Christensen M

References (4)

Title : A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis - Siegel_2009_Nat.Cell.Biol_11_705
Author(s) : Siegel G , Obernosterer G , Fiore R , Oehmen M , Bicker S , Christensen M , Khudayberdiev S , Leuschner PF , Busch CJ , Kane C , Hubel K , Dekker F , Hedberg C , Rengarajan B , Drepper C , Waldmann H , Kauppinen S , Greenberg ME , Draguhn A , Rehmsmeier M , Martinez J , Schratt GM
Ref : Nat Cell Biol , 11 :705 , 2009
Abstract : The microRNA pathway has been implicated in the regulation of synaptic protein synthesis and ultimately in dendritic spine morphogenesis, a phenomenon associated with long-lasting forms of memory. However, the particular microRNAs (miRNAs) involved are largely unknown. Here we identify specific miRNAs that function at synapses to control dendritic spine structure by performing a functional screen. One of the identified miRNAs, miR-138, is highly enriched in the brain, localized within dendrites and negatively regulates the size of dendritic spines in rat hippocampal neurons. miR-138 controls the expression of acyl protein thioesterase 1 (APT1), an enzyme regulating the palmitoylation status of proteins that are known to function at the synapse, including the alpha(13) subunits of G proteins (Galpha(13)). RNA-interference-mediated knockdown of APT1 and the expression of membrane-localized Galpha(13) both suppress spine enlargement caused by inhibition of miR-138, suggesting that APT1-regulated depalmitoylation of Galpha(13) might be an important downstream event of miR-138 function. Our results uncover a previously unknown miRNA-dependent mechanism in neurons and demonstrate a previously unrecognized complexity of miRNA-dependent control of dendritic spine morphogenesis.
ESTHER : Siegel_2009_Nat.Cell.Biol_11_705
PubMedSearch : Siegel_2009_Nat.Cell.Biol_11_705
PubMedID: 19465924

Title : The sequence and analysis of duplication-rich human chromosome 16 - Martin_2004_Nature_432_988
Author(s) : Martin J , Han C , Gordon LA , Terry A , Prabhakar S , She X , Xie G , Hellsten U , Chan YM , Altherr M , Couronne O , Aerts A , Bajorek E , Black S , Blumer H , Branscomb E , Brown NC , Bruno WJ , Buckingham JM , Callen DF , Campbell CS , Campbell ML , Campbell EW , Caoile C , Challacombe JF , Chasteen LA , Chertkov O , Chi HC , Christensen M , Clark LM , Cohn JD , Denys M , Detter JC , Dickson M , Dimitrijevic-Bussod M , Escobar J , Fawcett JJ , Flowers D , Fotopulos D , Glavina T , Gomez M , Gonzales E , Goodstein D , Goodwin LA , Grady DL , Grigoriev I , Groza M , Hammon N , Hawkins T , Haydu L , Hildebrand CE , Huang W , Israni S , Jett J , Jewett PB , Kadner K , Kimball H , Kobayashi A , Krawczyk MC , Leyba T , Longmire JL , Lopez F , Lou Y , Lowry S , Ludeman T , Manohar CF , Mark GA , McMurray KL , Meincke LJ , Morgan J , Moyzis RK , Mundt MO , Munk AC , Nandkeshwar RD , Pitluck S , Pollard M , Predki P , Parson-Quintana B , Ramirez L , Rash S , Retterer J , Ricke DO , Robinson DL , Rodriguez A , Salamov A , Saunders EH , Scott D , Shough T , Stallings RL , Stalvey M , Sutherland RD , Tapia R , Tesmer JG , Thayer N , Thompson LS , Tice H , Torney DC , Tran-Gyamfi M , Tsai M , Ulanovsky LE , Ustaszewska A , Vo N , White PS , Williams AL , Wills PL , Wu JR , Wu K , Yang J , DeJong P , Bruce D , Doggett NA , Deaven L , Schmutz J , Grimwood J , Richardson P , Rokhsar DS , Eichler EE , Gilna P , Lucas SM , Myers RM , Rubin EM , Pennacchio LA
Ref : Nature , 432 :988 , 2004
Abstract : Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,670 aligned transcripts, 19 transfer RNA genes, 341 pseudogenes and three RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukaemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. Whereas the segmental duplications of chromosome 16 are enriched in the relatively gene-poor pericentromere of the p arm, some are involved in recent gene duplication and conversion events that are likely to have had an impact on the evolution of primates and human disease susceptibility.
ESTHER : Martin_2004_Nature_432_988
PubMedSearch : Martin_2004_Nature_432_988
PubMedID: 15616553
Gene_locus related to this paper: human-CES1 , human-CES2 , human-CES3 , human-CES4A , human-CES5A

Title : The DNA sequence and biology of human chromosome 19 - Grimwood_2004_Nature_428_529
Author(s) : Grimwood J , Gordon LA , Olsen A , Terry A , Schmutz J , Lamerdin J , Hellsten U , Goodstein D , Couronne O , Tran-Gyamfi M , Aerts A , Altherr M , Ashworth L , Bajorek E , Black S , Branscomb E , Caenepeel S , Carrano A , Caoile C , Chan YM , Christensen M , Cleland CA , Copeland A , Dalin E , Dehal P , Denys M , Detter JC , Escobar J , Flowers D , Fotopulos D , Garcia C , Georgescu AM , Glavina T , Gomez M , Gonzales E , Groza M , Hammon N , Hawkins T , Haydu L , Ho I , Huang W , Israni S , Jett J , Kadner K , Kimball H , Kobayashi A , Larionov V , Leem SH , Lopez F , Lou Y , Lowry S , Malfatti S , Martinez D , McCready P , Medina C , Morgan J , Nelson K , Nolan M , Ovcharenko I , Pitluck S , Pollard M , Popkie AP , Predki P , Quan G , Ramirez L , Rash S , Retterer J , Rodriguez A , Rogers S , Salamov A , Salazar A , She X , Smith D , Slezak T , Solovyev V , Thayer N , Tice H , Tsai M , Ustaszewska A , Vo N , Wagner M , Wheeler J , Wu K , Xie G , Yang J , Dubchak I , Furey TS , DeJong P , Dickson M , Gordon D , Eichler EE , Pennacchio LA , Richardson P , Stubbs L , Rokhsar DS , Myers RM , Rubin EM , Lucas SM
Ref : Nature , 428 :529 , 2004
Abstract : Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.
ESTHER : Grimwood_2004_Nature_428_529
PubMedSearch : Grimwood_2004_Nature_428_529
PubMedID: 15057824

Title : Rhizomucor miehei triglyceride lipase is synthesized as a precursor - Boel_1988_Lipids_230_701
Author(s) : Boel E , Huge-Jensen B , Christensen M , Thim L , Fiil NP
Ref : Lipids , 23 (7) :701 , 1988
Abstract : A Rhizomucor miehei cDNA library constructed in Escherichia coli was screened with synthetic oligonucleotides designed from knowledge of a partial amino acid sequence of the secreted triglyceride lipase (triacylglycerol acylhydrolase EC 3.1.1.3) from this fungus. Lipase-specific recombinants were isolated and their insert sequenced. Unlike characterized bacterial and mammalian triglyceride lipases, the fungal enzyme is synthesized as a precursor, including a 70 amino acid residue propeptide between the 24 amino acid residues of the signal peptide and the 269 residues of the mature enzyme. The precursor processing mechanism, which involves cleavage between a methionine and a serine residue, is unknown. By sequence comparison with other lipases, a serine residue involved in substrate binding was identified in the fungal lipase. The sequence around this residue is well-conserved among characterized lipases. Conservation of an intron in an isolated cDNA recombinant and immunoprecipitation of in vitro synthesized R. miehei translation products indicates that the expression of the lipase gene might involve inefficient mRNA splicing.
ESTHER : Boel_1988_Lipids_230_701
PubMedSearch : Boel_1988_Lipids_230_701
PubMedID: 3419283
Gene_locus related to this paper: rhimi-lipas