Sugawara M

References (3)

Title : Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome - Anda_2015_Proc.Natl.Acad.Sci.U.S.A_112_14343
Author(s) : Anda M , Ohtsubo Y , Okubo T , Sugawara M , Nagata Y , Tsuda M , Minamisawa K , Mitsui H
Ref : Proc Natl Acad Sci U S A , 112 :14343 , 2015
Abstract : rRNA is essential for life because of its functional importance in protein synthesis. The rRNA (rrn) operon encoding 16S, 23S, and 5S rRNAs is located on the "main" chromosome in all bacteria documented to date and is frequently used as a marker of chromosomes. Here, our genome analysis of a plant-associated alphaproteobacterium, Aureimonas sp. AU20, indicates that this strain has its sole rrn operon on a small (9.4 kb), high-copy-number replicon. We designated this unusual replicon carrying the rrn operon on the background of an rrn-lacking chromosome (RLC) as the rrn-plasmid. Four of 12 strains close to AU20 also had this RLC/rrn-plasmid organization. Phylogenetic analysis showed that those strains having the RLC/rrn-plasmid organization represented one clade within the genus Aureimonas. Our finding introduces a previously unaddressed viewpoint into studies of genetics, genomics, and evolution in microbiology and biology in general.
ESTHER : Anda_2015_Proc.Natl.Acad.Sci.U.S.A_112_14343
PubMedSearch : Anda_2015_Proc.Natl.Acad.Sci.U.S.A_112_14343
PubMedID: 26534993
Gene_locus related to this paper: 9rhiz-a0a0s2en26 , 9rhiz-a0a0p0z830 , 9rhiz-a0a0p0z878 , 9rhiz-a0a0p0z9k0 , 9rhiz-a0a0s2epz8

Title : Complete sequencing and characterization of 21,243 full-length human cDNAs - Ota_2004_Nat.Genet_36_40
Author(s) : Ota T , Suzuki Y , Nishikawa T , Otsuki T , Sugiyama T , Irie R , Wakamatsu A , Hayashi K , Sato H , Nagai K , Kimura K , Makita H , Sekine M , Obayashi M , Nishi T , Shibahara T , Tanaka T , Ishii S , Yamamoto J , Saito K , Kawai Y , Isono Y , Nakamura Y , Nagahari K , Murakami K , Yasuda T , Iwayanagi T , Wagatsuma M , Shiratori A , Sudo H , Hosoiri T , Kaku Y , Kodaira H , Kondo H , Sugawara M , Takahashi M , Kanda K , Yokoi T , Furuya T , Kikkawa E , Omura Y , Abe K , Kamihara K , Katsuta N , Sato K , Tanikawa M , Yamazaki M , Ninomiya K , Ishibashi T , Yamashita H , Murakawa K , Fujimori K , Tanai H , Kimata M , Watanabe M , Hiraoka S , Chiba Y , Ishida S , Ono Y , Takiguchi S , Watanabe S , Yosida M , Hotuta T , Kusano J , Kanehori K , Takahashi-Fujii A , Hara H , Tanase TO , Nomura Y , Togiya S , Komai F , Hara R , Takeuchi K , Arita M , Imose N , Musashino K , Yuuki H , Oshima A , Sasaki N , Aotsuka S , Yoshikawa Y , Matsunawa H , Ichihara T , Shiohata N , Sano S , Moriya S , Momiyama H , Satoh N , Takami S , Terashima Y , Suzuki O , Nakagawa S , Senoh A , Mizoguchi H , Goto Y , Shimizu F , Wakebe H , Hishigaki H , Watanabe T , Sugiyama A , Takemoto M , Kawakami B , Watanabe K , Kumagai A , Itakura S , Fukuzumi Y , Fujimori Y , Komiyama M , Tashiro H , Tanigami A , Fujiwara T , Ono T , Yamada K , Fujii Y , Ozaki K , Hirao M , Ohmori Y , Kawabata A , Hikiji T , Kobatake N , Inagaki H , Ikema Y , Okamoto S , Okitani R , Kawakami T , Noguchi S , Itoh T , Shigeta K , Senba T , Matsumura K , Nakajima Y , Mizuno T , Morinaga M , Sasaki M , Togashi T , Oyama M , Hata H , Komatsu T , Mizushima-Sugano J , Satoh T , Shirai Y , Takahashi Y , Nakagawa K , Okumura K , Nagase T , Nomura N , Kikuchi H , Masuho Y , Yamashita R , Nakai K , Yada T , Ohara O , Isogai T , Sugano S
Ref : Nat Genet , 36 :40 , 2004
Abstract : As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999 clusters had not been predicted by computational methods. The distribution of GC content of nonpredicted cDNAs had a peak at approximately 58% compared with a peak at approximately 42%for predicted cDNAs. Thus, there seems to be a slight bias against GC-rich transcripts in current gene prediction procedures. The rest of the cDNAs unique to the FLJ collection (5,481) contained no obvious open reading frames (ORFs) and thus are candidate noncoding RNAs. About one-fourth of them (1,378) showed a clear pattern of splicing. The distribution of GC content of noncoding cDNAs was narrow and had a peak at approximately 42%, relatively low compared with that of protein-coding cDNAs.
ESTHER : Ota_2004_Nat.Genet_36_40
PubMedSearch : Ota_2004_Nat.Genet_36_40
PubMedID: 14702039
Gene_locus related to this paper: human-ABHD1 , human-ABHD4 , human-ABHD12 , human-ABHD16A , human-ACOT1 , human-LDAH , human-ABHD18 , human-CES1 , human-CES4A , human-CES5A , human-CPVL , human-DAGLB , human-EPHX2 , human-KANSL3 , human-LIPA , human-LPL , human-MEST , human-NDRG1 , human-NLGN1 , human-NLGN4X , human-PRCP , human-PRSS16 , human-SERAC1 , human-TMEM53

Title : Truncation of CGI-58 protein causes malformation of lamellar granules resulting in ichthyosis in Dorfman-Chanarin syndrome - Akiyama_2003_J.Invest.Dermatol_121_1029
Author(s) : Akiyama M , Sawamura D , Nomura Y , Sugawara M , Shimizu H
Ref : Journal of Investigative Dermatology , 121 :1029 , 2003
Abstract : Dorfman-Chanarin syndrome is a rare autosomal recessive inherited lipid storage disease characterized by ichthyosis, leukocyte lipid vacuoles, and involvement of several internal organs. Recently, CGI-58 mutations were identified as the cause of Dorfman-Chanarin syndrome. The physiologic roles of the CGI-58 protein and the pathomechanisms of Dorfman-Chanarin syndrome still remain to be clarified, however. The patient, a 16-y-old male, demonstrated ichthyosis, small ears, lipid vacuoles in his leukocytes, liver dysfunction, and mental retardation. Sequencing of CGI-58 revealed that the patient was homozygous for a novel nonsense mutation R184X, in exon 4. The putative truncated protein was 52.4% of the length of the normal CGI-58 polypeptide and lacked approximately 60% of the lipid binding region, 66.4% of the alpha/beta hydrolase folding segment of the polypeptide, and two of the CGI-58 catalytic triads, resulting in a significant loss of lipase/esterase/thioesterase activity. Electron microscopy revealed a large number of abnormal lamellar granules, a disturbed intercellular lamellar structure, and lipid vacuoles in the epidermis. These results suggested that CGI-58 protein is involved in the lipid metabolism of lamellar granules and that defective lipid production in lamellar granules caused by a CGI-58 protein deficiency is involved in the pathogenesis of ichthyosis in Dorfman-Chanarin syndrome.
ESTHER : Akiyama_2003_J.Invest.Dermatol_121_1029
PubMedSearch : Akiyama_2003_J.Invest.Dermatol_121_1029
PubMedID: 14708602
Gene_locus related to this paper: human-ABHD5