mice following electrical injury of the common carotid artery. One group received the monoacylglycerol lipase (MAGL)-inhibitor JZL184, which impairs 2-AG degradation and thus causes elevated 2-AG levels, the other group received DMSO (vehicle). The effect of 2-AG on human coronary artery endothelial cell (HCAEC) viability, leukocyte-endothelial cell adhesion, surface expression of adhesion molecules, and expression of endothelial NO synthase (NOS3) was studied in vitro. RESULTS: Elevated 2-AG levels significantly impaired reendothelialization in wildtype mice following electrical injury of the common carotid artery. In vitro, 2-AG significantly reduced viability of HCAEC. Additionally, 2-AG promoted adhesion of THP-1 monocytes to HCAEC following pre-treatment of the HCAEC with 2-AG. Adhesion molecules (E-selectin, ICAM-1 and VCAM-1) remained unchanged in arterial endothelial cells, whereas 2-AG suppressed the expression of NOS3 in HCAEC. CONCLUSION AND TRANSLATIONAL ASPECT: Elevated 2-AG levels hamper endothelial repair and HCAEC proliferation, while simultaneously facilitating leukocyte-endothelial cell adhesion. Given that 2-AG is elevated in patients with coronary artery disease and non-ST-segment elevation myocardial infarction, 2-AG might decrease reendothelialization after angioplasty and thus impact the clinical outcomes.
The endocannabinoid system is involved in the regulation of the stress response, but the relative contribution of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) and their mechanisms have to be elucidated. In this study, we compared the effects of the pharmacological inhibition of the two major endocannabinoid-degrading enzymes [fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) for AEA and 2-AG, respectively] on stress-coping [forced swim test (FST) and tail suspension test (TST)] and anxiety-like [elevated-plus maze (EPM) and light-dark test (LDT)] behaviors in wild-type and FAAH knockout mice. In vivo microdialysis estimated the effects of FAAH and MAGL inhibition on dopamine (DA) and serotonin (5-HT) levels in the medial prefrontal cortex (mPFC) during an FST. Mice were treated with PF-3845 (FAAH inhibitor), JZL184 (MAGL inhibitor), JZL195 (dual FAAH/MAGL inhibitor) or vehicle. Our data showed that PF-3845 increased latency to immobility and decreased total immobility time in FST, but no effects were observed in TST compared with vehicle-treated wild-type mice. By contrast, JZL184 decreased latency and increased immobility in TST and FST. JZL195 in wild-type mice and JZL184 in FAAH knockout mice reproduced the same passive coping behaviors as JZL184 in wild-type mice in TST and FST. In the microdialysis experiment, FST was associated with increased DA and 5-HT levels in the mPFC. However, JZL184-treated wild-type mice displayed a significant attenuation of forced swim stress-induced DA release compared with vehicle-treated wild-type mice and PF-3845-treated wild-type mice. Finally, FAAH and/or MAGL inhibitors induced robust and consistent anxiolytic-like effects in EPM and LDT. These results suggested differences between FAAH and MAGL inhibition in stress-coping behaviors. Notably, MAGL inhibition induced a consistent avoidant coping behavior and attenuated the stress-induced mPFC DA response in FST. However, more investigation is needed to elucidate the functional association between DA and 2-AG signaling pathways, and the molecular mechanism in the regulation of passive coping strategies during inescapable stress.
Early life stress (ELS) may increase predisposition to depression. Despite extensive research, there is still a lack of knowledge of how to optimally treat depression. We aimed to establish a role for the endocannabinoid (ECB) system within the hippocampal-nucleus accumbens (NAc) network as a possible effective target in combating the pathophysiological development of depression-like behavior and neuronal alterations that are precipitated by ELS. Male and female rats were exposed to ELS during post-natal days (P) 7-14, injected with the fatty acid amide hydrolase (FAAH) inhibitor URB597 or the monoacylglycerol lipase (MAGL) inhibitor JZL184 for 2 weeks during late-adolescence (P45-60). Rats were tested starting at P90 for depressive- and anxiety-like behaviors as well as social preference and recognition; alterations in FAAH and MAGL activity; the expression of brain-derived neurotrophic factor (BDNF); and plasticity in the hippocampal-NAc pathway. FAAH and MAGL inhibitors during late-adolescence prevented: (i) the long-term effects of ELS on depression- and anxiety-like behavior and the impairment in social behavior and neuronal plasticity in males and females; (ii) ELS-induced alterations in MAGL activity in males' hippocampus and females' hippocampus and NAc; and (iii) ELS-induced alterations in BDNF in males' hippocampus and NAc and females' hippocampus. Significant correlations were observed between alterations in MAGL and BDNF levels and the behavioral phenotype. The findings suggest that alterations in MAGL activity and BDNF expression in the hippocampal-NAc network contribute to the depressive-like behavioral phenotype in ELS males and females. Moreover, the study suggests FAAH and MAGL inhibitors as potential intervention drugs for depression.
Nicotine, the primary psychoactive component in tobacco, plays a major role in the initiation and maintenance of tobacco dependence and addiction, a leading cause of preventable death worldwide. An essential need thus exists for more effective pharmacotherapies for nicotine-use cessation. Previous reports suggest that pharmacological and genetic blockade of CB1 receptors attenuate nicotine reinforcement and reward; while exogenous agonists enhanced these abuse-related behaviors. In this study, we utilized complementary genetic and pharmacologic approaches to test the hypothesis that increasing the levels of the endocannabinoid 2-arachindonoylglycerol (2-AG), will enhance nicotine reward by stimulating neuronal CB1 receptors. Contrary to our hypothesis, we found that inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme of 2-AG, attenuates nicotine conditioned place preference (CPP) in mice, through a non-CB1 receptor-mediated mechanism. MAGL inhibition did not alter palatable food reward or Lithium Chloride (LiCl) aversion. In support of our findings, repeated MAGL inhibition did not induce a reduction in CB1 brain receptor levels or hinder function. To explore the potential mechanism of action, we investigated if MAGL inhibition affected other fatty acid levels in our CPP paradigm. Indeed, MAGL inhibition caused a concomitant decrease in arachidonic acid (AA) levels in various brain regions of interest, suggesting an AA cascade-dependent mechanism. This idea is supported by dose-dependent attenuation of nicotine preference by the selective COX-2 inhibitors valdecoxib and LM-4131. Collectively, these findings, along with our reported studies on nicotine withdrawal, suggest that inhibition of MAGL represents a promising new target for the development of pharmacotherapies to treat nicotine dependence.
Phenotypic screening has identified small-molecule modulators of aging, but the mechanism of compound action often remains opaque due to the complexities of mapping protein targets in whole organisms. Here, we combine a library of covalent inhibitors with activity-based protein profiling to coordinately discover bioactive compounds and protein targets that extend lifespan in Caenorhabditis elegans. We identify JZL184-an inhibitor of the mammalian endocannabinoid (eCB) hydrolase monoacylglycerol lipase (MAGL or MGLL)-as a potent inducer of longevity, a result that was initially perplexing as C. elegans does not possess an MAGL ortholog. We instead identify FAAH-4 as a principal target of JZL184 and show that this enzyme, despite lacking homology with MAGL, performs the equivalent metabolic function of degrading eCB-related monoacylglycerides in C. elegans. Small-molecule phenotypic screening thus illuminates pure pharmacological connections marking convergent metabolic functions in distantly related organisms, implicating the FAAH-4/monoacylglyceride pathway as a regulator of lifespan in C. elegans.
2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid with anti-inflammatory properties. Blocking 2-AG hydrolysis to enhance CB2 signaling has proven effective in mouse models of inflammation. However, the expression of 2-AG lipases has never been thoroughly investigated in human leukocytes. Herein, we investigated the expression of seven 2-AG hydrolases by human blood leukocytes and alveolar macrophages (AMs) and found the following protein expression pattern: monoacylglycerol (MAG lipase; eosinophils, AMs, monocytes), carboxylesterase (CES1; monocytes, AMs), palmitoyl-protein thioesterase (PPT1; AMs), alpha/beta-hydrolase domain (ABHD6; mainly AMs), ABHD12 (all), ABHD16A (all), and LYPLA2 (lysophospholipase 2; monocytes, lymphocytes, AMs). We next found that all leukocytes could hydrolyze 2-AG and its metabolites derived from cyclooxygenase-2 (prostaglandin E2 -glycerol [PGE2 -G]) and the 15-lipoxygenase (15-hydroxy-eicosatetraenoyl-glycerol [15-HETE-G]). Neutrophils and eosinophils were consistently better at hydrolyzing 2-AG and its metabolites than monocytes and lymphocytes. Moreover, the efficacy of leukocytes to hydrolyze 2-AG and its metabolites was 2-AG >/= 15-HETE-G >> PGE2 -G for each leukocyte. Using the inhibitors methylarachidonoyl-fluorophosphonate (MAFP), 4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxyla te (JZL184), Palmostatin B, 4'-carbamoylbiphenyl-4-yl methyl(3-(pyridin-4-yl)benzyl)carbamate, N-methyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4'-(aminocarbonyl)[1,1'-biphenyl]-4-yl ester carbamic acid (WWL70), 4'-[[[methyl[[3-(4-pyridinyl)phenyl]methyl]amino]carbonyl]oxy]-[1,1'-biphenyl]-4- carboxylic acid, ethyl ester (WWL113), tetrahydrolipstatin, and ML349, we could not pinpoint a specific hydrolase responsible for the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by these leukocytes. Furthermore, JZL184, a selective MAG lipase inhibitor, blocked the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by neutrophils and the hydrolysis of PGE2 -G and 15-HETE-G by lymphocytes, two cell types with limited/no MAG lipase. Using an activity-based protein profiling (ABPP) probe to label hydrolases in leukocytes, we found that they express many MAFP-sensitive hydrolases and an unknown JZL184-sensitive hydrolase of approximately 52 kDa. Altogether, our results indicate that human leukocytes are experts at hydrolyzing 2-AG and its metabolites via multiple lipases and probably via a yet-to-be characterized 52 kDa hydrolase. Blocking 2-AG hydrolysis in humans will likely abrogate the ability of human leukocytes to degrade 2-AG and its metabolites and increase their anti-inflammatory effects in vivo.
Monoacylglycerol lipases (MGLs) are enzymes that hydrolyze monoacylglycerol into a free fatty acid and glycerol. Fatty acids can be used for triacylglycerol synthesis, as energy source, as building blocks for energy storage, and as precursor for membrane phospholipids. In Mycobacterium tuberculosis, fatty acids also serve as precursor for polyketide lipids like mycolic acids, major components of the cellular envelope associated to resistance for drug. We present the crystal structure of the MGL Rv0183 from Mycobacterium tuberculosis (mtbMGL) in open conformation. The structure reveals remarkable similarities with MGL from humans (hMGL) in both, the cap region and the alpha/beta core. Nevertheless, mtbMGL could not be inhibited with JZL-184, a known inhibitor of hMGL. Docking studies provide an explanation why the activity of mtbMGL was not affected by the inhibitor. Our findings suggest that specific inhibition of mtbMGL from Mycobacterium tuberculosis, one of the oldest recognized pathogens, is possible without influencing hMGL.
Although paclitaxel effectively treats various cancers, its debilitating peripheral neuropathic pain side effects often persist long after treatment has ended. Therefore, a compelling need exists for the identification of novel pharmacologic strategies to mitigate this condition. As inhibitors of monoacylglycerol lipase (MAGL), the primary hydrolytic enzyme of the endogenous cannabinoid, 2-arachidonyolglycerol, produces antinociceptive effects in numerous rodent models of pain, we investigated whether inhibitors of this enzyme (i.e., JZL184 and MJN110) would reverse paclitaxel-induced mechanical allodynia in mice. These drugs dose dependently reversed allodynia with respective ED(50) values (95% confidence limit) of 8.4 (5.2-13.6) and 1.8 (1.0-3.3) mg/kg. Complementary genetic and pharmacologic approaches revealed that the antiallodynic effects of each drug require both cannabinoid receptors, CB(1) and CB(2) MJN110 reduced paclitaxel-mediated increased expression of monocyte chemoattractant protein-1 (MCP-1, CCL2) and phospho-p38 MAPK in dorsal root ganglia as well as MCP-1 in spinal dorsal horn. Whereas the antinociceptive effects of high dose JZL184 (40 mg/kg) underwent tolerance following 6 days of repeated dosing, repeated administration of a threshold dose (i.e., 4 mg/kg) completely reversed paclitaxel-induced allodynia. In addition, we found that the administration of MJN110 to control mice lacked intrinsic rewarding effects in the conditioned place preference (CPP) paradigm. However, it produced a CPP in paclitaxel-treated animals, suggesting a reduced paclitaxel-induced aversive state. Importantly, JZL184 did not alter the antiproliferative and apoptotic effects of paclitaxel in A549 and H460 non-small cell lung cancer cells. Taken together, these data indicate that MAGL inhibitors reverse paclitaxel-induced neuropathic pain without interfering with chemotherapeutic efficacy.
Chemotherapy-induced neuropathic pain is a distressing and commonly occurring side effect of many commonly used chemotherapeutic agents, which in some cases may prevent cancer patients from being able to complete their treatment. Cannabinoid based therapies have the potential to manage or even prevent pain associated with this syndrome. Pre-clinical animal studies that investigate the modulation of the endocannabinoid system (endogenous cannabinoid pathway) are being conducted to better understand the mechanisms behind this phenomenon. Five recent pre-clinical studies identified from Medline published between 2013 and 2016 were selected for review. All studies evaluated the effect of small-molecule agonists or antagonists on components of the endocannabinoid system in rats or mice, using cisplatin or paclitax-el-induced allodynia as a model of chemotherapy-induced neuropathic pain. Activation of the cannabinoid receptor-2 (CB-2) receptor by AM1710 blocked paclitaxel-induced mechanical and cold allodynia in one study. Four studies investigating the activation of both cannabinoid receptor-1 (CB-1) and CB-2 receptors by dual-agonists (WIN55,21 and CP55,940), or by the introduction of inhibitors of endocannabinoid metabolisers (URB597, URB937, JZL184, and SA-57) showed reduction of chemotherapy-induced al-lodynia. In addition, their results suggest that anti-allodynic effects may also be mediated by additional receptors, including TRPV1 and 5-hydroxytryptamine (5-HT1A). Pre-clinical studies demon-strate that the activation of endocannabinoid CB-1 or CB-2 receptors produces physiological effects in animal models, namely the reduction of chemotherapy-induced allodynia. These studies also provide in-sight into the biological mechanism behind the therapeutic utility of cannabis compounds in managing chemotherapy-induced neuropathic pain, and provide a basis for the conduct of future clinical studies in patients of this population.
Lipids are used as cellular building blocks and condensed energy stores and also act as signaling molecules. The glycerolipid/ fatty acid cycle, encompassing lipolysis and lipogenesis, generates many lipid signals. Reliable procedures are not available for measuring activities of several lipolytic enzymes for the purposes of drug screening, and this resulted in questionable selectivity of various known lipase inhibitors. We now describe simple assays for lipolytic enzymes, including adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), sn-1-diacylglycerol lipase (DAGL), monoacylglycerol lipase, alpha/beta-hydrolase domain 6, and carboxylesterase 1 (CES1) using recombinant human and mouse enzymes either in cell extracts or using purified enzymes. We observed that many of the reported inhibitors lack specificity. Thus, Cay10499 (HSL inhibitor) and RHC20867 (DAGL inhibitor) also inhibit other lipases. Marked differences in the inhibitor sensitivities of human ATGL and HSL compared with the corresponding mouse enzymes was noticed. Thus, ATGListatin inhibited mouse ATGL but not human ATGL, and the HSL inhibitors WWL11 and Compound 13f were effective against mouse enzyme but much less potent against human enzyme. Many of these lipase inhibitors also inhibited human CES1. Results describe reliable assays for measuring lipase activities that are amenable for drug screening and also caution about the specificity of the many earlier described lipase inhibitors.
        
Title: Monoacylglycerol lipase inhibitor JZL184 regulates apoptosis and migration of colorectal cancer cells Ma M, Bai J, Ling Y, Chang W, Xie G, Li R, Wang G, Tao K Ref: Mol Med Rep, 13:2850, 2016 : PubMed
Monoacylglycerol lipase (MAGL) is involved in the degradation of triacylglycerol. Previous studies have demonstrated that MAGL regulates tumor growth and metastasis via fatty acid networks, and is associated with colorectal cancer. JZL184 is a MAGL inhibitor, which in the present study was administered to colorectal cancer cell lines, resulting in decreased tumor proliferation, increased apoptosis and increased tumor cell sensitivity to 5-fluorouracil. Bcell lymphoma 2 (Bcl2) and Bcl2associated X protein (Bax) are key proteins in apoptosis. The expression levels of Bcl2/Bax were determined in colorectal cancer cell lines following JZL184 administration, and it was observed that the mRNA and protein expression levels of Bcl2 were decreased, whereas the expression levels of Bax were increased. These results indicated that JZL184 may induce tumor cell apoptosis by regulating the expression of Bcl2 and Bax. Epithelial-mesenchymal transition (EMT) is closely associated with metastasis. Administration of JZL184 in various malignant colorectal cancer cell lines suppressed migration and altered the expression of EMT markers; Ecadherin was increased, whereas the expression levels of vimentin and zinc finger protein SNAI1 were decreased. These results suggested that JZL184 was able to regulate the EMT process, in order to control the migration of colorectal cancer cells, particularly in tumors with a stronger metastatic capability. Therefore, in colorectal cancer, MAGL may be considered a potential therapeutic target and JZL184 may be a possible therapeutic agent.
Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception but with minimal cannabimimetic side effects. Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to cannabinoid receptor type 1 (CB1) receptor functional tolerance, which represents another challenge in this potential therapeutic strategy. Therefore, the present study tested whether full FAAH inhibition combined with partial MAGL inhibition would produce sustained antinociceptive effects with minimal cannabimimetic side effects. Accordingly, we tested a high dose of the FAAH inhibitor PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piper idinecarboxamide; 10 mg/kg) given in combination with a low dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (4 mg/kg) in mouse models of inflammatory and neuropathic pain. This combination of inhibitors elicited profound increases in brain AEA levels (>10-fold) but only 2- to 3-fold increases in brain 2-AG levels. This combination produced significantly greater antinociceptive effects than single enzyme inhibition and did not elicit common cannabimimetic effects (e.g., catalepsy, hypomotility, hypothermia, and substitution for Delta(9)-tetrahydrocannabinol in the drug-discrimination assay), although these side effects emerged with high-dose JZL184 (i.e., 100 mg/kg). Finally, repeated administration of this combination did not lead to tolerance to its antiallodynic actions in the carrageenan assay or CB1 receptor functional tolerance. Thus, full FAAH inhibition combined with partial MAGL inhibition reduces neuropathic and inflammatory pain states with minimal cannabimimetic effects.
        
Title: Simultaneous inhibition of fatty acid amide hydrolase and monoacylglycerol lipase shares discriminative stimulus effects with Delta9-tetrahydrocannabinol in mice Hruba L, Seillier A, Zaki A, Cravatt BF, Lichtman AH, Giuffrida A, McMahon LR Ref: Journal of Pharmacology & Experimental Therapeutics, 353:261, 2015 : PubMed
Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) inhibitors exert preclinical effects indicative of therapeutic potential (i.e., analgesia). However, the extent to which MAGL and FAAH inhibitors produce unwanted effects remains unclear. Here, FAAH and MAGL inhibition was examined separately and together in a Delta(9)-tetrahydrocannabinol (Delta(9)-THC; 5.6 mg/kg i.p.) discrimination assay predictive of subjective effects associated with cannabis use, and the relative contribution of N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) in the prefrontal cortex, hippocampus, and caudate putamen to those effects was examined. Delta(9)-THC dose-dependently increased Delta(9)-THC appropriate responses (ED50 value = 2.8 mg/kg), whereas the FAAH inhibitors PF-3845 [N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piper idinecarboxamide] and URB597 [(3'-(aminocarbonyl)[1,1'-biphenyl]-3-yl)-cyclohexylcarbamate] or a MAGL inhibitor JZL184 [4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxyl ate] alone did not substitute for the Delta(9)-THC discriminative stimulus. The nonselective FAAH/MAGL inhibitors SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] and JZL195 [4-nitrophenyl 4-(3-phenoxybenzyl)piperazine-1-carboxylate] fully substituted for Delta(9)-THC with ED50 values equal to 2.4 and 17 mg/kg, respectively. Full substitution for Delta(9)-THC was also produced by a combination of JZL184 and PF-3845, but not by a combination of JZL184 and URB597 (i.e., 52% maximum). Cannabinoid receptor type 1 antagonist rimonabant attenuated the discriminative stimulus effects of Delta(9)-THC, SA-57, JZL195, and the combined effects of JZL184 and PF-3845. Full substitution for the Delta(9)-THC discriminative stimulus occurred only when both 2-AG and AEA were significantly elevated, and the patterns of increased endocannabinoid content were similar among brain regions. Overall, these results suggest that increasing both endogenous 2-AG and AEA produces qualitatively unique effects (i.e., the subjective effects of cannabis) that are not obtained from increasing either 2-AG or AEA separately.
A growing body of evidence implicates endogenous cannabinoids as modulators of the mesolimbic dopamine system and motivated behavior. Paradoxically, the reinforcing effects of Delta(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, have been difficult to detect in preclinical rodent models. In this study, we investigated the impact of THC and inhibitors of the endocannabinoid hydrolytic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on operant responding for electrical stimulation of the medial forebrain bundle [intracranial self-stimulation (ICSS)], which is known to activate the mesolimbic dopamine system. These drugs were also tested in assays of operant responding for food reinforcement and spontaneous locomotor activity. THC and the MAGL inhibitor JZL184 (4-[bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) attenuated operant responding for ICSS and food, and also reduced spontaneous locomotor activity. In contrast, the FAAH inhibitor PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piper idinecarboxamide) was largely without effect in these assays. Consistent with previous studies showing that combined inhibition of FAAH and MAGL produces a substantially greater cannabimimetic profile than single enzyme inhibition, the dual FAAH-MAGL inhibitor SA-57 (4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester) produced a similar magnitude of ICSS depression as that produced by THC. ICSS attenuation by JZL184 was associated with increased brain levels of 2-arachidonoylglycerol (2-AG), whereas peak effects of SA-57 were associated with increased levels of both N-arachidonoylethanolamine (anandamide) and 2-AG. The cannabinoid receptor type 1 receptor antagonist rimonabant, but not the cannabinoid receptor type 2 receptor antagonist SR144528, blocked the attenuating effects of THC, JZL184, and SA-57 on ICSS. Thus, THC, MAGL inhibition, and dual FAAH-MAGL inhibition not only reduce ICSS, but also decrease other reinforced and nonreinforced behaviors.
        
Title: Inhibition of monoacylglycerol lipase mediates a cannabinoid 1-receptor dependent delay of kindling progression in mice von Ruden EL, Bogdanovic RM, Wotjak CT, Potschka H Ref: Neurobiol Dis, 77:238, 2015 : PubMed
Endocannabinoids, including 2-arachidonoylglycerol (2-AG), activate presynaptic cannabinoid type 1 receptors (CB1R) on inhibitory and excitatory neurons, resulting in a decreased release of neurotransmitters. The event-specific activation of the endocannabinoid system by inhibition of the endocannabinoid degrading enzymes may offer a promising strategy to selectively activate CB1Rs at the site of excessive neuronal activation with the overall goal to prevent the development epilepsy. The aim of this study was to investigate the impact of monoacylglycerol lipase (MAGL) inhibition on the development and progression of epileptic seizures in the kindling model of temporal lobe epilepsy. Therefore, we selectively blocked MAGL by JZL184 (8mg/kg, i.p.) in mice to analyze the effects of increased 2-AG levels on kindling acquisition and to exclude an anticonvulsive potential. Our results showed that JZL184 treatment significantly delayed the development of generalized seizures (p=0.0066) and decreased seizure (p<0.0001) and afterdischarge duration (p<0.001) in the kindling model of temporal lobe epilepsy, but caused only modest effects in fully kindled mice. Moreover, we proved that JZL184 treatment had no effects in conditional CB1R knockout mice lacking expression of the receptor in principle neurons of the forebrain. In conclusion, the data demonstrate that indirect CB1R agonism delays the development of generalized epileptic seizures but has no relevant acute anticonvulsive effects. Furthermore, we confirmed that the effects of JZL184 on kindling progression are CB1R mediated. Thus, the data indicate that the endocannabinoid 2-AG might be a promising target for an anti-epileptogenic approach.
Changes in cannabinoid receptor expression and concentration of endocannabinoids have been described in Parkinson's disease; however, it remains unclear whether they contribute to, or result from, the disease process. To evaluate whether targeting the endocannabinoid system could provide potential benefits in the treatment of the disease, the effect of a monoacylglycerol lipase inhibitor that prevents degradation of 2-arachidonyl-glycerol was tested in mice treated chronically with probenecid and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTPp). Chronic administration of the compound, JZL184 (8 mg/kg), prevented MPTPp-induced motor impairment and preserved the nigrostriatal pathway. Furthermore, none of the hypokinetic effects associated with cannabinoid receptor agonism were observed. In the striatum and substantia nigra pars compacta, MPTPp animals treated with JZL184 exhibited astroglial and microglial phenotypic changes that were accompanied by increases in TGFbeta messenger RNA expression and in glial cell-derived neurotrophic factor messenger RNA and protein levels. JZL184 induced an increase in beta-catenin translocation to the nucleus, implicating the Wnt/catenin pathway. Together, these results demonstrate a potent neuroprotective effect of JZL184 on the nigrostriatal pathway of parkinsonian animals, likely involving restorative astroglia and microglia activation and the release of neuroprotective and antiinflammatory molecules.
Cisplatin has been used effectively to treat a variety of cancers but its use is limited by the development of painful peripheral neuropathy. Because the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) is anti-hyperalgesic in several preclinical models of chronic pain, the anti-hyperalgesic effect of JZL184, an inhibitor of 2-AG hydrolysis, was tested in a murine model of cisplatin-induced hyperalgesia. Systemic injection of cisplatin (1mg/kg) produced mechanical hyperalgesia when administered daily for 7 days. Daily peripheral administration of a low dose of JZL184 in conjunction with cisplatin blocked the expression of mechanical hyperalgesia. Acute injection of a cannabinoid (CB)-1 but not a CB2 receptor antagonist reversed the anti-hyperalgesic effect of JZL184 indicating that downstream activation of CB1 receptors suppressed the expression of mechanical hyperalgesia. Components of endocannabinoid signaling in plantar hind paw skin and lumbar dorsal root ganglia (DRGs) were altered by treatments with cisplatin and JZL184. Treatment with cisplatin alone reduced levels of 2-AG and AEA in skin and DRGs as well as CB2 receptor protein in skin. Combining treatment of JZL184 with cisplatin increased 2-AG in DRGs compared to cisplatin alone but had no effect on the amount of 2-AG in skin. Evidence that JZL184 decreased the uptake of [(3)H]AEA into primary cultures of DRGs at a concentration that also inhibited the enzyme fatty acid amide hydrolase, in conjunction with data that 2-AG mimicked the effect of JZL184 on [(3)H]AEA uptake support the conclusion that AEA most likely mediates the anti-hyperalgesic effect of JZL184 in this model.
Genetic alterations or pharmacological treatments affecting endocannabinoid signaling have profound effects on synaptic and neuronal properties and, under certain conditions, may improve higher brain functions. Down syndrome (DS), a developmental disorder caused by triplication of chromosome 21, is characterized by deficient cognition and inevitable development of the Alzheimer disease (AD) type pathology during aging. Here we used JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL), to examine the effects of chronic MAGL inhibition on the behavioral, biochemical, and synaptic properties of aged Ts65Dn mice, a genetic model of DS. In both Ts65Dn mice and their normosomic (2N) controls, JZL184-treatment increased brain levels of 2-arachidonoylglycerol (2-AG) and decreased levels of its metabolites such as arachidonic acid, prostaglandins PGD2, PGE2, PGFalpha, and PGJ2. Enhanced spontaneous locomotor activity of Ts65Dn mice was reduced by the JZL184-treatement to the levels observed in 2N animals. Deficient long-term memory was also improved, while short-term and working types of memory were unaffected. Furthermore, reduced hippocampal long-term potentiation (LTP) was increased in the JZL184-treated Ts65Dn mice to the levels observed in 2N mice. Interestingly, changes in synaptic plasticity and behavior were not observed in the JZL184-treated 2N mice suggesting that the treatment specifically attenuated the defects in the trisomic animals. The JZL184-treatment also reduced the levels of Abeta40 and Abeta42, but had no effect on the levels of full length APP and BACE1 in both Ts65Dn and 2N mice. These data show that chronic MAGL inhibition improves the behavior and brain functions in a DS model suggesting that pharmacological targeting of MAGL may be considered as a perspective new approach for improving cognition in DS.
        
Title: Disease-modifying effects of RHC80267 and JZL184 in a pilocarpine mouse model of temporal lobe epilepsy Ma L, Wang L, Yang F, Meng XD, Wu C, Ma H, Jiang W Ref: CNS Neurosci Ther, 20:905, 2014 : PubMed
INTRODUCTION: Patients with temporal lobe epilepsy (TLE) often suffer from comorbid psychiatric diagnoses such as depression, anxiety, or impaired cognitive performance. Endocannabinoid (eCB) signaling is a key regulator of synaptic neurotransmission and has been implicated in the mechanisms of epilepsy as well as several mood disorders and cognitive impairments. AIMS: We employed a pilocarpine model of TLE in C57/BJ mice to investigate the role of eCB signaling in epileptogenesis and concomitant psychiatric comorbidities. METHODS AND RESULTS: We sought to alter the neuronal levels of a known eCB receptor ligand, 2-arachidonylglycerol (2-AG), through the use of RHC80267 or JZL184. Pilocarpine-treated mice were treated with RHC80267 (1.3 mumol) or JZL184 (20 mg/kg) immediately after the termination of status epilepticus (SE), which was followed by daily treatment for the next 7 days. Our results indicated that RHC80267 treatment significantly reduced the percentage of mice suffering from spontaneous recurrent seizures (SRS) in addition to decreasing the duration of observed seizures when compared to vehicle treatment. Furthermore, RHC80267 attenuated depression and anxiety-related behaviors, improved previously impaired spatial learning and memory, and inhibited seizure-induced hippocampal neuronal loss during the chronic epileptic period. In contrast, JZL184 administration markedly increased the frequency and the duration of observed SRS, enhanced the previously impaired neuropsychological performance, and increased hippocampal damage following SE. CONCLUSIONS: These findings suggest that RHC80267 treatment after the onset of SE could result in an amelioration of the effects found during the chronic epileptic period and yield an overall decrease in epileptic symptoms and comorbid conditions. Thus, alterations to endocannabinoid signaling may serve as a potential mechanism to prevent epileptogenesis and manipulation of this signaling pathway as a possible drug target.
AIM: The present study tested whether the selective monoacylglycerol lipase (MAGL) inhibitor JZL184 would reduce allodynia and paw edema in the carrageenan test. MAIN METHODS: The anti-edematous and anti-allodynic effects of JZL184 were compared to those of PF-3845, an inhibitor of fatty acid amide hydrolase (FAAH), and diclofenac, a non-selective cyclooxygenase inhibitor. Cannabinoid receptor involvement in the anti-edematous and anti-allodynic effects of JZL184 was evaluated by administration of the respective CB1 and CB2 receptor antagonists rimonabant and SR144528 as well as with CB1(-/-) and CB2(-/-) mice. JZL184 (1.6, 4, 16, or 40mg/kg) was administered for six days to assess tolerance. KEY FINDINGS: JZL184 administered before or after carrageenan significantly attenuated carrageenan-induced paw edema and mechanical allodynia. Complementary genetic and pharmacological approaches revealed that the anti-allodynic effects of JZL184 required both CB1 and CB2 receptors, but only CB2 receptors mediated its anti-edematous actions. Importantly, both the anti-edematous and anti-allodynic effects underwent tolerance following repeated injections of high dose JZL184 (16 or 40mg/kg), but repeated administration of low dose JZL184 (4mg/kg) retained efficacy. SIGNIFICANCE: These results suggest that the MAGL inhibitor JZL184 reduces inflammatory nociception through the activation of both CB1 and CB2 receptors, with no evidence of tolerance following repeated administration of low doses.
        
Title: The monoacylglycerol lipase inhibitor JZL184 attenuates LPS-induced increases in cytokine expression in the rat frontal cortex and plasma: differential mechanisms of action Kerr D, Harhen B, Okine B, Egan L, Finn D, Roche M Ref: British Journal of Pharmacology, 169:808, 2013 : PubMed
BACKGROUND AND PURPOSE: JZL184 is a selective inhibitor of monoacylglycerol lipase (MAGL), the enzyme that preferentially catabolizes the endocannabinoid 2-arachidonoyl glycerol (2-AG). Here, we have studied the effects of JZL184 on inflammatory cytokines in the brain and plasma following an acute immune challenge and the underlying receptor and molecular mechanisms involved. EXPERIMENTAL APPROACH: JZL184 and/or the CB1 receptor antagonist, AM251 or the CB2 receptor antagonist, AM630 were administered to rats 30 min before lipopolysaccharide (LPS). 2 h later cytokine expression and levels, MAGL activity, 2-AG, arachidonic acid and prostaglandin levels were measured in the frontal cortex, plasma and spleen. KEY RESULTS: JZL184 attenuated LPS-induced increases in IL-1beta, IL-6, TNF-alpha and IL-10 but not the expression of the inhibitor of NFkB (IkappaBalpha) in rat frontal cortex. AM251 attenuated JZL184-induced decreases in frontal cortical IL-1beta expression. Although arachidonic acid levels in the frontal cortex were reduced in JZL184-treated rats, MAGL activity, 2-AG, PGE2 and PGD2 were unchanged. In comparison, MAGL activity was inhibited and 2-AG levels enhanced in the spleen following JZL184. In plasma, LPS-induced increases in TNF-alpha and IL-10 levels were attenuated by JZL184, an effect partially blocked by AM251. In addition, AM630 blocked LPS-induced increases in plasma IL-1beta in the presence, but not absence, of JZL184. CONCLUSION AND IMPLICATIONS: Inhibition of peripheral MAGL in rats by JZL184 suppressed LPS-induced circulating cytokines that in turn may modulate central cytokine expression. The data provide further evidence for the endocannabinoid system as a therapeutic target in treatment of central and peripheral inflammatory disorders. LINKED ARTICLES: This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http:\/\/dx.doi.org/10.1111/bph.2013.169.issue-4 & http:\/\/dx.doi.org/10.1111/bph.2012.167.issue-8.
        
Title: Repeated low-dose administration of the monoacylglycerol lipase inhibitor JZL184 retains cannabinoid receptor type 1-mediated antinociceptive and gastroprotective effects Kinsey SG, Wise LE, Ramesh D, Abdullah R, Selley DE, Cravatt BF, Lichtman AH Ref: Journal of Pharmacology & Experimental Therapeutics, 345:492, 2013 : PubMed
The monoacylglycerol lipase (MAGL) inhibitor 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) produces antinociceptive and anti-inflammatory effects. However, repeated administration of high-dose JZL184 (40 mg/kg) causes dependence, antinociceptive tolerance, cross-tolerance to the pharmacological effects of cannabinoid receptor agonists, and cannabinoid receptor type 1 (CB1) downregulation and desensitization. This functional CB1 receptor tolerance poses a hurdle in the development of MAGL inhibitors for therapeutic use. Consequently, the present study tested whether repeated administration of low-dose JZL184 maintains its antinociceptive actions in the chronic constriction injury of the sciatic nerve neuropathic pain model and protective effects in a model of nonsteroidal anti-inflammatory drug-induced gastric hemorrhages. Mice given daily injections of high-dose JZL184 (>/=16 mg/kg) for 6 days displayed decreased CB1 receptor density and function in the brain, as assessed in [(3)H]SR141716A binding and CP55,940 [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol]-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate binding assays, respectively. In contrast, normal CB1 receptor expression and function were maintained following repeated administration of low-dose JZL184 (</=8 mg/kg). Likewise, the antinociceptive and gastroprotective effects of high-dose JZL184 underwent tolerance following repeated administration, but these effects were maintained following repeated low-dose JZL184 treatment. Consistent with these observations, repeated high-dose JZL184, but not repeated low-dose JZL184, elicited cross-tolerance to the common pharmacological effects of Delta(9)-tetrahydrocannabinol. This same pattern of effects was found in a rimonabant [(5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyraz ole-3-carboxamide)]-precipitated withdrawal model of cannabinoid dependence. Taken together, these results indicate that prolonged, partial MAGL inhibition maintains potentially beneficial antinociceptive and anti-inflammatory effects, without producing functional CB1 receptor tachyphylaxis/tolerance or cannabinoid dependence.
        
Title: Covalent inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by the carbamates JZL184 and URB597 Crow JA, Bittles V, Borazjani A, Potter PM, Ross MK Ref: Biochemical Pharmacology, 84:1215, 2012 : PubMed
Carboxylesterase type 1 (CES1) and CES2 are serine hydrolases located in the liver and small intestine. CES1 and CES2 actively participate in the metabolism of several pharmaceuticals. Recently, carbamate compounds were developed to inhibit members of the serine hydrolase family via covalent modification of the active site serine. URB597 and JZL184 inhibit fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively; however, carboxylesterases in liver have been identified as a major off-target. We report the kinetic rate constants for inhibition of human recombinant CES1 and CES2 by URB597 and JZL184. Bimolecular rate constants (k(inact)/K(i)) for inhibition of CES1 by JZL184 and URB597 were similar [3.9 (+/-0.2) x 10(3) M(-1) s(-1) and 4.5 (+/-1.3) x 10(3) M(-1) s(-1), respectively]. However, k(inact)/K(i) for inhibition of CES2 by JZL184 and URB597 were significantly different [2.3 (+/-1.3) x 10(2) M(-1) s(-1) and 3.9 (+/-1.0) x 10(3) M(-1) s(-1), respectively]. Rates of inhibition of CES1 and CES2 by URB597 were similar; however, CES1 and MAGL were more potently inhibited by JZL184 than CES2. We also determined kinetic constants for spontaneous reactivation of CES1 carbamoylated by either JZL184 or URB597 and CES1 diethylphosphorylated by paraoxon. The reactivation rate was significantly slower (4.5x) for CES1 inhibited by JZL184 than CES1 inhibited by URB597. Half-life of reactivation for CES1 carbamoylated by JZL184 was 49 +/- 15 h, which is faster than carboxylesterase turnover in HepG2 cells. Together, the results define the kinetics of inhibition for a class of drugs that target hydrolytic enzymes involved in drug and lipid metabolism.
        
Title: Spinal administration of the monoacylglycerol lipase inhibitor JZL184 produces robust inhibitory effects on nociceptive processing and the development of central sensitization in the rat Woodhams S, Wong A, Barrett D, Bennett A, Chapman V, Alexander S Ref: British Journal of Pharmacology, 167:1609, 2012 : PubMed
BACKGROUND AND PURPOSE: The cannabinoid receptor-mediated analgesic effects of 2-arachidonoylglycerol (2-AG) are limited by monoacylglycerol lipase (MAGL). 4-nitrophenyl 4-[bis (1,3-benzodioxol-5-yl) (hydroxy) methyl] piperidine-1-carboxylate (JZL184) is a potent inhibitor of MAGL in the mouse, though potency is reportedly reduced in the rat. Here we have assessed the effects of spinal inhibition of MAGL with JZL184 on nociceptive processing in rats. EXPERIMENTAL APPROACH: In vivo spinal electrophysiological assays in anaesthetized rats were used to determine the effects of spinal administration of JZL184 on spinal nociceptive processing in the presence and absence of hindpaw inflammation. Contributions of CB(1) receptors to these effects was assessed with AM251. Inhibition of 2-oleoylglycerol hydrolytic activity and alterations of 2-AG in the spinal cord after JZL 184 were also assessed. KEY RESULTS: Spinal JZL184 dose-dependently inhibited mechanically evoked responses of wide dynamic range (WDR) neurones in naive anaesthetized rats, in part via the CB(1) receptor. A single spinal administration of JZL184 abolished inflammation-induced expansion of the receptive fields of spinal WDR neurones. However, neither spinal nor systemic JZL184 altered levels of 2-AG, or 2-oleoylglycerol hydrolytic activity in the spinal cord, although JZL184 displayed robust inhibition of MAGL when incubated with spinal cord tissue in vitro. CONCLUSIONS AND IMPLICATIONS: JZL184 exerted robust anti-nociceptive effects at the level of the spinal cord in vivo and inhibited rat spinal cord MAGL activity in vitro. The discordance between in vivo and in vitro assays suggests that localized sites of action of JZL184 produce these profound functional inhibitory effects. LINKED ARTICLES: This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http:\/\/dx.doi.org/10.1111/bph.2012.167.issue-8.
        
Title: Enhancement of endocannabinoid signaling with JZL184, an inhibitor of the 2-arachidonoylglycerol hydrolyzing enzyme monoacylglycerol lipase, produces anxiolytic effects under conditions of high environmental aversiveness in rats Sciolino NR, Zhou W, Hohmann AG Ref: Pharmacol Res, 64:226, 2011 : PubMed
Dysregulation in signaling of the endocannabinoid 2-arachidonoylglycerol (2-AG) is implicated in hyperresponsiveness to stress. We hypothesized that blockade of monoacylglycerol lipase (MGL), the primary enzyme responsible for 2-AG deactivation in vivo, would produce context-dependent anxiolytic effects in rats. Environmental aversiveness was manipulated by varying illumination of an elevated plus maze. Percentage open arm time and numbers of open and closed arm entries were measured in rats receiving a single intraperitoneal (i.p.) injection of either vehicle, the MGL inhibitor JZL184 (1-8mg/kg), the benzodiazepine diazepam (1mg/kg), the cannabinoid CB(1) receptor antagonist rimonabant (1mg/kg), or JZL184 (8mg/kg) coadministered with rimonabant (1mg/kg). JZL184 (8mg/kg) produced anxiolytic-like effects (i.e., increased percentage open arm time and number of open arm entries) under high, but not low, levels of environmental aversiveness. Diazepam produced anxiolytic effects in either context. Rimonabant blocked the anxiolytic-like effects of JZL184, consistent with mediation by CB(1). Anxiolytic effects of JZL184 were preserved following chronic (8mg/kg per dayx6 days) administration. Chronic and acute JZL184 treatment similarly enhanced behavioral sensitivity to an exogenous cannabinoid (WIN55,212-2; 2.5mg/kg i.p.) 24 or 72h following the terminal injection, suggesting a pervasive effect of MGL inhibition on the endocannabinoid system. We attribute our results to alterations in emotion rather than locomotor activity as JZL184 did not alter the number of closed arm entries in the plus maze or produce motor ataxia in the bar test. Our results demonstrate that JZL184 has beneficial, context-dependent effects on anxiety in rats, presumably via inhibition of MGL-mediated hydrolysis of 2-AG. These data warrant further testing of MGL inhibitors to elucidate the functional role of 2-AG in controlling anxiety and stress responsiveness. Our data further implicate a role for 2-AG in the regulation of emotion and validate MGL as a therapeutic target.
        
Title: Inhibition of monoacylglycerol lipase by troglitazone, N-arachidonoyl dopamine and the irreversible inhibitor JZL184: comparison of two different assays Bjorklund E, Noren E, Nilsson J, Fowler CJ Ref: British Journal of Pharmacology, 161:1512, 2010 : PubMed
BACKGROUND AND PURPOSE: Drugs used clinically usually have a primary mechanism of action, but additional effects on other biological targets can contribute to their effects. A potentially useful additional target is the endocannabinoid metabolizing enzyme monoacylglycerol lipase (MGL). We have screened a range of drugs for inhibition of MGL and compared the observed potencies using different MGL enzyme assays. EXPERIMENTAL APPROACH: MGL activity was screened using recombinant human MGL (cell lysates and purified enzyme) with 4-nitrophenyl acetate (NPA) as substrate. 2-Oleolyglycerol metabolism by rat cerebellar cytosolic MGL and by recombinant MGL was also investigated. KEY RESULTS: Among the 96 compounds screened in the NPA assay, troglitazone, CP55,940, N-arachidonoyl dopamine and AM404 inhibited NPA hydrolysis by the lysates with IC(50) values of 1.1, 4.9, 0.78 and 3.1microM, respectively. The potency for troglitazone is in the same range as its primary pharmacological activity, activation of peroxisome proliferator-activated receptor (PPAR) gamma. Among PPARgamma ligands, the potency order towards human MGL was troglitazone > ciglitazone > rosiglitazone > 15-deoxy-Delta(12,14) -prostaglandin J(2) approximately CAY 10415 > CAY 10514. In contrast to the time-dependent inhibitor JZL184, the potency of troglitazone was dependent upon the enzyme assay system used. Thus, troglitazone inhibited rat cytosolic 2-oleoylglycerol hydrolysis less potently (IC(50) 41microM) than hydrolysis of NPA by the human MGL lysates. CONCLUSIONS AND IMPLICATIONS: 'Hits' in screening programmes for MGL inhibitors should be assessed in different MGL assays. Troglitazone may be a useful lead for the design of novel, dual action MGL inhibitors/PPARgamma activators.
Monoglyceride lipase (MGL) is a serine hydrolase that terminates the signaling of the primary endocannabinoid, 2-arachidonoyl glycerol (2-AG). Versatile high-throughput screening methods allowing the testing of MGL inhibitors are rare, thereby limiting the development and analysis of novel inhibitors. Here we describe an improved fluorescence-based technique that is capable of determining time- and dose-dependent inhibition of MGL with one or multiple binding sites and, at the same time, is capable of revealing the reversibility of inhibitor binding in a simple kinetic assay format. Known reference compounds as well as novel inhibitors, such as JZL184 and CAY10499, were evaluated for their MGL-binding properties and potency.
2-Arachidonoylglycerol (2-AG) and anandamide are endocannabinoids that activate the cannabinoid receptors CB1 and CB2. Endocannabinoid signaling is terminated by enzymatic hydrolysis, a process that for anandamide is mediated by fatty acid amide hydrolase (FAAH), and for 2-AG is thought to involve monoacylglycerol lipase (MAGL). FAAH inhibitors produce a select subset of the behavioral effects observed with CB1 agonists, which suggests a functional segregation of endocannabinoid signaling pathways in vivo. Testing this hypothesis, however, requires specific tools to independently block anandamide and 2-AG metabolism. Here, we report a potent and selective inhibitor of MAGL called JZL184 that, upon administration to mice, raises brain 2-AG by eight-fold without altering anandamide. JZL184-treated mice exhibited a broad array of CB1-dependent behavioral effects, including analgesia, hypothermia and hypomotility. These data indicate that 2-AG endogenously modulates several behavioral processes classically associated with the pharmacology of cannabinoids and point to overlapping and unique functions for 2-AG and anandamide in vivo.
        
Title: Characterization of monoacylglycerol lipase inhibition reveals differences in central and peripheral endocannabinoid metabolism Long JZ, Nomura DK, Cravatt BF Ref: Chemical Biology, 16:744, 2009 : PubMed
Monoacylglycerol lipase (MAGL) is a principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). We recently reported a piperidine carbamate, JZL184, that inhibits MAGL with high potency and selectivity. Here, we describe a comprehensive mechanistic characterization of JZL184. We provide evidence that JZL184 irreversibly inhibits MAGL via carbamoylation of the enzyme's serine nucleophile. Functional proteomic analysis of mice treated with JZL184 revealed that this inhibitor maintains good selectivity for MAGL across a wide range of central and peripheral tissues. Interestingly, MAGL blockade produced marked, tissue-specific differences in monoglyceride metabolism, with brain showing the most dramatic elevations in 2-AG and peripheral tissues often showing greater changes in other monoglycerides. Collectively, these studies indicate that MAGL exerts tissue-dependent control over endocannabinoid and monoglyceride metabolism and designate JZL184 as a selective tool to characterize the functions of MAGL in vivo.
        
Title: Blockade of 2-arachidonoylglycerol hydrolysis by selective monoacylglycerol lipase inhibitor 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) Enhances retrograde endocannabinoid signaling Pan B, Wang W, Long JZ, Sun D, Hillard CJ, Cravatt BF, Liu QS Ref: Journal of Pharmacology & Experimental Therapeutics, 331:591, 2009 : PubMed
Endocannabinoid (eCB) signaling mediates depolarization-induced suppression of excitation (DSE) and inhibition (DSI), two prominent forms of retrograde synaptic depression. N-Arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), two known eCBs, are degraded by fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. Selective blockade of FAAH and MAGL is critical for determining the roles of the eCBs in DSE/DSI and understanding how their action is regulated. 4-Nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) is a recently developed, highly selective, and potent MAGL inhibitor that increases 2-AG but not AEA concentrations in mouse brain. Here, we report that JZL184 prolongs DSE in Purkinje neurons in cerebellar slices and DSI in CA1 pyramidal neurons in hippocampal slices. The effect of JZL184 on DSE/DSI is mimicked by the nonselective MAGL inhibitor methyl arachidonyl fluorophosphonate. In contrast, neither the selective FAAH inhibitor cyclohexylcarbamic acid 3'-carbomoylbiphenyl-3-yl ester (URB597) nor FAAH knockout has a significant effect on DSE/DSI. JZL184 produces greater enhancement of DSE/DSI in mouse neurons than that in rat neurons. The latter finding is consistent with biochemical studies showing that JZL184 is more potent in inhibiting mouse MAGL than rat MAGL. These results indicate that the degradation of 2-AG by MAGL is the rate-limiting step that determines the time course of DSE/DSI and that JZL184 is a useful tool for the study of 2-AG-mediated signaling.
        
Title: Monoacylglycerol lipase limits the duration of endocannabinoid-mediated depolarization-induced suppression of excitation in autaptic hippocampal neurons Straiker A, Hu SS, Long JZ, Arnold A, Wager-Miller J, Cravatt BF, Mackie K Ref: Molecular Pharmacology, 76:1220, 2009 : PubMed
Depolarization-induced suppression of excitation (DSE) is a major form of cannabinoid-mediated short-term retrograde neuronal plasticity and is found in numerous brain regions. Autaptically cultured murine hippocampal neurons are an architecturally simple model for the study of cannabinoid signaling, including DSE. The transient nature of DSE--tens of seconds--is probably determined by the regulated hydrolysis of the endocannabinoid 2-arachidonoyl glycerol (2-AG). No less than five candidate enzymes have been considered to serve this role: fatty acid amide hydrolase (FAAH), cyclooxygenase-2 (COX-2), monoacylglycerol lipase (MGL), and alpha/beta-hydrolase domain (ABHD) 6 and 12. We previously found that FAAH and COX-2 do not have a role in determining the duration of autaptic DSE. In the current study, we found that two structurally distinct inhibitors of MGL [N-arachidonoyl maleimide and 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184)] prolong DSE in autaptic hippocampal neurons, whereas inhibition of ABHD6 by N-methyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4'-(aminocarbonyl)[1,1'-biphenyl]-4-yl ester, carbamic acid (WWL70) had no effect. In addition, we developed antibodies against MGL and ABHD6 and determined their expression in autaptic cultures. MGL is chiefly expressed at presynaptic terminals, optimally positioned to break down 2-AG that has engaged presynaptic CB(1) receptors. ABHD6 is expressed in two distinct locations on autaptic islands, including a prominent localization in some dendrites. In summary, we provide strong pharmacological and anatomical evidence that MGL regulates DSE in autaptic hippocampal neurons and, taken together with other studies, emphasizes that endocannabinoid signaling is terminated in temporally diverse ways.