Boore JL

References (8)

Title : Insights into bilaterian evolution from three spiralian genomes - Simakov_2013_Nature_493_526
Author(s) : Simakov O , Marletaz F , Cho SJ , Edsinger-Gonzales E , Havlak P , Hellsten U , Kuo DH , Larsson T , Lv J , Arendt D , Savage R , Osoegawa K , de Jong P , Grimwood J , Chapman JA , Shapiro H , Aerts A , Otillar RP , Terry AY , Boore JL , Grigoriev IV , Lindberg DR , Seaver EC , Weisblat DA , Putnam NH , Rokhsar DS
Ref : Nature , 493 :526 , 2013
Abstract : Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.
ESTHER : Simakov_2013_Nature_493_526
PubMedSearch : Simakov_2013_Nature_493_526
PubMedID: 23254933
Gene_locus related to this paper: capte-r7t7t5 , capte-r7tx98 , capte-r7ua57 , capte-r7ua73 , capte-ACHE1 , capte-ACHE2 , capte-ACHE3 , capte-ACHE4 , helro-ACHE1 , helro-ACHE1b , lotgi-ACHE1 , lotgi-ACHE2 , lotgi-v4aaa2 , lotgi-v3zx52 , lotgi-v4b4v9 , capte-r7tuq9 , capte-r7v997 , capte-r7vgb9 , lotgi-v3zwe9 , capte-r7tu45 , lotgi-v4bvy3 , lotgi-v3zh31 , capte-r7uie6 , lotgi-v4b898 , capte-r7u3w8 , capte-r7uxb2 , lotgi-v3za62 , capte-r7ux79 , capte-r7uq81 , capte-r7vcc3 , capte-r7ts12 , capte-r7u1x0 , capte-r7uhi1 , capte-r7vei7 , capte-r7v0v3 , lotgi-v4bvi8 , lotgi-v3zyd8 , capte-r7tzy6 , lotgi-v3z9i1 , helro-t1fsg3 , capte-x1yv75 , capte-x2b306 , lotgi-v3zcw8 , capte-r7thp6 , helro-t1fy80 , lotgi-v4bky5 , capte-r7tsq9 , lotgi-v4ali9 , lotgi-v4a9f2 , lotgi-v3zjj3 , helro-t1eej5 , helro-t1g9b7 , capte-r7tiy1 , capte-r7tbl5 , helro-t1exa6 , lotgi-v4a5l7 , helro-t1fm33 , capte-r7ud05 , capte-r7tql8 , capte-r7u5g6 , capte-r7u5z3 , capte-r7ue07 , lotgi-v3zk54 , lotgi-v4a4r1 , lotgi-v4aw76 , lotgi-v4b250 , lotgi-v4bbk1 , lotgi-v3zq85 , lotgi-v4a6s5 , lotgi-v4amq2 , lotgi-v4aqm2 , lotgi-v4crq0 , capte-r7tad7 , capte-r7vgm6 , lotgi-v4agl2 , lotgi-v3zur2 , lotgi-v4aui4 , capte-r7tlv8 , lotgi-v3zu07 , helro-t1g0w9

Title : Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana - Radakovits_2012_Nat.Commun_3_686
Author(s) : Radakovits R , Jinkerson RE , Fuerstenberg SI , Tae H , Settlage RE , Boore JL , Posewitz MC
Ref : Nat Commun , 3 :686 , 2012
Abstract : The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga.
ESTHER : Radakovits_2012_Nat.Commun_3_686
PubMedSearch : Radakovits_2012_Nat.Commun_3_686
PubMedID: 22353717
Gene_locus related to this paper: 9stra-w7tpn1

Title : The monarch butterfly genome yields insights into long-distance migration - Zhan_2011_Cell_147_1171
Author(s) : Zhan S , Merlin C , Boore JL , Reppert SM
Ref : Cell , 147 :1171 , 2011
Abstract : We present the draft 273 Mb genome of the migratory monarch butterfly (Danaus plexippus) and a set of 16,866 protein-coding genes. Orthology properties suggest that the Lepidoptera are the fastest evolving insect order yet examined. Compared to the silkmoth Bombyx mori, the monarch genome shares prominent similarity in orthology content, microsynteny, and protein family sizes. The monarch genome reveals a vertebrate-like opsin whose existence in insects is widespread; a full repertoire of molecular components for the monarch circadian clockwork; all members of the juvenile hormone biosynthetic pathway whose regulation shows unexpected sexual dimorphism; additional molecular signatures of oriented flight behavior; microRNAs that are differentially expressed between summer and migratory butterflies; monarch-specific expansions of chemoreceptors potentially important for long-distance migration; and a variant of the sodium/potassium pump that underlies a valuable chemical defense mechanism. The monarch genome enhances our ability to better understand the genetic and molecular basis of long-distance migration.
ESTHER : Zhan_2011_Cell_147_1171
PubMedSearch : Zhan_2011_Cell_147_1171
PubMedID: 22118469
Gene_locus related to this paper: danpl-a0a212fjb0 , danpl-ACHE2 , danpl-g6ci98 , danpl-g6ckz1 , danpl-g6clm2 , danpl-g6cm19 , danpl-g6cm20 , danpl-g6cm21 , danpl-g6cm38 , danpl-g6cma6 , danpl-g6cnf9 , danpl-g6cqk1 , danpl-g6cqk2 , danpl-g6cqk3 , danpl-g6cqm7 , danpl-g6cqm8 , danpl-g6cqp3 , danpl-g6cqs2 , danpl-g6ctg8 , danpl-g6ctk9 , danpl-g6ctw4 , danpl-g6cvv8 , danpl-g6cxc2 , danpl-g6d2e6 , danpl-g6d2t6 , danpl-g6d3i9 , danpl-g6d4m3 , danpl-g6d8w2 , danpl-g6d125 , danpl-g6d455 , danpl-g6da07 , danpl-g6da31 , danpl-g6dal9 , danpl-g6db68 , danpl-g6dec2 , danpl-g6dec3 , danpl-g6dej6 , danpl-g6dgy4 , danpl-g6dk77 , danpl-g6dke0 , danpl-g6dl80 , danpl-g6dmj2 , danpl-g6dq10.1 , danpl-g6dq10.2 , danpl-g6dq11 , danpl-g6dq12 , danpl-g6dsd7 , danpl-g6dsv4 , danpl-g6dt17 , danpl-g6dt18.1 , danpl-g6dt18.2 , danpl-g6dt19 , danpl-g6cv50 , danpl-g6dej9 , danpl-g6chs3 , danpl-g6dix4 , danpl-a0a212ek15 , danpl-a0a212eqw0 , danpl-a0a212f5w2 , danpl-a0a212ey73 , danpl-a0a212ekj2

Title : The ecoresponsive genome of Daphnia pulex - Colbourne_2011_Science_331_555
Author(s) : Colbourne JK , Pfrender ME , Gilbert D , Thomas WK , Tucker A , Oakley TH , Tokishita S , Aerts A , Arnold GJ , Basu MK , Bauer DJ , Caceres CE , Carmel L , Casola C , Choi JH , Detter JC , Dong Q , Dusheyko S , Eads BD , Frohlich T , Geiler-Samerotte KA , Gerlach D , Hatcher P , Jogdeo S , Krijgsveld J , Kriventseva EV , Kultz D , Laforsch C , Lindquist E , Lopez J , Manak JR , Muller J , Pangilinan J , Patwardhan RP , Pitluck S , Pritham EJ , Rechtsteiner A , Rho M , Rogozin IB , Sakarya O , Salamov A , Schaack S , Shapiro H , Shiga Y , Skalitzky C , Smith Z , Souvorov A , Sung W , Tang Z , Tsuchiya D , Tu H , Vos H , Wang M , Wolf YI , Yamagata H , Yamada T , Ye Y , Shaw JR , Andrews J , Crease TJ , Tang H , Lucas SM , Robertson HM , Bork P , Koonin EV , Zdobnov EM , Grigoriev IV , Lynch M , Boore JL
Ref : Science , 331 :555 , 2011
Abstract : We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.
ESTHER : Colbourne_2011_Science_331_555
PubMedSearch : Colbourne_2011_Science_331_555
PubMedID: 21292972
Gene_locus related to this paper: dappu-e9fut0 , dappu-e9fut9 , dappu-e9fvw6 , dappu-e9fxt4 , dappu-e9fyr6 , dappu-e9fzg6 , dappu-e9g1e2 , dappu-e9g1e6 , dappu-e9g1e7 , dappu-e9g1e8 , dappu-e9g1v3 , dappu-e9g1z2 , dappu-e9gb99 , dappu-e9gba0 , dappu-e9gcb4 , dappu-e9gdv5 , dappu-e9gdv7 , dappu-e9gi24 , dappu-e9gj77 , dappu-e9gja7 , dappu-e9gmp5 , dappu-e9gmr0 , dappu-e9gn32 , dappu-e9gp76 , dappu-e9gp82 , dappu-e9gp98 , dappu-e9gp99 , dappu-e9gvl2 , dappu-e9gzn7 , dappu-e9h1p4 , dappu-e9h2c8 , dappu-e9h2c9 , dappu-e9h6x9 , dappu-e9h6y4 , dappu-e9h7w9 , dappu-e9h8r4 , dappu-e9hd06 , dappu-e9hh56 , dappu-e9hh57 , dappu-e9hh59 , dappu-e9hmp4 , dappu-e9hp64 , dappu-e9hp65 , dappu-e9hpy8 , dappu-e9htg8 , dapul-ACHE1 , dapul-ACHE2 , dappu-e9gnj1 , dappu-e9gu36 , dappu-e9hpc4 , dappu-e9gb07 , dappu-e9glp6 , dappu-e9glp5 , dappu-e9gjv2 , dappu-e9h0c7 , dappu-e9g4g2 , dappu-e9gw69 , dappu-e9h3h9 , dappu-e9g545 , dappu-e9gw71 , dappu-e9gw68 , dappu-e9h3e7 , dappu-e9gfg9 , dappu-e9fvy6 , dappu-e9hgt2

Title : Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome - Baxter_2010_Science_330_1549
Author(s) : Baxter L , Tripathy S , Ishaque N , Boot N , Cabral A , Kemen E , Thines M , Ah-Fong A , Anderson R , Badejoko W , Bittner-Eddy P , Boore JL , Chibucos MC , Coates M , Dehal P , Delehaunty K , Dong S , Downton P , Dumas B , Fabro G , Fronick C , Fuerstenberg SI , Fulton L , Gaulin E , Govers F , Hughes L , Humphray S , Jiang RH , Judelson H , Kamoun S , Kyung K , Meijer H , Minx P , Morris P , Nelson J , Phuntumart V , Qutob D , Rehmany A , Rougon-Cardoso A , Ryden P , Torto-Alalibo T , Studholme D , Wang Y , Win J , Wood J , Clifton SW , Rogers J , Van den Ackerveken G , Jones JD , McDowell JM , Beynon J , Tyler BM
Ref : Science , 330 :1549 , 2010
Abstract : Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.
ESTHER : Baxter_2010_Science_330_1549
PubMedSearch : Baxter_2010_Science_330_1549
PubMedID: 21148394
Gene_locus related to this paper: hyaae-m4b4d8 , hyaae-m4b4e0 , hyaae-m4bkr1 , hyaae-m4bkw7

Title : The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants - Rensing_2008_Science_319_64
Author(s) : Rensing SA , Lang D , Zimmer AD , Terry A , Salamov A , Shapiro H , Nishiyama T , Perroud PF , Lindquist EA , Kamisugi Y , Tanahashi T , Sakakibara K , Fujita T , Oishi K , Shin IT , Kuroki Y , Toyoda A , Suzuki Y , Hashimoto S , Yamaguchi K , Sugano S , Kohara Y , Fujiyama A , Anterola A , Aoki S , Ashton N , Barbazuk WB , Barker E , Bennetzen JL , Blankenship R , Cho SH , Dutcher SK , Estelle M , Fawcett JA , Gundlach H , Hanada K , Heyl A , Hicks KA , Hughes J , Lohr M , Mayer K , Melkozernov A , Murata T , Nelson DR , Pils B , Prigge M , Reiss B , Renner T , Rombauts S , Rushton PJ , Sanderfoot A , Schween G , Shiu SH , Stueber K , Theodoulou FL , Tu H , Van de Peer Y , Verrier PJ , Waters E , Wood A , Yang L , Cove D , Cuming AC , Hasebe M , Lucas S , Mishler BD , Reski R , Grigoriev IV , Quatrano RS , Boore JL
Ref : Science , 319 :64 , 2008
Abstract : We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.
ESTHER : Rensing_2008_Science_319_64
PubMedSearch : Rensing_2008_Science_319_64
PubMedID: 18079367
Gene_locus related to this paper: phypa-a9rbi6 , phypa-a9rfh1 , phypa-a9rg19 , phypa-a9rgt9 , phypa-a9rhz9 , phypa-a9rkj1 , phypa-a9rns2 , phypa-a9rp52 , phypa-a9rq03 , phypa-a9ry17 , phypa-a9ry72 , phypa-a9s5n8 , phypa-a9s6w1 , phypa-a9s8c7 , phypa-a9s299 , phypa-a9san7 , phypa-a9sc75 , phypa-a9se75 , phypa-a9sg07 , phypa-a9skf7 , phypa-a9skr1 , phypa-a9skw1 , phypa-a9sl58 , phypa-a9slp7 , phypa-a9smq5 , phypa-a9sp13 , phypa-a9ssb0 , phypa-a9sse1 , phypa-a9ssf6 , phypa-a9st85 , phypa-a9sx74 , phypa-a9sy58 , phypa-a9syy4 , phypa-a9t0n4 , phypa-a9t0p4 , phypa-a9t1j2 , phypa-a9t5h1 , phypa-a9t7g6 , phypa-a9t8u8 , phypa-a9t9c9 , phypa-a9t9d9 , phypa-a0a7i4d2t7 , phypa-a9t498 , phypa-a9tbu4 , phypa-a9tc36 , phypa-a9tds0 , phypa-a9te64 , phypa-a9tfw2 , phypa-a9tin6 , phypa-a9tja4 , phypa-a9tmp3 , phypa-a9tmr4 , phypa-a9tql4 , phypa-a9tr83 , phypa-a9tsl1 , phypa-a9tsv6 , phypa-a9tu05 , phypa-a9tw81 , phypa-a9tyr8 , phypa-a9u0c9 , phypa-a9u0k3 , phypa-a9u0p4 , phypa-a9u2u7 , phypa-a9u3s0 , phypa-a9tfm7 , phypa-a9tfp6 , phypa-a9syg9 , phypa-a9tzk2 , phypa-a9tvg4 , phypa-a9t1y4 , phypa-a9tqt6 , phypa-a9st18 , phypa-a9tix9 , phypa-a0a2k1kfe3 , phypa-a9sqk3 , phypa-a0a2k1ie71 , phypa-a0a2k1kg29 , phypa-a0a2k1iji3

Title : Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni - Hoegg_2007_BMC.Genomics_8_317
Author(s) : Hoegg S , Boore JL , Kuehl JV , Meyer A
Ref : BMC Genomics , 8 :317 , 2007
Abstract : BACKGROUND: Teleost fish have seven paralogous clusters of Hox genes stemming from two complete genome duplications early in vertebrate evolution, and an additional genome duplication during the evolution of ray-finned fish, followed by the secondary loss of one cluster. Gene duplications on the one hand, and the evolution of regulatory sequences on the other, are thought to be among the most important mechanisms for the evolution of new gene functions. Cichlid fish, the largest family of vertebrates with about 2500 species, are famous examples of speciation and morphological diversity. Since this diversity could be based on regulatory changes, we chose to study the coding as well as putative regulatory regions of their Hox clusters within a comparative genomic framework.
RESULTS: We sequenced and characterized all seven Hox clusters of Astatotilapia burtoni, a haplochromine cichlid fish. Comparative analyses with data from other teleost fish such as zebrafish, two species of pufferfish, stickleback and medaka were performed. We traced losses of genes and microRNAs of Hox clusters, the medaka lineage seems to have lost more microRNAs than the other fish lineages. We found that each teleost genome studied so far has a unique set of Hox genes. The hoxb7a gene was lost independently several times during teleost evolution, the most recent event being within the radiation of East African cichlid fish. The conserved non-coding sequences (CNS) encompass a surprisingly large part of the clusters, especially in the HoxAa, HoxCa, and HoxDa clusters. Across all clusters, we observe a trend towards an increased content of CNS towards the anterior end. CONCLUSION: The gene content of Hox clusters in teleost fishes is more variable than expected, with each species studied so far having a different set. Although the highest loss rate of Hox genes occurred immediately after whole genome duplications, our analyses showed that gene loss continued and is still ongoing in all teleost lineages. Along with the gene content, the CNS content also varies across clusters. The excess of CNS at the anterior end of clusters could imply a stronger conservation of anterior expression patters than those towards more posterior areas of the embryo.
ESTHER : Hoegg_2007_BMC.Genomics_8_317
PubMedSearch : Hoegg_2007_BMC.Genomics_8_317
PubMedID: 17845724
Gene_locus related to this paper: hapbu-a8dsv5

Title : Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis - Tyler_2006_Science_313_1261
Author(s) : Tyler BM , Tripathy S , Zhang X , Dehal P , Jiang RH , Aerts A , Arredondo FD , Baxter L , Bensasson D , Beynon JL , Chapman J , Damasceno CM , Dorrance AE , Dou D , Dickerman AW , Dubchak IL , Garbelotto M , Gijzen M , Gordon SG , Govers F , Grunwald NJ , Huang W , Ivors KL , Jones RW , Kamoun S , Krampis K , Lamour KH , Lee MK , McDonald WH , Medina M , Meijer HJ , Nordberg EK , Maclean DJ , Ospina-Giraldo MD , Morris PF , Phuntumart V , Putnam NH , Rash S , Rose JK , Sakihama Y , Salamov AA , Savidor A , Scheuring CF , Smith BM , Sobral BW , Terry A , Torto-Alalibo TA , Win J , Xu Z , Zhang H , Grigoriev IV , Rokhsar DS , Boore JL
Ref : Science , 313 :1261 , 2006
Abstract : Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oomycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oomycete avirulence genes.
ESTHER : Tyler_2006_Science_313_1261
PubMedSearch : Tyler_2006_Science_313_1261
PubMedID: 16946064
Gene_locus related to this paper: phyrm-h3ga89 , phyrm-h3gbl6.1 , phyrm-h3gbl6.2 , phyrm-h3gbl7 , phyrm-h3gdd4 , phyrm-h3gl36 , phyrm-h3gq42 , phyrm-h3gx86 , phyrm-h3gyi2 , phyrm-h3gyi3 , phyrm-h3gyi4 , phyrm-h3h292 , phyrm-h3h293 , phyrm-h3h967 , phyrm-h3hcf9 , physp-g4ynp3 , physp-g4yut6 , physp-g4yut8 , physp-g4yw23 , physp-g4zis3 , physp-g4zqe3 , physp-g4zqe4 , physp-g4zqf0 , physp-g4zqn9 , physp-g4zwy9 , physp-g5a582 , physp-g5a583 , physp-g5aav9 , phyrm-h3g9e7 , physp-g4zwu9 , phyrm-h3ggp1 , physp-g4ztq5 , physp-g4zwu8 , physp-g4zwv7 , physp-g4zwv6 , physp-g4zwv0 , physp-g4zwv8 , phyrm-h3gp95 , phyrm-h3g6r5 , physp-g4zwv9 , physp-g5a510 , phyrm-h3glu3 , physp-g5aci1 , phyrm-h3h2d0 , physp-g4ztb2 , physp-g4yg47 , phyrm-h3h2c9 , physp-g4ztb3 , phyrm-h3gvj3 , phyrm-h3gy62 , physp-g4yg46 , physp-g4zdt9 , phyrm-h3gdh5 , physp-g4zm41 , physp-g5abj7 , phyrm-h3gz76 , physp-g5a425 , phyrm-h3h080 , physp-g4ytv0 , phyrm-h3gcw7