Goodstein D

References (9)

Title : The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution - Lang_2018_Plant.J_93_515
Author(s) : Lang D , Ullrich KK , Murat F , Fuchs J , Jenkins J , Haas FB , Piednoel M , Gundlach H , Van Bel M , Meyberg R , Vives C , Morata J , Symeonidi A , Hiss M , Muchero W , Kamisugi Y , Saleh O , Blanc G , Decker EL , van Gessel N , Grimwood J , Hayes RD , Graham SW , Gunter LE , McDaniel SF , Hoernstein SNW , Larsson A , Li FW , Perroud PF , Phillips J , Ranjan P , Rokshar DS , Rothfels CJ , Schneider L , Shu S , Stevenson DW , Thummler F , Tillich M , Villarreal Aguilar JC , Widiez T , Wong GK , Wymore A , Zhang Y , Zimmer AD , Quatrano RS , Mayer KFX , Goodstein D , Casacuberta JM , Vandepoele K , Reski R , Cuming AC , Tuskan GA , Maumus F , Salse J , Schmutz J , Rensing SA
Ref : Plant J , 93 :515 , 2018
Abstract : The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.
ESTHER : Lang_2018_Plant.J_93_515
PubMedSearch : Lang_2018_Plant.J_93_515
PubMedID: 29237241
Gene_locus related to this paper: phypa-a9tc36 , phypa-a0a2k1kfe3 , phypa-a9sqk3 , phypa-a0a2k1ie71 , phypa-a0a2k1kg29 , phypa-a0a2k1iji3

Title : The genome of the Western clawed frog Xenopus tropicalis - Hellsten_2010_Science_328_633
Author(s) : Hellsten U , Harland RM , Gilchrist MJ , Hendrix D , Jurka J , Kapitonov V , Ovcharenko I , Putnam NH , Shu S , Taher L , Blitz IL , Blumberg B , Dichmann DS , Dubchak I , Amaya E , Detter JC , Fletcher R , Gerhard DS , Goodstein D , Graves T , Grigoriev IV , Grimwood J , Kawashima T , Lindquist E , Lucas SM , Mead PE , Mitros T , Ogino H , Ohta Y , Poliakov AV , Pollet N , Robert J , Salamov A , Sater AK , Schmutz J , Terry A , Vize PD , Warren WC , Wells D , Wills A , Wilson RK , Zimmerman LB , Zorn AM , Grainger R , Grammer T , Khokha MK , Richardson PM , Rokhsar DS
Ref : Science , 328 :633 , 2010
Abstract : The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.
ESTHER : Hellsten_2010_Science_328_633
PubMedSearch : Hellsten_2010_Science_328_633
PubMedID: 20431018
Gene_locus related to this paper: xenla-q6pcj9 , xentr-a9umk0 , xentr-abhdb , xentr-ACHE , xentr-b0bm77 , xentr-b1h0y7 , xentr-b2guc4 , xentr-b7zt03 , xentr-b7ztj4 , xentr-BCHE1 , xentr-BCHE2 , xentr-cxest2 , xentr-d2x2k4 , xentr-d2x2k6 , xentr-f6rff6 , xentr-f6v0g3 , xentr-f6v2j6 , xentr-f6v3z1 , xentr-f6y4c8 , xentr-f6yve5 , xentr-f7a4y9 , xentr-f7acc5 , xentr-f7e2e2 , xentr-LOC394897 , xentr-ndrg1 , xentr-q0vfb6 , xentr-f7cpl7 , xentr-f6yj44 , xentr-f7ejk4 , xentr-f6q8j8 , xentr-f6z8f0 , xentr-f7d709 , xentr-b0bmb8 , xentr-f7af63 , xentr-a0a1b8y2w9 , xentr-f7d4k9 , xentr-f6r032 , xentr-f6yvq3 , xentr-a0a1b8y2z3 , xentr-f7afg4 , xentr-f6xb15 , xentr-f7e1r2 , xentr-a4ihf1 , xentr-f7eue5 , xentr-f6u7u3 , xentr-f172a , xentr-f7equ8 , xentr-f7dd89 , xentr-a9jtx5

Title : Genome sequence of the palaeopolyploid soybean - Schmutz_2010_Nature_463_178
Author(s) : Schmutz J , Cannon SB , Schlueter J , Ma J , Mitros T , Nelson W , Hyten DL , Song Q , Thelen JJ , Cheng J , Xu D , Hellsten U , May GD , Yu Y , Sakurai T , Umezawa T , Bhattacharyya MK , Sandhu D , Valliyodan B , Lindquist E , Peto M , Grant D , Shu S , Goodstein D , Barry K , Futrell-Griggs M , Abernathy B , Du J , Tian Z , Zhu L , Gill N , Joshi T , Libault M , Sethuraman A , Zhang XC , Shinozaki K , Nguyen HT , Wing RA , Cregan P , Specht J , Grimwood J , Rokhsar D , Stacey G , Shoemaker RC , Jackson SA
Ref : Nature , 463 :178 , 2010
Abstract : Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.
ESTHER : Schmutz_2010_Nature_463_178
PubMedSearch : Schmutz_2010_Nature_463_178
PubMedID: 20075913
Gene_locus related to this paper: soybn-c6t4m5 , soybn-c6t4p4 , soybn-c6tav4 , soybn-c6tdf9 , soybn-c6tiz7 , soybn-c6tmg3 , soybn-i1jgq5 , soybn-i1kpj2 , soybn-i1kwe7 , soybn-i1l7e3 , soybn-i1l497 , soybn-i1ll09 , soybn-i1lpi4 , soybn-i1jcw2 , soybn-i1jcw3 , soybn-i1jcw4 , soybn-i1jcw7 , soybn-i1k217 , soybn-i1kfz3 , soybn-i1lhi0 , soybn-k7k6s4 , soybn-i1jtw1 , soybn-c6tas4 , soybn-i1m910 , soybn-c6t7k8 , soybn-i1k636 , soybn-i1kju7 , soybn-i1j4c6 , soybn-i1lbk2 , soybn-i1jqy5 , soybn-i1nbj8 , soybn-i1j855 , soybn-i1l5a3 , soybn-k7mt28 , soybn-i1lau7 , soybn-i1lay0 , soybn-i1net3 , soybn-i1jr09 , soybn-i1ms08 , soybn-i1mmh5 , soybn-i1mly5 , soybn-i1mmh3 , soybn-i1mmh4 , soybn-i1ngu7 , soybn-k7ll20 , soybn-i1mly4 , soybn-a0a0r0i9y7 , soybn-a0a0r0j241 , soybn-i1les8 , soybn-k7n313 , soybn-i1kfj1 , soybn-a0a0r0k7x4 , soybn-i1ly30 , soybn-i1mwr8 , soybn-i1kfg5 , soybn-i1kly2 , soybn-a0a0r0ixi2 , soybn-i1jew0 , glyso-a0a445l5n1 , soybn-i1kfz9 , soybn-i1jqs1 , soybn-i1nbc7 , soybn-k7mm57 , soybn-a0a0r0fec7 , soybn-a0a0r0hcn9 , soybn-i1jx17 , soybn-k7kvv2 , soybn-i1kcl6 , soybn-i1kcl7 , soybn-i1jrc3 , soybn-i1nbz1 , soybn-a0a0r0euk2 , soybn-a0a0r0fx16 , soybn-a0a0r0k3t3 , soybn-i1kuc7 , soybn-i1lvy4

Title : The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans - King_2008_Nature_451_783
Author(s) : King N , Westbrook MJ , Young SL , Kuo A , Abedin M , Chapman J , Fairclough S , Hellsten U , Isogai Y , Letunic I , Marr M , Pincus D , Putnam N , Rokas A , Wright KJ , Zuzow R , Dirks W , Good M , Goodstein D , Lemons D , Li W , Lyons JB , Morris A , Nichols S , Richter DJ , Salamov A , Sequencing JG , Bork P , Lim WA , Manning G , Miller WT , McGinnis W , Shapiro H , Tjian R , Grigoriev IV , Rokhsar D
Ref : Nature , 451 :783 , 2008
Abstract : Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron-rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans.
ESTHER : King_2008_Nature_451_783
PubMedSearch : King_2008_Nature_451_783
PubMedID: 18273011
Gene_locus related to this paper: monbe-a9up87 , monbe-a9uq69 , monbe-a9uq70 , monbe-a9uqa7 , monbe-a9urz6 , monbe-a9usu1 , monbe-a9usy8 , monbe-a9uta2 , monbe-a9uu09 , monbe-a9uxl2 , monbe-a9uy23 , monbe-a9uy95 , monbe-a9uym3 , monbe-a9uyw1 , monbe-a9uzc1 , monbe-a9v0e1 , monbe-a9v2b0 , monbe-a9v3a5 , monbe-a9v3t2 , monbe-a9v4h5 , monbe-a9v6i1 , monbe-a9v7b2 , monbe-a9v7c1 , monbe-a9v8k9 , monbe-a9v8u8 , monbe-a9v9i9 , monbe-a9v9k6 , monbe-a9v028 , monbe-a9v108 , monbe-a9v315 , monbe-a9v345 , monbe-a9v368 , monbe-a9v719 , monbe-a9v871 , monbe-a9vac5 , monbe-a9vah5 , monbe-a9van7 , monbe-a9vbp2 , monbe-a9vcn6 , monbe-a9vd99 , monbe-a9vdj5 , monbe-a9vag0

Title : The Chlamydomonas genome reveals the evolution of key animal and plant functions - Merchant_2007_Science_318_245
Author(s) : Merchant SS , Prochnik SE , Vallon O , Harris EH , Karpowicz SJ , Witman GB , Terry A , Salamov A , Fritz-Laylin LK , Marechal-Drouard L , Marshall WF , Qu LH , Nelson DR , Sanderfoot AA , Spalding MH , Kapitonov VV , Ren Q , Ferris P , Lindquist E , Shapiro H , Lucas SM , Grimwood J , Schmutz J , Cardol P , Cerutti H , Chanfreau G , Chen CL , Cognat V , Croft MT , Dent R , Dutcher S , Fernandez E , Fukuzawa H , Gonzalez-Ballester D , Gonzalez-Halphen D , Hallmann A , Hanikenne M , Hippler M , Inwood W , Jabbari K , Kalanon M , Kuras R , Lefebvre PA , Lemaire SD , Lobanov AV , Lohr M , Manuell A , Meier I , Mets L , Mittag M , Mittelmeier T , Moroney JV , Moseley J , Napoli C , Nedelcu AM , Niyogi K , Novoselov SV , Paulsen IT , Pazour G , Purton S , Ral JP , Riano-Pachon DM , Riekhof W , Rymarquis L , Schroda M , Stern D , Umen J , Willows R , Wilson N , Zimmer SL , Allmer J , Balk J , Bisova K , Chen CJ , Elias M , Gendler K , Hauser C , Lamb MR , Ledford H , Long JC , Minagawa J , Page MD , Pan J , Pootakham W , Roje S , Rose A , Stahlberg E , Terauchi AM , Yang P , Ball S , Bowler C , Dieckmann CL , Gladyshev VN , Green P , Jorgensen R , Mayfield S , Mueller-Roeber B , Rajamani S , Sayre RT , Brokstein P , Dubchak I , Goodstein D , Hornick L , Huang YW , Jhaveri J , Luo Y , Martinez D , Ngau WC , Otillar B , Poliakov A , Porter A , Szajkowski L , Werner G , Zhou K , Grigoriev IV , Rokhsar DS , Grossman AR
Ref : Science , 318 :245 , 2007
Abstract : Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
ESTHER : Merchant_2007_Science_318_245
PubMedSearch : Merchant_2007_Science_318_245
PubMedID: 17932292
Gene_locus related to this paper: chlre-a0a2k3e2k6 , chlre-a8hmd4 , chlre-a8hqa9 , chlre-a8htq0 , chlre-a8hus6.1 , chlre-a8hus6.2 , chlre-a8icg4 , chlre-a8iwm0 , chlre-a8ize5 , chlre-a8j2s9 , chlre-a8j5w6 , chlre-a8j7f8 , chlre-a8j8u9 , chlre-a8j8v0 , chlre-a8j9u6 , chlre-a8j143 , chlre-a8j248 , chlre-a8jd32 , chlre-a8jd42 , chlre-a8jgj2 , chlre-a8jhc8 , chlre-a8jhe5 , chlre-a8iwj1 , chlre-a8j7d5 , chlre-a0a2k3dii0

Title : The genome of black cottonwood, Populus trichocarpa (Torr. &\; Gray) - Tuskan_2006_Science_313_1596
Author(s) : Tuskan GA , Difazio S , Jansson S , Bohlmann J , Grigoriev I , Hellsten U , Putnam N , Ralph S , Rombauts S , Salamov A , Schein J , Sterck L , Aerts A , Bhalerao RR , Bhalerao RP , Blaudez D , Boerjan W , Brun A , Brunner A , Busov V , Campbell M , Carlson J , Chalot M , Chapman J , Chen GL , Cooper D , Coutinho PM , Couturier J , Covert S , Cronk Q , Cunningham R , Davis J , Degroeve S , Dejardin A , dePamphilis C , Detter J , Dirks B , Dubchak I , Duplessis S , Ehlting J , Ellis B , Gendler K , Goodstein D , Gribskov M , Grimwood J , Groover A , Gunter L , Hamberger B , Heinze B , Helariutta Y , Henrissat B , Holligan D , Holt R , Huang W , Islam-Faridi N , Jones S , Jones-Rhoades M , Jorgensen R , Joshi C , Kangasjarvi J , Karlsson J , Kelleher C , Kirkpatrick R , Kirst M , Kohler A , Kalluri U , Larimer F , Leebens-Mack J , Leple JC , Locascio P , Lou Y , Lucas S , Martin F , Montanini B , Napoli C , Nelson DR , Nelson C , Nieminen K , Nilsson O , Pereda V , Peter G , Philippe R , Pilate G , Poliakov A , Razumovskaya J , Richardson P , Rinaldi C , Ritland K , Rouze P , Ryaboy D , Schmutz J , Schrader J , Segerman B , Shin H , Siddiqui A , Sterky F , Terry A , Tsai CJ , Uberbacher E , Unneberg P , Vahala J , Wall K , Wessler S , Yang G , Yin T , Douglas C , Marra M , Sandberg G , Van de Peer Y , Rokhsar D
Ref : Science , 313 :1596 , 2006
Abstract : We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.
ESTHER : Tuskan_2006_Science_313_1596
PubMedSearch : Tuskan_2006_Science_313_1596
PubMedID: 16973872
Gene_locus related to this paper: burvg-a4jw31 , delas-a9c1v9 , poptr-a9pfp5 , poptr-a9ph43 , poptr-a9ph71 , poptr-a9pha7 , poptr-b9giq0 , poptr-b9gjs0 , poptr-b9gl72 , poptr-b9gmx8 , poptr-b9gnp9 , poptr-b9gny4 , poptr-b9grg2 , poptr-b9gsc2 , poptr-b9gvp3 , poptr-b9gvs3 , poptr-b9gwn9 , poptr-b9gy32 , poptr-b9gyq1 , poptr-b9gys8 , poptr-b9h0h0 , poptr-b9h4j2 , poptr-b9h6c2 , poptr-b9h6c5 , poptr-b9h6l8 , poptr-b9h8c9 , poptr-b9h301 , poptr-b9h579 , poptr-b9hbl2 , poptr-b9hbw5 , poptr-b9hcn9 , poptr-b9hee0 , poptr-b9hee2 , poptr-b9hee5 , poptr-b9hee6 , poptr-b9hef3 , poptr-b9hfa7 , poptr-b9hfd3 , poptr-b9hfi6 , poptr-b9hft8 , poptr-b9hg83 , poptr-b9hif5 , poptr-b9hll5 , poptr-b9hmd0 , poptr-b9hnv3 , poptr-b9hqr6 , poptr-b9hqr7 , poptr-b9hrv7 , poptr-b9hs66 , poptr-b9huf0 , poptr-b9hur3 , poptr-b9hux1 , poptr-b9hwp2 , poptr-b9hxr7 , poptr-b9hyk8 , poptr-b9hyx2 , poptr-b9i2q8 , poptr-b9i5b8 , poptr-b9i5j8 , poptr-b9i5j9 , poptr-b9i5k0 , poptr-b9i6b6 , poptr-b9i7b7 , poptr-b9i9p8 , poptr-b9i484 , poptr-b9i994 , poptr-b9ial3 , poptr-b9ial4 , poptr-b9ib28 , poptr-b9ibr8 , poptr-b9id97 , poptr-b9idr4 , poptr-b9iid9 , poptr-b9iip0 , poptr-b9ik80 , poptr-b9ik90 , poptr-b9il63 , poptr-b9ink7 , poptr-b9iqa0 , poptr-b9iqd5 , poptr-b9mwf1 , poptr-b9mwi8 , poptr-b9n0c6 , poptr-b9n0n1 , poptr-b9n0n4 , poptr-b9n0z5 , poptr-b9n1t8 , poptr-b9n1z3 , poptr-b9n3m7 , poptr-b9n233 , poptr-b9n236 , poptr-b9n395 , poptr-b9nd33 , poptr-b9nd34 , poptr-b9ndi6 , poptr-b9ndj5 , poptr-b9p9i8 , poptr-a9pfa7 , poptr-b9hdp2 , poptr-b9inj0 , poptr-b9n5g7 , poptr-b9i8q4 , poptr-u5g0r4 , poptr-u5gf59 , poptr-u7e1l9 , poptr-b9hj61 , poptr-b9hwd0 , poptr-u5fz17 , poptr-a0a2k2brq1 , poptr-a0a2k2b9i6 , poptr-a0a2k1x9y8 , poptr-a9pch4 , poptr-a0a2k1wwt1 , poptr-a0a2k1wv10 , poptr-a0a2k2a850 , poptr-a0a2k2asj6 , poptr-a0a2k1x6k1 , poptr-u5fv96 , poptr-a0a2k2blg2 , poptr-a0a2k1xpi3 , poptr-a0a2k1xpj0 , poptr-a0a2k2b331 , poptr-a0a2k2byl7 , poptr-b9iek5 , poptr-a9pfg4 , poptr-a0a2k1xzs5 , poptr-b9gga9 , poptr-b9guw6 , poptr-b9hff2

Title : The DNA sequence and biology of human chromosome 19 - Grimwood_2004_Nature_428_529
Author(s) : Grimwood J , Gordon LA , Olsen A , Terry A , Schmutz J , Lamerdin J , Hellsten U , Goodstein D , Couronne O , Tran-Gyamfi M , Aerts A , Altherr M , Ashworth L , Bajorek E , Black S , Branscomb E , Caenepeel S , Carrano A , Caoile C , Chan YM , Christensen M , Cleland CA , Copeland A , Dalin E , Dehal P , Denys M , Detter JC , Escobar J , Flowers D , Fotopulos D , Garcia C , Georgescu AM , Glavina T , Gomez M , Gonzales E , Groza M , Hammon N , Hawkins T , Haydu L , Ho I , Huang W , Israni S , Jett J , Kadner K , Kimball H , Kobayashi A , Larionov V , Leem SH , Lopez F , Lou Y , Lowry S , Malfatti S , Martinez D , McCready P , Medina C , Morgan J , Nelson K , Nolan M , Ovcharenko I , Pitluck S , Pollard M , Popkie AP , Predki P , Quan G , Ramirez L , Rash S , Retterer J , Rodriguez A , Rogers S , Salamov A , Salazar A , She X , Smith D , Slezak T , Solovyev V , Thayer N , Tice H , Tsai M , Ustaszewska A , Vo N , Wagner M , Wheeler J , Wu K , Xie G , Yang J , Dubchak I , Furey TS , DeJong P , Dickson M , Gordon D , Eichler EE , Pennacchio LA , Richardson P , Stubbs L , Rokhsar DS , Myers RM , Rubin EM , Lucas SM
Ref : Nature , 428 :529 , 2004
Abstract : Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.
ESTHER : Grimwood_2004_Nature_428_529
PubMedSearch : Grimwood_2004_Nature_428_529
PubMedID: 15057824

Title : The sequence and analysis of duplication-rich human chromosome 16 - Martin_2004_Nature_432_988
Author(s) : Martin J , Han C , Gordon LA , Terry A , Prabhakar S , She X , Xie G , Hellsten U , Chan YM , Altherr M , Couronne O , Aerts A , Bajorek E , Black S , Blumer H , Branscomb E , Brown NC , Bruno WJ , Buckingham JM , Callen DF , Campbell CS , Campbell ML , Campbell EW , Caoile C , Challacombe JF , Chasteen LA , Chertkov O , Chi HC , Christensen M , Clark LM , Cohn JD , Denys M , Detter JC , Dickson M , Dimitrijevic-Bussod M , Escobar J , Fawcett JJ , Flowers D , Fotopulos D , Glavina T , Gomez M , Gonzales E , Goodstein D , Goodwin LA , Grady DL , Grigoriev I , Groza M , Hammon N , Hawkins T , Haydu L , Hildebrand CE , Huang W , Israni S , Jett J , Jewett PB , Kadner K , Kimball H , Kobayashi A , Krawczyk MC , Leyba T , Longmire JL , Lopez F , Lou Y , Lowry S , Ludeman T , Manohar CF , Mark GA , McMurray KL , Meincke LJ , Morgan J , Moyzis RK , Mundt MO , Munk AC , Nandkeshwar RD , Pitluck S , Pollard M , Predki P , Parson-Quintana B , Ramirez L , Rash S , Retterer J , Ricke DO , Robinson DL , Rodriguez A , Salamov A , Saunders EH , Scott D , Shough T , Stallings RL , Stalvey M , Sutherland RD , Tapia R , Tesmer JG , Thayer N , Thompson LS , Tice H , Torney DC , Tran-Gyamfi M , Tsai M , Ulanovsky LE , Ustaszewska A , Vo N , White PS , Williams AL , Wills PL , Wu JR , Wu K , Yang J , DeJong P , Bruce D , Doggett NA , Deaven L , Schmutz J , Grimwood J , Richardson P , Rokhsar DS , Eichler EE , Gilna P , Lucas SM , Myers RM , Rubin EM , Pennacchio LA
Ref : Nature , 432 :988 , 2004
Abstract : Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,670 aligned transcripts, 19 transfer RNA genes, 341 pseudogenes and three RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukaemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. Whereas the segmental duplications of chromosome 16 are enriched in the relatively gene-poor pericentromere of the p arm, some are involved in recent gene duplication and conversion events that are likely to have had an impact on the evolution of primates and human disease susceptibility.
ESTHER : Martin_2004_Nature_432_988
PubMedSearch : Martin_2004_Nature_432_988
PubMedID: 15616553
Gene_locus related to this paper: human-CES1 , human-CES2 , human-CES3 , human-CES4A , human-CES5A

Title : The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism - Armbrust_2004_Science_306_79
Author(s) : Armbrust EV , Berges JA , Bowler C , Green BR , Martinez D , Putnam NH , Zhou S , Allen AE , Apt KE , Bechner M , Brzezinski MA , Chaal BK , Chiovitti A , Davis AK , Demarest MS , Detter JC , Glavina T , Goodstein D , Hadi MZ , Hellsten U , Hildebrand M , Jenkins BD , Jurka J , Kapitonov VV , Kroger N , Lau WW , Lane TW , Larimer FW , Lippmeier JC , Lucas S , Medina M , Montsant A , Obornik M , Parker MS , Palenik B , Pazour GJ , Richardson PM , Rynearson TA , Saito MA , Schwartz DC , Thamatrakoln K , Valentin K , Vardi A , Wilkerson FP , Rokhsar DS
Ref : Science , 306 :79 , 2004
Abstract : Diatoms are unicellular algae with plastids acquired by secondary endosymbiosis. They are responsible for approximately 20% of global carbon fixation. We report the 34 million-base pair draft nuclear genome of the marine diatom Thalassiosira pseudonana and its 129 thousand-base pair plastid and 44 thousand-base pair mitochondrial genomes. Sequence and optical restriction mapping revealed 24 diploid nuclear chromosomes. We identified novel genes for silicic acid transport and formation of silica-based cell walls, high-affinity iron uptake, biosynthetic enzymes for several types of polyunsaturated fatty acids, use of a range of nitrogenous compounds, and a complete urea cycle, all attributes that allow diatoms to prosper in aquatic environments.
ESTHER : Armbrust_2004_Science_306_79
PubMedSearch : Armbrust_2004_Science_306_79
PubMedID: 15459382
Gene_locus related to this paper: thaps-b5ymy7 , thaps-b5yn04 , thaps-b5ynz7 , thaps-b8bq57 , thaps-b8bsn5 , thaps-b8bsy4 , thaps-b8bv00 , thaps-b8bxb3 , thaps-b8byx0 , thaps-b8bzg5 , thaps-b8c0a3 , thaps-b8c2d8 , thaps-b8c2k9 , thaps-b8c2s5 , thaps-b8c3p0 , thaps-b8c5l7 , thaps-b8c6y7 , thaps-b8c9k8 , thaps-b8c9t6 , thaps-b8c345 , thaps-b8c584 , thaps-b8c885 , thaps-b8c954 , thaps-b8cdd7 , thaps-b8cdt3 , thaps-b8cf07 , thaps-b8cfn8 , thaps-b8c079